
Real-time Extraction of Colored Segments for
Robot Visual Navigation ?

P.E. López-de-Teruel1, A. Ruiz2, G. Garćıa-Mateos2, and J.M. Garćıa1

1 Dpto. de Ingenieŕıa y Tecnoloǵıa de Computadores
2 Dpto. de Informática y Sistemas

Universidad de Murcia (Spain)
{pedroe,jmgarcia}@ditec.um.es,{aruiz,ginesgm}@um.es

Abstract. We propose an image representation method appropriate for
real-time visual geometry applications. If the expressive power of raw seg-
ments is augmented with robust color information from their two sides,
the most relevant geometric and photometric structure in the image can
be concisely captured. In this paper we describe an efficient algorithm to
compute this kind of representation, which can be successfully exploited
in several projective geometry problems, such as 3D reconstruction, mo-
tion estimation or calibration, and in interpretation related tasks. We
also show how these enhanced primitives are powerful enough to re-
cover a very acceptable approximation of the original image, especially
for partially structured scenes, like interior of buildings, man-made ob-
jects, and so on. The algorithm works at frame rate for medium size
images (PAL/2), using low-cost hardware, such as an off-the-self image
acquisition card and a standard PC. This makes it very useful as an on-
line feature extraction method for robot visual navigation, where more
elaborated (and slower) methods can not be used. We describe some
applications of the algorithm in this kind of tasks.

1 Introduction

3D reconstruction and scene interpretation have been active research topics in
the last years, mostly due to significant advances in the application of projective
geometry to computer vision [8]. This approach typically uses points, lines and
segments as working primitives when trying to perform scene reconstruction,
autocalibration, and object localization and recognition tasks. In the robotics
community, however, some authors have highlighted the fact that successful
achievements in reconstruction of scenes from image sequences have not been
accompanied by advances in real-time methods [5]. This is due to the complex-
ity of some of the involved methods, as well as their inherent batch methodology,
where sequences of images are first acquired and then analysed off-line.

Color information, on the other hand, has also been successfully used in
several real-time vision problems, such as segmentation [2], tracking [12], or
? This work has been partially supported by the Spanish CICYT under grants DPI-

2001-0469-C03-01 and TIC-2000-1151-C07-03.



learning and classification [3]. But these approaches usually discard geometric
information, often working only with unstructured sets of spatially related pixels.

In this paper we propose a computationally efficient algorithm to reduce
images to sets of colored segments, trying to take advantage of both the color
information and the geometric structure of the scene. We justify that the ob-
tained representation effectively summarizes the contents of the input data, by
showing how the original image can be recovered with high accuracy using only
the extracted information. Finally, we show a number of applications in a ma-
chine vision system with strong real-time requirements: the visual calibration
and guidance of a robot through an indoor environment, that performs on-line
reconstruction and interpretation of the scene while navigating.

2 Color Augmented Segment Extraction

Finding lines or segments in an image is a basic problem frequently studied in
the computer vision literature. Most of the available methods are variations of
the well known Hough Transform [10]. Other authors prefer to find segments by
locally grouping edge pixels into contours (for example, using the Canny operator
[4]), which are then split using piecewise linear polygonal approximations [13].
A drawback of many of these methods is that they only account for geometric
properties of the segment (i.e. position in the image), thus discarding other
visual information useful for tracking or interpretation, such as color or texture
of the local vicinity of each segment. Of course, there are some exceptions (see,
for example, [14]), but using the neighborhood of the features often slows the
process down, making it unusable under real-time constraints.

An alternative is to describe the segment vicinity in a simple, robust and
accurate way, for example, sampling color from both sides of the segment. Color
information is obtained in the segment extraction phase itself, with negligible
additional computational effort. This is especially appropriate for real-time appli-
cations. In the following we explain the fundamentals of our approach, including
a detailed algorithm description.

Preprocessing: Most of the existing edge segmentation methods rely on a
preprocessing stage to remove noise from the input image, for example by means
of a Gaussian or median filter. Then, the image gradient is approximated using
a pair of perpendicularly oriented masks, such as Roberts’ or Sobel’s, and this
output is postprocessed to estimate both the magnitude and the orientation of
the gradient. This information is finally used to group pixels into lines, or any
other edge primitive (circles, contours, etc). This is the basis of the extensively
used Canny edge detector [4], and similar line extractor procedures [1].

Instead, we only perform a simple high-pass filtering of the input image, to
minimise computational effort. This filtering will be followed by an efficient se-
quential grouping stage that takes into account the local orientation of the edges,
and that, at the same time, has a noise suppression effect (see next paragraph).
Therefore, the input (gray converted) image must only be preprocessed using a
simple 3× 3 mask (see Fig. 1a), alleviating the computational burden of image



−1 0 +1

−1 −1 −1 −1

0 −1 +8 −1

+1 −1 −1 −1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0

1 0,0 0,1

2 2,0 1,0 1,1 0,2 0,3

3 3,0 2,1 2,2 1,2 1,3 0,4 0,5

4 5,0 4,0 3,1 3,2 2,3 2,4 1,4 1,5 0,6 0,7

5 6,0 5,1 4,1 4,2 3,3 3,4 2,5 2,6 1,6 1,7 0,8

6 6,1 5,2 5,3 4,3 4,4 3,5 3,6 2,7 2,8 1,8 0,9

7 6,2 6,3 5,4 5,5 4,5 4,6 3,7 3,8 2,9 1,9

8 6,4 6,5 5,6 5,7 4,7 4,8 3,9

9 6,6 6,7 5,8 5,9 4,9

10 6,8 6,9

11

(a) (b) (c)

Fig. 1. (a) High-pass mask. (b) Density plot (0-1 valued) of the orientation masks for
R = 5, A = 20 and Wedg = 2.80. (c) Table of pixel positions for the vicinity of width
Wseg = 5.0 of the segment ((y1, x1), (y2, x2)) = ((3, 2), (8, 11)), (a pair (i, j) in position
(y, x) means that table position (i, j) stores image position (y, x)).

preprocessing. Fig. 3b shows the result of applying the mask to the input image
of Fig. 3a. If the input image is very finely textured, a previous noise removal
filtering of the monochrome image (3×3 median or Gaussian, for example) could
also be useful. This would still be faster than the preprocessing stages of classical
methods.

Local orientation and grouping: To find segments in the high-pass image
obtained in the previous step, we look for local alignments of pixels around the
edge input points (that is, those with high response to the filter). For this, our
method computes the response to a set of adequate masks (see Fig. 1b) centered
in those pixels. These masks have been designed to estimate a local orientation
with the desired accuracy from noisy input edge images. This is an alternative
to traditional gradient based methods. To control its sensitivity, the masks are
generated depending on three parameters: R, the radius in pixels of each mask,
Wedg , the expected edgel width, and A, the number of discrete orientations to
be considered. For example, the set of masks of Fig. 1b has been generated using
R = 5, Wedg = 2.80 and A = 20. Reasonable values for these parameters are in
the ranges R ∈ {3, 4, 5}, Wedg ∈ [1.50, 3.0] and A ≈ 4R. In general, the smaller
the values of R, Wedg and A, the faster the algorithm, but also the less accurate.

The grouping method proceeds as follows: if a pixel value in the edge image
is greater than a given threshold τh, the masks in every orientation are applied
centered on it, to get A output values, of which only the maximum is taken
into account. Therefore, the filter is a nonlinear robust estimator, despite of the
linear nature of the individual orientation detectors. A new segment is then cre-
ated, and a grouping process is initiated in the selected orientation, following
a precomputed pixel ordering, beginning in the mask center and towards the
extremes. This process is recursively repeated in each segment extreme, clus-
tering points with high-pass response greater than another lower threshold τl,
in both directions. Thus, parameters τh and τl are analogous to those of the
Canny hysteresis procedure [4]. An additional parameter is nmin , the minimum
number of collected points in a window to keep on grouping edge pixels for that
segment before stopping. The process also finishes if orientation in the current
segment extreme differs from the original one in more than one step. This is



a tolerance threshold to cope with slight variations caused by noise. Captured
points are marked as visited to be discarded in subsequent processing. Note that
the masks are not applied to all the pixels, but only to a small number of the
active ones in the edge image. Finally, the centroid and main eigenvector of the
covariance matrix of the set of points are used to accurately adjust the segment
extremes. The grouping and segment refinement processes are summarized in
the corresponding sections of the algorithm, shown in Fig. 2.

Color sampling and postprocessing: When a segment is found, the next
step is to label it with robust color information. We use the median red, green
and blue values of image pixels in both sides of the segment. Our experiments
provide extensive evidence that, contrary to intuition, independent estimation
of median color channels does not generate color artifacts. The obtained color
models are, for all practical purposes, perceptually indistinguishable from the
original ones. Therefore, the computational overhead of a more complex robust
multivariate estimator is not justified.

Color sampling is performed by scanning the pixels in the vicinity of the
segment, using an access table computed to this effect. The table contains image
positions located along both sides of the segment (see Fig. 1c for an example).
Its generation is based on Bresenham’s algorithm, a standard computer graphics
method for drawing lines on pixel grids [7]. We extend this algorithm to “thicken”
the segment, by replicating the pixels in both sides. The algorithm uses only
O(WsegL) integer operations, being L the segment length and Wseg the desired
width. So, even though the table must be recalculated for each new segment,
this will not be a computational bottleneck.

Tables computed with this algorithm have two advantages. First, they cover
the segment neighborhood densely, that is, without leaving uncovered pixels.
Second, they also arrange the pixels in an orderly fashion, by means of a rect-
angular array of positions with r rows and c columns, ((7, 10), respectively, in
the example table of Fig. 1c). These tables will be used for two complementary
tasks, as can be seen in the last section of the algorithm in Fig. 2: First, to find
the median value of the color channels for each side of the segment, using rows
0 to b r

2c − 1 for the left side, and b r
2c+ 1 to r − 1, for the right one. Second, to

clean up the surroundings of the segment of possible edge points that were not
caught during the grouping process, marking them as visited. This avoids the
extraction of spurious small segments close to the good ones. For this, we can
take the central rows of the table (for example, covering a width of Wseg/3).

Performance evaluation: Fig. 2 outlines the colored segment extraction
algorithm. We have implemented it using the OpenCV and Intel Image Process-
ing Libraries [9] for the basic operations (RGB to gray conversion, high-pass
filtering, median or Gaussian previous smoothing for noisy images, and so on).
These libraries are optimized to run on the different Pentium processors. The
procedure works at 15-25 fps (depending on the complexity of the scene) for
288× 384 (PAL/2) images, running on a 533 MHz Pentium III. For more mod-
ern (∼1 GHz) processors, it works always at the camera frame rate (25 fps). We
show an example of the segments obtained in an indoor scene in Fig. 3c.



INPUT:
- RGB image (IRGB ).
- Algorithm parameters (τh, τl, Wseg , and nmin , see text).
- Weighting masks and pixel paths for each orientation (see Fig. 1b).

OUTPUT:
- Set of S segments with left and right color information.

————————————————
ALGORITHM:
Initialisation and preprocessing:
- Initialize the segment counter, S := 0.
- Convert the RGB image, IRGB , to get the gray image Igray .
- Filter Igray using the high-pass mask (Fig. 1a), to get Ihp (use absolute value).
- Mark all the pixels in the edge image Ihp as “not visited”.

High-pass image traversal:
for each image position (y, x) do
if Ihp

(y,x) ≥ τh and (y, x) is marked as “not visited” then
- Increment the segment counter, S := S + 1.
Local orientation and grouping:
- Apply the set of orientation masks (Fig. 1b) to Ihp , centered on (y, x). Let
amax be the mask index with maximum response.
for i := 1 to 2 do (both directions)
- Initialize current orientation, acur := amax .
- Initialize current segment extreme, (yi, xi) := (y, x).
repeat
- Using the precomputed pixel path for orientation acur and current direction
i, centered on (yi, xi), keep on capturing image pixels with Ihp > τl, marking
them as “visited”.
- Update current segment extreme with the last captured point in the pre-
vious step, (yi, xi) := (ylast , xlast).
- Apply the set of masks (Fig. 1b) to Ihp again, but now centered on (yi, xi).
Let acur be the new mask index (orientation) with maximum response.

until (Number of captured points in this step < nmin) or
(Distance from acur to amax > 1)

endfor
Segment refinement:
- Compute the centroid, covariance matrix and major eigenvector of the set of
points captured for the current segment S.
- Update segment extremes (y1, x1) and (y2, x2) by projecting them onto the
principal direction computed in the previous step.

Color sampling and postprocessing:
- Compute access table (Fig. 1c) corresponding to segment S.
- Compute the median of the RGB channels of image I separately, for the set
of pixels whose position is indicated by rows 0 . . . b r

2
c − 1 of the access table.

The obtained vector (rS
left , g

S
left , b

S
left) is the left color information for segment

S. Repeat the process for rows b r
2
c+ 1 . . . r − 1 to get (rS

right , g
S
right , b

S
right).

- Mark pixels pointed by rows b r
2
c−b r

6
c . . . b r

2
c+b r

6
c of the table as “visited”.

endif
endfor

Fig. 2. Algorithm that extracts colored segments from a RGB image.



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Results in a typical indoor image: (a) Original image. (b) High-pass filtered
image. (c) Segments extracted by our method. (d) Segments with color information.
(e) Recovered image. (f) JPEG image with the same compression ratio. (g) Segments
extracted by PPHT. (h) Segments extracted by polygonal approximation.

Due to space limitations, we cannot include here an exhaustive study of the
execution time and precision of the algorithm. Nevertheless, to give a flavor of
the advantages of our approach, we will compare it with two popular segment
extractors, representing the alternatives mentioned at the beginning of the sec-
tion. Anyway, a direct comparison is difficult, since, to the best of our knowledge,
methods dealing with color have not been previously described in the literature.
First, we tested the Progressive Probabilistic Hough Transform (PPHT), a mod-
ern variant of the classical HT adapted to run in real-time applications [11]. For
the same image size, scene and CPU, the PPHT method, as implemented in the
OpenCV, obtains qualitatively worse segments (see Fig. 3g) while running at
only 3-5 fps on average, including the necessary edge detection stage using the
Canny operator. The second method is based on polygonal approximations [13]
of the contours obtained by the Canny procedure. Though not directly imple-
mented in the OpenCV, this alternative obtains better solutions than those of
the PPHT (see Fig. 3h), but still worse than our segment extractor (Fig. 3c),
and at a lower rate (7-9 fps). Observe also that, besides being faster and more
robust, our method adds color information to the segments, making them more
useful for many applications, as we will show in the next sections.

3 Expressive Power of Colored Segment Representation

The color augmented segment is a very powerful visual representation primitive,
whose main advantages can be exploited in a number of general image processing
and computer vision tasks:

Image compression: Image data can be concisely represented in terms of
such primitives without significant loss of ‘large scale’ photometric information.
A simple iterative diffusion procedure can be used to recover a good approxima-
tion to the original pixel array. The pixels located immediately to the left and



right of each segment are initialized and fixed (using tables like the one shown
in Fig. 1c) with their respective RGB median values (see Fig. 3d). The rest of
pixels are marked as uninitialized. Then, in each iteration a RGB pixel value
is recomputed as the mean of its initialized neighbors in a 3×3 window, and
marked as initialized too. The procedure acts as an iterative linear interpolation
technique. Typically, 200-400 iterations are enough to get a good result, depend-
ing on the number of segments and the desired precision. In image sequences,
initialization can be based on the previous frame, speeding up convergence.

Fig. 3e shows the results of the recovery procedure on the image shown in
Fig. 3a. The original, uncompressed RGB image size is 288× 384× 3 = 324 KB.
The compressed information is formed by 261 segments, each labelled with two
RGB values. A segment extreme can be coded using dlog2(288×384)e = 17 bits,
and a RGB value using 24 bits. Therefore, the whole set of segments will use
261×((2×17)+2×24) = 21402 bits = 2.61 KB, i.e. a 99.2% compression factor.
The reconstructed image is essentially equivalent to the original one in terms of
medium and large scale color and geometric structure. For comparison, Fig. 3f
shows a JPEG image with the same compression ratio.

Of course, explicit recovery of the image is rarely needed. It is shown here only
to illustrate the expressive power of the representation. For many applications,
once the colored segments have been obtained, the original image is not needed
for any subsequent processing. This can be exploited if we want to send the
sequence of compressed data through a low bandwidth network, for example.

Segment tracking: Reliable matching and tracking of features (points or
segments) is essential to carry out 3D reconstructions from multiple views of the
scene. Some tracking methods only take into account the position of the feature
in successive images [16]. But tracking is more robust if the local neighborhood of
the feature is also taken into account. For isolated points, one of the best methods
is to compare local neighborhoods of candidates through intensity correlation,
perhaps taking into account a previous warping [15]. For segments, this kind
of technique can be applied to individual points along them. For example, in
[14] the epipolar restriction is used to obtain corresponding points in candidate
matching segments, and a correlation measure is computed for the pixels paired
this way. But this method needs robust estimates of the involved fundamental
matrices [8], which is computationally hard for real-time operation.

We propose to simplify the characterisation of the feature, making it adequate
for faster processing, as needed by on-line applications such as robot navigation.
The median RGB values on the sides of each segment can be used to compute
a similarity measure between candidate pairs of segments, taking into account
both geometric distance and photometric information. Hence, tracking becomes
more robust without reducing the speed of the system.

Segment classification: The obtained median color values could also be
useful in interpretation. For example, if we search for objects with a character-
istic, a priori known color, we can use the color information of each segment in
order to directly associate it with a real world object.



(a) (b) (c)

(d) (e) (f)

Fig. 4. Color segments for robot navigation: (a) GeoBot. (b) Calibration. (c) Typical
situation (corridor). (d) Walls, doors, and signs detection in the presence of clutter.
(e) 3D reconstruction corresponding to (d). (f) 3D reconstruction of the environment
during a visually guided walk.

Contour following: Finally, even if we do not know a priori the color of
an object, we can still find closed contours by looking for segments with nearby
extremes and similar colors, grouping and sorting them without being disturbed
by other segments in the vicinity that have different colors.

4 Colored Segments for Visual Robot Navigation

Taking advantage of the above properties, the algorithm described in this paper is
being successfully used in a mobile robot which builds and interprets structured
3D world representations in real-time from pure visual information. Fig. 4a shows
GeoBot, the mobile platform in which we are currently developing our research.
GeoBot is a Pioneer AT equipped with a monocular visual sensor (a Mitsubishi
400-E camera) and an on-board Pentium 200 MMX PC.

The first application of the colored segment extractor is the autocalibration
of the robot-camera system. To accomplish this task, the height of the horizon
is first determined by detecting two parallel floor lines. The camera intrinsic and
extrinsic (robot-relative) parameters are then easily obtained by tracking just
one line and one point in the scene during a controlled movement. These minimal
requirements for a full calibration of the system (position and orientation of the
camera with respect to the robot, and focal length) are possible due to avail-
ability of odometric (egomotion) information, and a few realistic simplifications
on the camera model [6]. Fig. 4b shows how, using the extracted segments, the
system finds the horizon and the line and point to track in order to perform the
calibration. Color is essential to interpret the segments as belonging to the floor
or a door, and to robustly track these segments during the movement.



Using the estimated camera parameters, and following reasonable clues ob-
tained from the geometric and color information of the segments, GeoBot can
detect relevant planes (floor, walls, doors) in indoor environments. This informa-
tion is used to categorize different high level typical situations (rooms, corridors,
corners, and so on), that allow the robot to exhibit a non-reactive behaviour,
depending on abstract properties of the environment. Fig. 4c shows one of these
situations, when the robot is entering a corridor. Observe how a door and the
left and right walls are located, while the spurious segments caused by reflections
are adequately rejected. A calibrated sensor allows for the metric rectification
of the relevant planes of the scene (the floor and the walls, in this case). The
system is then able to construct an abstract interpretation of the scene (see the
bottom left part of the image) to give the adequate control orders to navigate
through the corridor.

The interpretation is extended to handle obstacles and external signs that
can also guide the navigation. Fig. 4d shows an image in which several contours
of different colors are located and recognized as signs (arrows and crosses), with-
out being disturbed by other objects, that are simply categorized as unknown
obstacles. The contour following procedure outlined in the previous section is
used for this purpose. The exact position (in mm) of the interpreted signs has
been superimposed in the original image for clarity. The signs can be metrically
rectified, again using the calibration information, by determining the plane of the
image (wall, floor or door) in which it is contained. Thus, the sign interpretation
procedure does not have to cope with projective deformations. Rather, simpler
similarity-invariant sign classification is performed once the metric rectification
of the contour has been accomplished. Fig. 4e shows the 3D reconstruction of
the interpreted elements in the scene, without any scale ambiguity.

Finally, the robot is able to accumulate the reconstruction of the visited
environment as it navigates, using odometry and tracking. Fig. 4f shows a 3D
reconstruction of a large portion of a building, as interpreted by GeoBot during
a visually guided walk.

Though GeoBot ’s processor has become somewhat obsolete, our efficient im-
plementation of the segment extractor still allows for an overall 5 Hz perception-
action cycle, including calibration, reconstruction, interpretation, and motion
control. This is enough to robustly navigate at ∼20 cm/s.

We conclude the discussion with an example of how the compression capabil-
ities of the colored segments can also be exploited in autonomous agents. GeoBot
is equipped with an on-board PC connected to the outside world through a Ra-
dio Ethernet interface. This kind of interfaces are usually very slow (1 Mb/s
bandwidth in our case). This is not enough to send images of moderate sizes at
video rates of 25 fps. But, if segments are extracted in the robot PC, and then
sent through the network, the only bottleneck is the local CPU speed, not the
radio interface. The rest of the processing can be performed in an external, more
powerful and unloaded computer, from which the control orders are sent back
to the robot. This way, we save CPU time for possible additional tasks.



5 Conclusions

We have described an efficient image representation algorithm for visual geome-
try applications. It works by detecting relevant segments that are then labelled
with color information. Images can be compressed down to a ∼1% of the origi-
nal size, while capturing the essential structure of the scene: the original image
can be easily recovered by means of a simple diffusion procedure. The compres-
sion factor is interesting by itself, but the main advantages of the algorithm
are computational efficiency and the convenience of colored segments for further
geometric processing. Finally, we have shown several applications in real-time
vision tasks, such as robot navigation and environment reconstruction and in-
terpretation in indoor scenarios. Nevertheless, the procedure is not limited to
this field, and can be successfully used in many other computer vision domains.

References

1. M. Aste and M. Boninsegna. A fast straight line extractor for vision-guided robot
navigation. Technical Report I-38050, Ist. Ric. Sci. e Tecn., Trento (Italy), 1993.

2. J. Bruce, T. Balch, and M. Veloso. Fast and inexpensive color vision for interactive
robots. In Proceedings of the Intelligent Robots and Systems, 2000.

3. S.D. Buluswar and B.A. Draper. Color machine vision for autonomous vehicles.
Engineering Applications of Artificial Intelligence, 11(2):245–256, 1998.

4. J. Canny. A computational approach to edge detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 8(6):679–698, 1986.

5. A.J. Davison and N. Kita. Sequential localisation and map-building for real-time
computer vision and robotics. Robotics and Auton. Systems, 36(4):171–183, 2001.

6. P.E. López de Teruel and A. Ruiz. Closed form self-calibration from minimal visual
information and odometry, 2003. (Submitted).

7. J.D. Foley, A. Van Dam, S. Feiner, and J.F. Hughes. Computer Graphics: Principles
and Practice. Addison-Wesley, 1990.

8. R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cam-
bridge University Press, 2000.

9. Intel Corporation. The open source computer vision library (OpenCV) homepage,
2002. http://www.intel.com/research/mrl/research/opencv/.

10. V.F. Leavers. Survey: Which hough transform? Computer Vision, Graphics, and
Image Processing: Image Understanding, 58:250–264, 1993.

11. J. Matas, C. Galambos, and J. Kittler. Robust detection of lines using the progres-
sive probabilistic Hough transform. Comp. Vis. & Im. Und., 78:119–137, 2000.

12. S.J. McKenna, Y. Raja, and S. Gong. Tracking colour objects using adaptive
mixture models. Image and Vision Computing, 17:223–229, 1999.

13. P.L. Rosin. Techniques for assesing polygonal approximation of curves. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19:659–666, 1997.

14. C. Schmid and A. Zisserman. Automatic line matching across views. In Proceedings
of the Computer Vision and Pattern Recognition, pages 666–671, 1997.

15. T. Tommasini, A. Fusiello, E. Trucco, and V. Roberto. Making good features to
track better. In Proceedings of the Comp. Vis. and Pattern Recognition, 1998.

16. Z. Zhang. Token tracking in a cluttered scene. International Journal of Image and
Vision Computing, 12(2):110–120, 1994.


