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Abstract

Motivation: Elementary flux modes (EFMs) analysis constitutes a fundamental tool in systems biol-

ogy. However, the efficient calculation of EFMs in genome-scale metabolic networks (GSMNs) is

still a challenge. We present a novel algorithm that uses a linear programming-based tree search

and efficiently enumerates a subset of EFMs in GSMNs.

Results: Our approach is compared with the EFMEvolver approach, demonstrating a significant im-

provement in computation time. We also validate the usefulness of our new approach by studying

the acetate overflow metabolism in the Escherichia coli bacteria. To do so, we computed 1 million

EFMs for each energetic amino acid and then analysed the relevance of each energetic amino acid

based on gene/protein expression data and the obtained EFMs. We found good agreement be-

tween previous experiments and the conclusions reached using EFMs. Finally, we also analysed

the performance of our approach when applied to large GSMNs.

Availability and implementation: The stand-alone software TreeEFM is implemented in Cþþ and

interacts with the open-source linear solver COIN-OR Linear program Solver (CLP).

Contact: fplanes@ceit.es

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Many advances in medicine and biology would not be possible with-

out a detailed understanding of the functional mechanisms of cellular

metabolism (Hsu and Sabatini, 2008). However, this is a very com-

plex task as there are intricate regulatory events controlling cellular re-

sponse. Novel technologies, referred to with the suffix omics, are

emerging in the last two decades and providing us with a cellular pic-

ture of unprecedented coverage and resolution (Joyce and Palsson,

2006). Unfortunately, it is often difficult to detect the mechanisms

behind an observed alteration using the data provided by omics tech-

nologies. The scientific community needs improved tools and methods

to identify these mechanisms in different scenarios (Werner, 2008).

Several mathematical methods modeling metabolism are emerg-

ing that are able to incorporate datasets provided by different omics

technologies. Many of these methods are encompassed within con-

straint-based models (Price et al., 2004), in which a set of mathemat-

ical constraints are defined using a genome-scale metabolic network

(GSMN) reconstruction as a starting point. Several curated GSMNs

can be found in the literature (Thiele and Palsson, 2010). However,

being able to automatically characterize the biochemical reactions

present in a particular metabolism through omics data truly consti-

tutes a challenge (Schmidt et al., 2013).

Typically, constraint-based models account for two principal con-

straints, namely the mass balance equation at steady state, and
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thermodynamic-based irreversibility constraints. If, given a set of en-

zymes, all of them are essential to fulfill these two constraints, the set

is referred to as an elementary flux mode (EFM; Schuster et al., 2000).

In other words, EFMs are solutions with the minimum support neces-

sary to operate in stoichiometric steady-state balance with all reactions

in the appropriate direction. The advantages of analysing metabolic

networks based on EFMs have been shown in different works (e.g. de

Figueiredo et al., 2008; Gebauer et al., 2012; Trinh et al., 2009;

Rezola et al., 2014). However, their use has been limited because enu-

merating them is computationally demanding. Algorithms have been

developed to enumerate all the EFMs in medium-size metabolic net-

works (Terzer and Stelling, 2008; Urbanczik and Wagner, 2005; Von

Kamp and Schuster, 2006). However, despite the development of

novel methods using state of the art computational techniques expedit-

ing their application in larger networks (Hunt et al., 2014), this family

of algorithms fails on GSMNs using standard computers, because of

the combinatorial explosion in the number of EFMs (Klamt and

Stelling, 2002). In this light, several methods have been recently

proposed to determine a subset of EFMs in GSMNs (de Figueiredo

et al., 2009; Kaleta et al., 2009; Pey and Planes, 2014; Rezola et al.,

2011, 2013). Continuing with this effort, we present here a novel al-

gorithm that uses a linear programming-based tree search for EFM

numeration, denoted as TreeEFM. We benchmark the performance of

our new approach with EFMEvolver (Kaleta et al., 2009), currently

the most efficient framework to find EFMs in GSMNs. The results

show that TreeEFM outperforms EFMEvolver.

After confirming the efficiency of the new approach presented here,

we calculate a large set of EFMs to study a relevant biological question,

the acetate overflow metabolism. The aerobic production of acetate

causes serious economic losses in bacteria-based biofactories (Nakano

et al., 1997). Finding the mechanisms that prevent this scenario consti-

tutes an open question in the field (Valgepea et al., 2010). Here we

analyse the relevance of eight energetic amino acids in the overflow

metabolism using our approach to compute a large set of EFMs. We

then apply the methodology presented in Rezola et al. (2013) to score

each EFM based on expression data, using the gene/protein expression

data provided by Valgepea et al. (2010). On the basis of a literature re-

view, we could validate the conclusions reached using EFMs.

Finally, we analysed the performance of our approach for han-

dling even larger networks than traditional GSMNs, paving the way

for forthcoming models involving an ever-increasing number of re-

actions and metabolites.

2. Methods

2.1 Mathematical definitions
Assume we have a metabolic network comprising C metabolites and

R reactions. For each reaction r (r¼1, . . . , R), we assign a continu-

ous flux variable vr representing its activity. EFMs assume that the

concentration of the internal metabolites (I) remain constant. This is

considered in the mass-balance equation, assuming the steady-state

condition, as in Equation (1). Note that Scr is the stoichiometric

coefficient associated with metabolite c (c¼1, . . . ,C) in reaction r

(r¼1, . . . , R). As usual in the literature, e.g. Schuster et al. (2000),

substrates have a negative stoichiometric coefficient, whilst products

have a positive stoichiometric coefficient.

XR

r¼1

Scrvr ¼ 0; 8c 2 I (1)

In addition, EFMs must satisfy thermodynamic constraints in the

form of irreversible reactions (Irr). Equation (2) prevents fluxes in

Irr from being negative.

vr � 0; 8r 2 Irr (2)

Equations (1) and (2) define a non-pointed polyhedral cone

(Rezola et al., 2011). To calculate EFMs with the methodology pre-

sented here, it is necessary to transform the non-pointed cone into a

particular pointed cone, referred to as P. For that, each reversible re-

action is split into two irreversible reactions, as typically done in the

literature (de Figueiredo et al., 2009; Pey et al., 2014).

We search for EFMs including at least one reaction from a set L.

This is achieved by cutting P with the hyper-plane in Equation (3).X
r2L

vr � 1 (3)

Please note here that the 1 in the right-hand side of Equation (3)

can be arbitrarily modified because any hyper-plane intersecting the

pointed cone defined by Equations (1) and (2) can be considered.

Further details can be found in Pey and Planes (2014).

Equations (1)–(3) generate a convex feasible space whose ex-

treme points are the EFMs of interest (Pey and Planes, 2014). This

idea has been exploited by previous approaches, e.g. Kaleta et al.

(2009). Efficient methods to find extreme points in terms of a given

objective function have been developed using linear programming

and the Simplex algorithm (Dantzig et al., 1955), which iterates

through extreme points. The Simplex method is efficiently imple-

mented in tools such as COIN CLP (Lougee-Heimer, 2003).

Note that any feasible solution satisfying (1)–(3) calculated using

the Simplex algorithm is an EFM (Pey and Planes, 2014). Therefore,

any linear objective function can be used, as optimality is not neces-

sary but feasibility is. In particular, we do not impose any objective

function to identify the first EFM.

2.2 Tree-based search
We have defined the model to calculate a single EFM based on linear

programming. Now we introduce our tree-based algorithm to enu-

merate a subset of EFMs, referred to as TreeEFM. Each node of our

tree represents a linear program (LP) containing a potential EFM

different from the one that was calculated in its ancestor node. To

guarantee this, let us assume that an EFM calculated at an arbitrary

node comprises m active reactions. Without loss of generality, as-

sume that v1, v2, . . . , vm >0 and vmþ1, vmþ2, . . . , vR¼0, so that the

first m reactions are active. We then create m additional tree nodes,

each of which removes one of the m active reactions in the parent

node, namely the first node has v1¼0, the second node v2¼0, and

so on (Fig. 1).Thus, we prevent the method from recalculating the

preceding solution by recurrently removing reactions.

This process is repeated at each node, carrying forward any

fluxes set to zero in the ancestor node, as typically done in tree-

based search algorithms. Our LP-tree-based search procedure is

similar to the branch-and-bound approaches to solve integer

Fig. 1. Connections between the parent node and its children
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programming models (Land and Doig, 1960). However, our branch-

ing strategy is completely different and bounds are not used here. In

particular, in many branch-and-bound approaches two children

emerge from each parent node, whilst here TreeEFM may create as

many child nodes as active reactions in the solution obtained in the

antecessor node. Note also that during the branch-and-bound pro-

cess integrality is promoted by including an inequality in each child

besides the constraints in the parent node. TreeEFM is slightly dif-

ferent since a constraint deactivating a variable is included in the

child node. Nevertheless, both approaches share the idea of carrying

forward constraints from the parent to the child node.

Trees have been used previously for EFM computation. In par-

ticular, in the efmtool approach (Terzer and Stelling, 2008), the con-

cept of bit pattern trees was introduced to optimize the iterative

phase of the double description method, which is the standard algo-

rithm to enumerate extreme rays in a polyhedral cone. This algo-

rithm starts from an initial cone that contains the final cone, defined

by Equations (1) and (2). Each time a constraint is added, the cone

and extreme rays are updated. By definition, it is necessary to com-

plete the iterative process to guarantee that each candidate is indeed

an EFM. Bit pattern trees were introduced to accelerate the elemen-

tarity test in intermediate iterations. Our tree-branching approach is

substantially different, as it is based on linear programming and ex-

treme point enumeration. Each node in the tree constitutes a LP that

potentially provides us with an EFM. As linear programming solvers

are highly sophisticated, we can always compute a subset of EFMs

even in large-size networks. This gives a substantial computational

advantage to our approach relative to efmtool, which is only appli-

cable to networks of moderate size.

To conduct the tree search more efficiently, several heuristic

rules have been included in the algorithm. In particular they avoid:

(i) recalculating previously obtained EFMs and (ii) solving nodes

representing LPs without solution, namely infeasible models, which

may substantially increase the computation time. Further details are

given below.

2.3 Heuristic rules
In our approach, the majority of the computation time is spent on

solving LPs. Hence, decreasing the total number of LPs required to

obtain an EFM constitutes an appropriate strategy. In this light, we

first explore nodes that are more likely to provide a new EFM. Let

us define E as the already calculated set of EFMs (where this set will

grow in size as we explore more of the tree). We also define a non-

negative score for each node i that is a count of how many EFMs in

E are feasible in i. We consider that an EFM j 2 E is feasible in node

i if all the constraints imposed in that node are satisfied in the EFM,

meaning that solving the corresponding LP in node i could retrieve

EFM j. It is important to realize that unnecessary calculations are

being carried out when an EFM is recalculated, to the detriment of

overall computational performance. For this reason, we first explore

nodes with the lowest score, as the smaller the score of a node, the

higher the probability of obtaining a new EFM after solving its

corresponding LP. Different strategies are used depending on

that score: (i) when the score is equal to zero and (ii) when the score

is one or more. A schematic representation of the procedures

follows:

Input: stoichiometric matrix S, active reaction set L, Stop condi-

tions StopConditions

Output: flux vectors of the EFMs

// setting the root node

root_node¼buildRoot(S, L);

efm¼ solveLinearProgram(root_node);

feasible_children¼ eliminateInfeasibilities(root_node, efm);

nodes_tree¼ storeChildrenInTree(feasible_children);

// processing the nodes of the tree

while (checkStopConditions(StopConditions) is not True and

NumberUnexploredNodes(nodes_tree) is not zero) do

current_node¼ selectNodeLowestScore(nodes_tree);

if (scoreOf(current_node) is zero) then

efm¼ solveLinearProgram(current_node);

else

efm¼ searchFittingEFM(current_node);

end

feasible_children¼ eliminateInfeasibilities

(current_node, efm);

nodes_tree¼ storeChildrenInTree(feasible_children);

end

Description:

After the initial node is solved, the child nodes are stored in the tree.

While the stop conditions (i.e. number of obtained EFMs, or expired

execution time) are not met and there are still unexplored nodes, the

algorithm selects from the tree the node whose score is the lowest. If

the score is zero, then the LP of the node is re-solved by the CLP

library. However, if the score is greater than zero, it means at least

one of the obtained EFMs is likely to be returned again by the CLP

library, so the algorithm just takes the existing EFM without invok-

ing the CLP library. Lastly, the algorithm performs an analysis of

the EFM of the current node to detect the reactions that may pro-

duce infeasible children, so that only feasible children are stored

in the tree. If new EFMs are found by the function

eliminateInfeasibilities, they will be added to E. Once the algo-

rithm terminates, the flux vectors of the obtained EFMs are saved to

disk.

Case 1: Score¼0

When the lowest score among the available nodes is zero, the LP

defined in these nodes is directly solved. Two scenarios may then

arise: (i) a new EFM is obtained, which can be added to E; or (ii) the

LP is infeasible. In no case can we obtain an already calculated

EFM, because a score of zero means that constraints in node i are

not fulfilled by any EFM in E.

Note that solving an infeasible node implies solving an LP with-

out obtaining a new EFM, resulting in wasted computation. To pre-

vent this, we introduce the following strategies when the score is

non-zero.

Case 2. Score>0

Score>0 implies there is at least one EFM in E that satisfies the

constraints applicable at the current node. We refer to this EFM as

one that fits in the current node. If the corresponding LP is solved,

we run the risk of calculating again the same EFM. However, by

solving only one additional LP, we can take advantage of this

fitting EFM to calculate all the infeasibilities that may arise from the

offspring of the current node. Let us consider the example in

Figure 2.

Figure 2 represents the scenario posed above where the selected

node, referred to as node i, imposes the elimination of reactions 1, 3

and 7. In addition, we have already calculated the EFM j activating

reactions 2, 5, 8, 9 and 10. Note how EFM j fits in node i (since

reactions 1, 3 and 7 are not active in it). If score>1, we consider the

most recently calculated EFM.
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As an objective for solving the LPs, we define a dynamic object-

ive function f

f ¼
X
r2K

vr (4)

that minimizes total flux in a set of reactions K, which are exactly

those reactions active in the fitting EFM. The set K will be updated

in an iterative process presented below. Returning to the toy ex-

ample, K¼ {2, 5, 8, 9, 10}, we define f so that the activity of reac-

tions 2, 5, 8, 9 and 10 is minimized. Thus, the LP defined in node i

and amended with the objective function f is solved. Note that the

LP is always feasible because there is at least one solution that satis-

fies the underlying constraints, i.e. EFM j.

Once the LP is solved, we update the reactions belonging to the

set K. In particular, we remove reactions from K that became in-

active in the calculated EFM. We are sure that nodes corresponding

to the reactions removed from K are feasible, as we obtained a new

EFM fitting in those nodes. By analogy with the original definition

of K, we build a new f based on the new set K. Back to the example

above, let us assume that we obtain an EFM activating reactions 2,

5, 8 and 11. We now update K¼ {2, 5, 8}. Note that reactions 9 and

10 were removed from K because they became inactive in the ob-

tained EFM. The updated set K automatically leads to a new object-

ive function (4). Then, solving the LP comprising the constraints

defined at node i coupled with this new objective function f provides

a new EFM activating reactions 2, 5, 9, 10, 12 and 13. Again, we

update K¼ {2, 5} and the objective function f.

This procedure is repeated until (i) the set K is empty or (ii) two

consecutive iterations obtain the same set K. The first scenario is

achieved when all offspring nodes are feasible. The latter corres-

ponds to a scenario in which infeasibilities may appear. Returning

again to the toy example, we assume that the EFM involving reac-

tions 2, 5, 8 and 11 is obtained, and, in consequence, K remains the

same because reaction 8 was previously removed. Therefore, nodes

corresponding to the reactions in K are highly likely to lead to an in-

feasible solution. In the example above, we assume that the nodes

corresponding to having reactions 2 and 5 inactive are infeasible

(Fig. 2). We decided not to explore these nodes further and move to

the next ones. These nodes could be considered later e.g. if the num-

ber of requested EFMs is not reached after exploring all the non-dis-

carded nodes. Even if they are not considered, our approach allows

us to determine many EFMs quickly, which is the goal of any ap-

proach, as the full computation of the entire set of EFMs in net-

works of large size is currently not viable given present-day

computer resources. It is important to emphasize that in the last step

we may solve an LP without obtaining a new EFM. However, such

an LP enables us to prevent infeasible nodes from appearing.

Note that an already calculated EFM may be retrieved in the it-

erative process. In that case, the EFM is not re-included in the set E.

In particular, when two nodes do not belong to the same descent

line, the same EFM may fit in them. For instance, recalling again the

example in Figure 2, note how the EFM activating reactions 2, 5, 8

and 11 fits in two nodes, i.e. nodes deactivating reactions 9 and 10

together with reactions 1, 3 and 7. However, it is not possible to ob-

tain the EFM calculated in the parent node in any child, as they be-

long to the same descent line.

2.4 Implementation
TreeEFM is implemented in Cþþ and is provided in the

Supplementary Material. The LPs were solved using the open-source

Simplex implementation in CLP 1.15.

2.5 P-value calculation
In Rezola et al. (2013), a novel methodology quantifying the rele-

vance of a set of EFMs using gene/protein expression data was intro-

duced. Using Gene–Protein-Reaction logical rules, each reaction in

the metabolic network is first classified as highly, medium or lowly

expressed.

For the e-th EFM that comprises Te reactions, the probability of

having ie and je of them as highly and lowly expressed, respectively,

is calculated using a multivariate hypergeometric distribution:

PðxðRG;RH ;RL;TeÞ ¼ ðie; jeÞÞ ¼

RH

ie

 !
RL

je

 !
RG � RH �RL

Te � ie � je

 !

RG

Te

 ! ;

(5)

where RH and RL are the number of highly and lowly expressed re-

actions in the considered metabolic network comprising RG reac-

tions. To promote those EFMs activating highly expressed reactions

while minimizing the number of lowly expressed, Rezola et al. pre-

sented a P-value based on the probability above

P-valuee ¼
Xmin ðRH ;TeÞ

i¼ie

Xje

j ¼ 0

iþ j�Te

PðxðRG;RH ;RL;TeÞ ¼ ði; jÞÞ: (6)

In this work, we consider this P-value as a metric to analyse the

relevance of a calculated set of EFMs under particular gene/protein

expression conditions. Note that calculating the P-value is

independent of the enumeration of EFMs carried out by TreeEFM.

3 Results

3.1 Validation
The improvement achieved by our approach is shown with a side-

by-side comparison with EFMEvolver, one of the most efficient

frameworks currently in the literature to calculate EFMs in GSMNs

(Kaleta et al., 2009). We considered the cases corresponding to the

GSMN of Escherichia coli (Feist et al., 2007). In particular, two dif-

ferent comparisons have been carried out for the production of L-ly-

sine, L-Threonine and L-Arginine. Table 1 shows the number of

EFMs obtained in 7200 s using EFMEvolver and TreeEFM. Solving

LPs is the most time-consuming task in both approaches. Therefore,

we also compared the number of LPs required to obtain 2000 EFMs

in each case. As discussed in section 2.3, we consider that the ap-

proach solving fewer LPs per EFM is more efficient. The results sup-

port the efficiency of TreeEFM and as such it can be considered a

state-of-the-art approach to calculate EFMs in GSMNs.

Fig. 2. A graphical representation of the example used to explain how to

avoid solving unnecessary LPs to find infeasibilities. Nodes in gray corres-

pond to infeasible nodes
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3.2 Case study: acetate overflow
The number of industrial applications in which bacteria play a key

role is increasing day by day. The competitiveness of bacterial proc-

esses is maximized by augmenting metabolic velocities. However, at

a certain point, an overflow metabolism occurs. One of the main

characteristics of this overflow metabolism in the E.coli bacteria is

aerobic acetate excretion. This unwanted phenomenon impairs

efficiency (Swartz, 2001). Despite the efforts of the scientific

community (Valgepea et al., 2010), a precise description of the

mechanism triggering this overflow metabolism has not yet been

reported.

In this section, we aim to identify key amino acids in the over-

flow scenario based on an EFM analysis. In particular, we analyse

the EFMs producing the eight amino acids identified as energetic in

(Gschaedler and Boudrant, 1994), as their role in the context of

acetate overflow was experimentally analysed in (Han et al., 2002).

For that, we calculated 1 million EFMs per energetic amino acid (see

first column in Table 2) to which an individual P-value was assigned

using the method presented in (Rezola et al., 2013) and revisited in

section 2.5. These EFMs were calculated from the GSMN recon-

struction of E.coli presented by Feist et al. (2007). In addition, we

replicated the minimal growth medium with glucose as the sole car-

bon source as used in Valgepea et al. (2010). As the objective of this

study was precisely to classify the global relevance of each energetic

amino acid, we consider EFMs not necessarily excreting acetate.

Finally, we used the reaction classification reported in Pey et al.

(2013), which was obtained from the experimental data presented

in Valgepea et al. (2010).

In this section, we first study the computational performance of

the TreeEFM approach when calculating the aforementioned 1 mil-

lion EFMs. Then, we analyse the obtained results after projecting the

experimental data in Valgepea et al. (2010) into the computed EFMs.

3.2.1 Computational performance

The methodology presented here provides us with a large number of

EFMs for GSMNs. As an illustration of the efficiency of the

TreeEFM approach, we calculated 1 million EFMs producing each

energetic amino acid in Table 2.

The time complexity of the TreeEFM framework is not linear be-

cause the computational cost of enumerating a new solution

increases with the number of already calculated EFMs. This is

mainly due to internal processes that increase in complexity

when the number of calculated EFM increases. Nevertheless, any

unwanted nonlinear behavior is not significant after 1 million EFMs

are calculated, as illustrated in Figure 3.

Figure 3 shows the time evolution during the process of the cal-

culation of 1 million EFMs corresponding to the best and worst

scenario found, namely glutamate (L-Glu) and serine (L-Ser), respect-

ively. In addition, Figure 3 contains the average time consumption

for the eight energetic amino acids. Note that the computation time

required to obtain a new EFM is not dramatically affected, even

when a million of them have already been calculated. To quantify

this, we performed a fitting of the data corresponding to the pro-

cess computing EFMs producing L-Glu and L-Ser using the function

in (7):

f ðxÞ ¼ bxa (7)

where x is the number of calculated EFMs and f(x) is the accumu-

lated time for the calculation of x EFMs.

As expected, the exponent a in Equation (7) is smaller than one,

being 0.5659 for L-Glu and 0.5964 for the L-Ser process. For both

curves, the R-square values were above 0.99, highlighting the good-

ness of fit of the obtained regressions. Hence, this is a totally accept-

able scenario allowing us to continue increasing the number of

calculated EFMs.

Regarding memory usage, storing a flux array v with a precision

of 4 bytes requires around 12 kb per EFM in the GSMN of E.coli

presented in Feist et al. (2007), comprising 3234 reactions and 1668

metabolites. Therefore, directly storing in memory 1 million EFMs

requires approximately 12 GB, which exceeds the capacity of an or-

dinary desktop computer. Nevertheless, TreeEFM incorporates sev-

eral strategies for optimizing the memory usage, such as removing

nodes with the worst scores to make space available for new nodes.

Table 1. Side-by-side comparison with EFMEvolver. Results for

TreeEFM are the average value of ten trials

# EFMs in 7200 s EFMEvolver TreeEFM Improvement (%)

L-Lysine 118 598 178 056 50.13

L -Threonine 126 491 184 425 45.80

L-Arginine 127 988 174 154 36.07

LPs for 2000

EFMs

EFMEvolver

(LPs per EFM)

TreeEFM

(LPs per EFM)

Improvement (%)

L-Lysine 2.23 1.38 38.12

L-Threonine 1.90 1.64 13.68

L-Arginine 1.80 1.67 7.22
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Fig. 3. Computation time for the calculation of 1 million EFMs

Table 2. Average P-value provided by the methodology in Rezola

et al. (2013)

Amino Acid Mean P-value

Glycine (Gly) 0.0130

Threonine (L-Thr) 0.0238

Serine (L-Ser) 0.0940

Aspartate (L-Asp) 0.1369

Proline (L-Pro) 0.1718

Asparagine (L-Asn) 0.1812

Glutamate (L-Glu) 0.1992

Glutamine (L-Gln) 0.2168
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3.2.2 Acetate overflow

Having a large number of EFMs does not constitute a relevant con-

tribution per se. It is essential to develop methods and tools con-

sidering EFMs as a starting point toward answering relevant

biological questions. Several methods quantifying the relevance of

an EFM can be found in the literature such as the one presented in

Rezola et al. (2013) wherein a score is assigned to each EFM using

experimental data. In essence, a P-value is calculated using a multi-

variate hypergeometric distribution based on a three-level enzyme

classification defined from a given gene/protein expression dataset.

Further details are given in section 2.5. We consider here the gene

and protein expression data corresponding to the acetate overflow

metabolisms provided by Valgepea et al. (2010). Final reaction clas-

sification is calculated as in Pey et al. (2013).

Table 2 summarizes the results for the mean P-values for the 1

million EFMs corresponding to each energetic amino acid. We can

differentiate two groups: the first group comprises glycine (Gly) and

threonine (L-Thr) while the second group comprises Proline (L-Pro),

L-Ser, L-Glu, glutamine (L-Gln), Aspartate (L-Asp) and Asparagine

(L-Asn). Note that the average P-values in the first group are be-

tween 4 and 17.6 times smaller than the second group.

The same classification of the energetic amino acids was previ-

ously reported by Han et al. (2002). In brief, Han and coworkers

identified Gly and L-Thr as the unique energetic amino acids that

delay the overflow metabolism when supplied into the growth

media. Therefore, it is reasonable to assume that there is a saturated

metabolic mechanism involving Gly and L-Thr. These two metabol-

ites are close to each other because the enzyme L-Threonine aldolase

(THRAi) consumes L-Thr to produce a molecule of Gly and a mol-

ecule of acetaldehyde (AcAld). In addition, considering the expres-

sion dataset in Valgepea et al. (2010), THRAi is classified as a

highly expressed reaction. Conversely, AcAld can be directly trans-

formed into acetate through the enzyme Aldehyde dehydrogenase,

which is also highly expressed.

Escherichia coli has several mechanisms producing Gly, with

serine hydroxymethyltransferase (SHMT) being preferred when

glucose is the sole carbon source (Liu et al., 1998). However,

THRAi has been highlighted as an alternative mechanism produc-

ing Gly when SHMT is not properly operating (Liu et al., 1998).

Therefore, when biomass is produced at a very high rate, SHMT

may become saturated, leading to the activation of alternative

mechanisms aiming to increase the biomass production rate.

THRAi, despite being a less efficient pathway, can provide the

required support to meet cellular demand for Gly. As a by-prod-

uct, a molecule of AcAld is produced, which is subsequently trans-

formed into acetate and excreted outside of the cell, which is the

most representative phenotype of the acetate overflow metabolism

(Vemuri et al., 2006).

Further experimental analyses are essential to validate this hy-

pothesis, but for now, we can conclude that the obtained EFMs

properly capture key properties of the acetate overflow metabolism

and may lead us to pose novel metabolic mechanisms.

3.3 TreeEFM in larger networks
The size of metabolic network reconstructions is increasing day-

by-day. This certainly leads to more accurate simulations but entails a

growth in the computation time. In this section, we study the perform-

ance of TreeEFM in the context of three of the largest metabolic net-

works available: (i) Recon2, a highly comprehensive human generic

metabolic reconstruction (Thiele et al., 2013); (ii) the SEED model

database that accounts for a pool of reactions present in a large

variety of organisms (Henry et al., 2010) and (iii) the multi-scale

E.coli model of metabolism and macromolecular synthesis, referred to

as MacroModel (Thiele et al., 2012). After splitting reversible reac-

tions into two irreversible steps, Recon2, SEED and MacroModel

involved 11 175, 21 167 and 94 038 reactions and 5051, 17648 and

62212 metabolites, respectively. In each of these metabolic models,

the time evolution during the calculation of 10 000 EFMs consuming

glucose was studied, as shown in Figure 4.

It can be observed that the computation time grows linearly with

the number of calculated EFMs (R2¼0. 9924, 0.9954 and 0.9993 for

Recon2, SEED and MacroModel, respectively). Therefore, we can

consider that in these three metabolic networks, the time required

to enumerate a new EFM remains constant even after calculating

10000 of them. At some point, as observed in Figure 3, we would ex-

pect the computation time to grow exponentially with the number of

solutions, but in Figure 4 that scenario is not yet reached and more

EFMs could be computed in a reasonable time.

We also analysed how the computation time evolves when the

number of reactions increases for the calculation of 1 million EFMs.

Let s be the total time consumed in a simulation divided by the

number of reactions in the GSMN and the number of obtained

EFMs. If Simplex has an average-case polynomial complexity, the

value s in each network is expected to be similar. For Recon2, SEED

and MacroModel networks a s equal to 1.95�10�5, 3.18�10�5

and 3.49�10�5 s/(EFM�reaction) was obtained when we calculated

1 million EFMs.

We can conclude that there is not a combinatorial explosion in

complexity with the number of reactions. This is clearly illustrated

with the MacroModel, in which, although quadrupling the number

of reactions in SEED database, s increases by less than 10%.

Overall, this analysis shows that our new approach is particularly

suitable for large metabolic networks.

4 Discussion

The methodology presented here based on linear programming and

an efficient tree search procedure, is a general one for enumerating

extreme points in a polytope. In this work, we focused on the com-

putation of EFMs. Our approach showed a computational advan-

tage with respect to EFMEvolver, which is a key issue in the analysis

of GSMNs involving thousands of reactions.
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The usefulness of the TreeEFM approach is validated with the suc-

cessful enumeration of 1 million EFMs in the genome-scale metabolic

reconstruction of E.coli (Feist et al., 2007). Our analysis shows that

the computation time is not a limiting resource but that effective strat-

egies are needed to deal with the memory required for the large

amount of generated data. Although TreeEFM implements effective

strategies for reducing memory requirement, for computation of

EFMs in large GSMNs, it may be necessary to develop effective strat-

egies for compressing the EFMs.

The analysis in section 3.3 shows that TreeEFM is able to adapt,

with an affordable computation cost, to future increasingly large

metabolic models. For instance, metagenomic studies, in which sev-

eral organisms are modeled at a time, will provide us with meta-net-

works encompassing several times the number of reactions and

metabolites present in current GSMNs. TreeEFM is a suitable tool

for such scenarios.

EFMs are an elegant theoretical concept that provide insight into

different metabolic questions, as illustrated here with acetate over-

flow. To improve the relevance of the conclusions provided by an

EFM-based study, it is essential to contextualize the analysis in the

light of omics data. However, the required methodology to take ad-

vantage of large and diverse sets of EFMs is currently emerging, for

example, for gene expression data integration (Rezola et al., 2014).

The open availability of TreeEFM will certainly play a role, as such

approaches improve their predictions when they are provided with a

more diverse set of EFMs.
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