
Parallelization Strategies for Ant Colony Optimisation on GPUs

José M. Cecilia, José M. Garcı́a
Computer Architecture

Department
University of Murcia
30100 Murcia, Spain

Email: {chema, jmgarcia}@ditec.um.es

Manuel Ujaldón
Computer Architecture

Department
University of Malaga
29071 Málaga, Spain

Email: ujaldon@uma.es

Andy Nisbet, Martyn Amos
Novel Computation Group

Division of Computing and IS
Manchester Metropolitan University

Manchester M1 5GD, UK
Email: {a.nisbet,m.amos}@mmu.ac.uk

Abstract—Ant Colony Optimisation (ACO) is an effective
population-based meta-heuristic for the solution of a wide
variety of problems. As a population-based algorithm, its
computation is intrinsically massively parallel, and it is there-
fore theoretically well-suited for implementation on Graphics
Processing Units (GPUs). The ACO algorithm comprises two
main stages: Tour construction and Pheromone update. The
former has been previously implemented on the GPU, using a
task-based parallelism approach. However, up until now, the
latter has always been implemented on the CPU. In this paper,
we discuss several parallelisation strategies for both stages of
the ACO algorithm on the GPU. We propose an alternative
data-based parallelism scheme for Tour construction, which
fits better on the GPU architecture. We also describe novel
GPU programming strategies for the Pheromone update stage.
Our results show a total speed-up exceeding 28x for the Tour
construction stage, and 20x for Pheromone update, and suggest
that ACO is a potentially fruitful area for future research in
the GPU domain.

I. INTRODUCTION

Ant Colony Optimisation (ACO) [1] is a population-based
search method inspired by the behaviour of real ants. It may
be applied to a wide range of hard problems [2], [3], many
of which are graph-theoretic in nature. It was first applied to
the Travelling Salesman Problem (TSP) [4] by Dorigo and
colleagues, in 1991 [5], [6].

In essence, simulated ants construct solutions to the TSP
in the form of tours. The artificial ants are simple agents
which construct tours in a parallel, probabilistic fashion.
They are guided in this by simulated pheromone trails and
heuristic information. Pheromone trails are a fundamental
component of the algorithm, since they facilitate indirect
communication between agents via their environment, a
process known as stigmergy [7]. A detailed discussion of
ant colony optimization and stigmergy is beyond the scope
of this paper, but the reader is directed to [1] for a compre-
hensive overview.

ACO algorithms are population-based, in that a collection
of agents “collaborates” to find an optimal (or even satis-
factory) solution. Such approaches are naturally suited to
parallel processing, but their success strongly depends on
both the nature of the particular problem and the underlying

hardware available. Several parallelisation strategies have
been proposed for the ACO algorithm, on both shared and
distributed memory architectures [8], [9], [10].

The Graphics Processing Unit (GPU) is a major current
theme of interest in the field of high performance com-
puting, as it offers a new parallel programming paradigm,
called Single Instruction Multiple Thread (SIMT) [11]. The
SIMT model manages and executes hundreds of threads by
mixing several traditional parallel programming approaches.
Of particular interest to us are attempts to parallelise the
ACO algorithm on the Graphics Processing Unit (GPU)
[12], [13], [14]. These approaches focus on accelerating the
tour construction step performed by each ant by taking a
task-based parallelism approach, with pheromone deposition
calculated on the CPU.

In this paper, we fully develop the ACO algorithm for
the Travelling Salesman Problem (TSP) on GPUs, so that
both main phases are parallelised. This is the main tech-
nical contribution of the paper. We clearly identify two
main algorithmic stages: Tour construction and Pheromone
update. A data-parallelism approach (which is theoretically
better-suited to the GPU parallelism model than task-based
parallelism) is described to enhance tour construction per-
formance. Additionally, we describe various GPU design
patterns for the parallelisation of the pheromone update,
which has not been previously described in the literature.

The paper is organised as follows. We briefly introduce
Ant Colony Optimisation for the TSP in Section II, before
describing related work in Section III. In Section IV we
present GPU designs for both main stages of the ACO
algorithm. Experimental results are described in Section V,
before we conclude with a brief discussion and consideration
of future work.

II. ANT COLONY OPTIMISATION FOR THE TRAVELLING
SALESMAN PROBLEM

The Travelling Salesman Problem (TSP) [4] involves find-
ing the shortest (or “cheapest”) round-trip route that visits
each of a number of “cities” exactly once. The symmetric
TSP on n cities may be represented as a complete weighted
graph, G, with n nodes, with each weighted edge, ei,j ,



representing the inter-city distance di,j = dj,i between cities
i and j. The TSP is a well-known NP-hard optimisation
problem, and is used as a standard benchmark for many
heuristic algorithms [15].

The TSP was the first problem solved by Ant Colony
Optimisation (ACO) [6], [16]. This method uses a number
of simulated “ants” (or agents), which perform distributed
search on a graph. Each ant moves through on the graph until
it completes a tour, and then offers this tour as its suggested
solution. In order to do this, each ant may drop “pheromone”
on the edges contained in its proposed solution. The amount
of pheromone dropped, if any, is determined by the quality
of the ant’s solution relative to those obtained by the other
ants. The ants probabilistically choose the next city to
visit, based on heuristic information obtained from inter-
city distances and the net pheromone trail. Although such
heuristic information drives the ants towards an optimal
solution, a process of “evaporation” is also applied in order
to prevent the process stalling in a local minimum.

The Ant System (AS) is an early variant of ACO, first
proposed by Dorigo [16]. The AS algorithm is divided
into two main stages: Tour construction and Pheromone
update. Tour construction is based on m ants building tours
in parallel. Initially, ants are randomly placed. At each
construction step, each ant applies a probabilistic action
choice rule, called the random proportional rule, in order
to decide which city to visit next. The probability for ant k,
placed at city i, of visiting city j is given by the equation 1

pki,j =
[τi,j ]

α
[ηi,j ]

β∑
l∈Nk

i
[τi,l]

α
[ηi,l]

β
, if j ∈ Nk

i , (1)

where ηi,j = 1/di,j is a heuristic value that is available
a priori, α and β are two parameters which determine the
relative influences of the pheromone trail and the heuristic
information respectively, and Nk

i is the feasible neighbour-
hood of ant k when at city i. This latter set represents the
set of cities that ant k has not yet visited; the probability
of choosing a city outside Nk

i is zero (this prevents an ant
returning to a city, which is not allowed in the TSP). By
this probabilistic rule, the probability of choosing a partic-
ular edge (i, j) increases with the value of the associated
pheromone trail τi,j and of the heuristic information value
ηi,j . Furthermore, each ant k maintains a memory, Mk,
called the tabu list, which contains the cities already visited,
in the order they were visited. This memory is used to define
the feasible neighbourhood, and also allows an ant to both
to compute the length of the tour T k it generated, and to
retrace the path to deposit pheromone.

Another approach to tour construction is described in [1].
This is based on exploiting the nearest-neighbour informa-
tion of each city by creating a Nearest-Neighbour list of
length nn (between 15 and 40). In this case, an ant located
in a city i chooses the next city in a probabilistic manner

among the nn best neighbours. Once the ant has already
visited all nn cities, it selects the best neighbour according
to the heuristic value given by the equation 1.

After all ants have constructed their tours, the pheromone
trails are updated. This is achieved by first lowering the
pheromone value on all edges by a constant factor, and then
adding pheromone on edges that ants have crossed in their
tours. Pheromone evaporation is implemented by

τi,j ← (1− ρ)τi,j , ∀(i, j) ∈ L, (2)

where 0 < ρ ≤ 1 is the pheromone evaporation rate.
After evaporation, all ants deposit pheromone on their visited
edges:

τi,j ← τi,j +
m∑

k=1

∆τki,j , ∀(i, j) ∈ L, (3)

where ∆τij is the amount of pheromone ant k deposits.
This is defined as follows:

∆τki,j =

{
1/Ck if e(i, j)k belongs to T k

0 otherwise (4)

where Ck, the length of the tour T k built by the k-th
ant, is computed as the sum of the lengths of the edges
belonging to T k . According to equation 4, the better an
ant’s tour, the more pheromone the edges belonging to this
tour receive. In general, edges that are used by many ants
(and which are part of short tours), receive more pheromone,
and are therefore more likely to be chosen by ants in future
iterations of the algorithm.

III. RELATED WORK

Stüzle [8] describes the simplest case of ACO paral-
lelisation, in which independently instances of the ACO
algorithm are run on different processors. Parallel runs
have no communication overhead, and the final solution is
taken as the best-solution over all independent executions.
Improvements over non-communicating parallel runs may
be obtained by exchange information among processors.
Michel and Middendorf [17] present a solution based on this
principle, whereby separate colonies exchange pheromone
information. In more recent work, Chen et al. [18] divide
the ant population into equally-sized sub-colonies, each
assigned to a different processor. Each sub-colony searches
for an optimal local solution, and information is exchanged
between processors periodically. Lin et al. [10] propose
dividing up the problem into subcomponents, with each
subgraph assigned to a different processing unit. To explore
a graph and find a complete solution, an ant moves from one
processing unit to another, and messages are sent to update
pheromone levels. The authors demonstrate that this ap-
proach reduces local complexity and memory requirements,
thus improving overall efficiency.



In terms of GPU-specific designs for the ACO algorithm,
Jiening et al. [12] propose an implementation of the Max-
Min Ant System (one of many ACO variants) for the TSP,
using C++ and NVIDIA Cg. They focus their attention on
the tour construction stage, and compute the shortest path
in the CPU. In [13] You discusses a CUDA implementation
of the Ant System for the TSP. The tour construction stage
is identified as a CUDA kernel, being launched by as many
threads as there are artificial ants in the simulation. The
tabu list of each ant is stored in shared memory, and the
pheromone and distances matrices are stored in texture mem-
ory. The pheromone update stage is calculated on the CPU.
You reports a 20x speed-up factor for benchmark instances
up to 800 cities. Li et al. [14] propose a method based on
a fine-grained model for GPU-acceleration, which maps a
parallel ACO algorithm to the GPU through CUDA. Ants
are assigned to single processors, and they are connected by
a population-structure [8].

Although these proposals offer a useful starting point
when considering GPU-based parallelisation of ACO, they
are deficient in two main regards. Firstly, they fail to
offer any systematic analysis of how best to implement
this particular algorithm. Secondly, they fail to consider an
important component of the ACO algorithm; namely, the
pheromone update. In the next Section we address both of
these issues.

IV. GPU DESIGNS FOR THE ACO ALGORITHM

In this Section we present several different GPU designs
for the the Ant System, as applied to the TSP. The two main
stages, Tour construction and Pheromone update, are deeply
examined. For tour construction, we begin by analysing
traditional task-based implementations, which motivates our
approach of instead increasing the data-parallelism. For
pheromone update, we describe several GPU techniques that
are potentially useful in increasing application bandwidth.

A. Tour construction kernel

The “traditional” task-based parallelism approach to tour
construction is based on the observation that ants run in
parallel looking for the best tour they can find. Therefore,
any inherent parallelism exists at the level of individual ants.
To implement this idea of parallelism on CUDA, each ant
is identified as a CUDA thread, and threads are equally
distributed among CUDA thread blocks. Each thread deals
with the task assigned to each ant; i.e, maintenance of an
ant’s memory (tabu list, list of all visited cities, and so on)
and movement.

Using this naı̈ve approach, each ant calculates the heuris-
tic information to visit city j from city i according to
equation 1. However, it is computationally expensive to
repeatedly calculate those values for each computational
step of each ant, k. Repeated computations of the heuristic
information can be avoided by using an additional data

Figure 1. Increasing the SIMD parallelism on the tour construction kernel.

structure, in which the heuristic values are stored, and are
therefore calculated only once for each kernel call [1]. For
the probabilistic choice of the next city by each ant, the
tour construction kernel needs to generate random numbers
on the GPU.

The task-based parallelism just described presents several
issues for GPU implementation. Fundamentally, it is not
theoretically well-suited to GPU computation [11] [19]. This
approach requires a relatively low number of threads on the
GPU, since the recommended number of ants for solving the
TSP problem is taken as the same as the number of cities
[1]. If, for example, 800 ants are needed to solve an 800
cities benchmark, the number of threads is too low to fully
exploit the resources of the GPU.

Moreover, the stochastic process required imply that the
application presents an unpredictable memory access pat-
tern. The final objection to this approach arises due to
checking the list of cities visited; this operation presents
many warp divergences (different threads in a warp take
different paths), leading to serialisation [20].

Figure 1 shows an alternative design, which increases the
data-parallelism in the tour construction kernel, and also
avoids warp divergences in the tabu list checking process.
In this design, a thread block is is associated with each ant,
and each thread in a thread block represents a city (or cities)



the ant may visit. Thus, the parallelism is increased by a
factor of 1 : n.

A thread loads the heuristic value associated with its
associated city, generates a random number in the interval
[0, 1] to feed into the stochastic simulation, and checks
whether the city has been visited or not. To avoid conditional
statements (and, thus, warp divergences), the tabu list is
represented as one integer value per each city, which can
be placed in the register file (since it represents information
private to each thread). A city’s value is 0 if it is visited, and
1 otherwise. Finally, these values are multiplied and stored
in a shared memory array, which is then reduced to yield
the next city to visit.

The number of threads per thread block on CUDA is
a hardware limiting factor (see Table I). Thus, the cities
should be distributed among threads to allow for a flexible
implementation. A tiling technique is proposed to deal with
this issue. Cities are divided into blocks (i.e. tiles). For each
tile, a city is selected stochastically, from the set of unvisited
cities on that tile. When this process has completed, we have
a set of “partial best” cities. Finally, the city with the best
absolute heuristic value is selected from this partial best set.

The tabu list cannot be represented by a single integer
register per thread in the tiling version, because, in that case,
a thread represents more than one city. The 32-bit registers
may be used on a bitwise basis for managing the list. The
first city represented by each thread; i.e. on the first tile, is
managed by bit 0 on the register that represents the tabu list,
the second city is managed by bit 1, and so on.

B. Pheromone update kernel

The last stage in the ACO algorithm is the pheromone
update. This is implemented by a kernel which comprise two
main tasks: pheromone evaporation and pheromone deposit.

Figure 2 shows the design of the pheromone kernel; this
has a thread per city in an ant’s tour. Each ant generates its
own private tour in parallel, and they will feasibly visit the
same edge as another ant. This fact forces us to use atomic
instructions for accessing the pheromone matrix, which di-
minishes the application performance. Besides, those atomic
operations are not supported by GPUs with CCC (CUDA
Compute Capability) 1.x for floating point operations [20].

Therefore, a key objective is to avoid using atomic oper-
ations. An alternative approach is shown in Figure 3, where
we use a scatter to gather transformations [21].

The configuration launch routine for the pheromone up-
date kernel sets as many threads as there are cells are in the
pheromone matrix (c = n2) and equally distributes these
threads among thread blocks. Thus, each cell is indepen-
dently updated by each thread doing both the pheromone
evaporation and the pheromone deposit. The pheromone
evaporation is quite straightforward; we simply apply equa-
tion 2. The pheromone update is a bit different. Each thread
is now in charge of checking whether the cell represented

Figure 2. Pheromone Update kernel approach with atomic instructions.

Figure 3. Pheromone Update kernel approach by scatter to gather
transformation.

by it has been visited by any ants; i.e. each thread accesses
device memory to check that information. This means that
each thread performs 2 ∗n2 memory loads/thread for a total
of l = 2 ∗ n4 (n2 threads) accesses of device memory.
Notice that these accesses are 4 bytes each. Thus, the relation
loads : atomic is l : c. Therefore, this approach allows us
to perform the computation without using atomic operations,
but at the cost of drastically increasing the number of



accesses to device memory.
A tiling technique is proposed for increasing the appli-

cation bandwidth. Now, all threads cooperate to load data
from global memory to shared memory, but they still access
edges in the ant’s tour. Each thread accesses global memory
2n2/θ, θ being the tile size. The rest of the accesses are
performed on shared memory. Therefore, the total number
of global memory accesses is γ = 2n4/θ. The relation
loads/atomics is lower γ : c, but maintains the orders of
magnitude.

We note that an ant’s tour length (i.e. n+1) may be bigger
than the maximum number of threads that each thread block
can support (i.e. 512 threads/block for Tesla C1060). Our
algorithm prevents this situation by setting our empirically
demonstrated optimum thread block layout, and dividing the
tour into tiles of this length. This raises up another issue;
this is when n + 1 is not divisible by the θ. We solve this
by applying padding in the ants tour array to avoid warp
divergence (see Figure 3).

Unnecessary loads to device memory can be avoided by
taking advantage of the problem’s nature. We focus on the
symmetric version of the TSP, so the number of threads
can be reduced in half, thus halving the number of device
memory accesses. This so-called Reduction version actually
reduces the overall number of accesses to either shared
or device memory by having half the number of threads
compared to the previous version. This is combined also with
tiling, as previously explained. The number of accesses per
thread remains the same, giving a total of device memory
access of ρ = n4/θ.

V. EXPERIMENTAL RESULTS

We test our designs using a set of benchmark instances
from the well-known TSPLIB library [22] ACO parameters
such as the number of ants m, α, β, and so on are set
according with the values recommended in [1]. The most
important parameter for the scope of this study is the number
of ants, which is set m = n (i.e., the number of cities).

We compare our implementations with the sequential
code, written in ANSI C, provided by Stüzle in [1]. The
performance figures are recorded for a single iteration, and
averaged over 100 iterations. In this work we focus on the
computational characteristics of the AS system and how it
can be efficiently implemented on the GPU. The quality of
the actual solutions obtained is not deeply studied, although
the results are similar to those obtained by the sequential
code for all our implementations.

A. Performance evaluation

The two main stages, Tour construction and Pheromone
update, are deeply evaluated on two different GPU systems,
both based on the Nvidia Tesla. We use a C1060 model
manufactured in mid 2008, and delivered as a graphics card
plugged into a PCI-express 2 socket, and the more recent

S2050 released in November 2010, and based on the Fermi
architecture [23] (see Table I for full specifications).

Table I
CUDA AND HARDWARE FEATURES FOR THE TESLA C1060 GPU AND

THE TESLA M2050.

GPU element Feature Tesla C1060 Tesla M2050
Streaming Cores per SM 8 32
processors Number of SMs 30 14
(GPU Total SPs 240 448
cores) Clock frequency 1 296 MHz 1 147 MHz
Maximum Per multiprocessor 1 024 1 536
number of Per block 512 1 024
threads Per warp 32 32
SRAM 32-bit registers 16 K 32 K
memory Shared memory 16 KB 16/48 KB
available per L1 cache No 48/16 KB
multiprocessor (Shared + L1) 16 KB 64 KB

Size 4 GB 3 GB
Global Speed 2x800 MHz 2x1500 MHz
(video) Width 512 bits 384 bits
memory Bandwidth 102 GB/sc. 144 GB/sc.

Technology GDDR3 GDDR5

We first evaluate the existing, task-based approach, before
assessing the impact of including various modifications.

1) Evaluation of tour construction kernel: Table II sum-
marises the evaluation results for different GPU strategies
previously presented for the tour construction kernel. Our
baseline version (1) is the naı̈ve approach of task-based
parallelism (that is, the approach that has been used to
date). This redundantly calculates heuristic information. It
is first enhanced by (2) adding a kernel for avoiding re-
dundant calculations; i.e. the Choice kernel. The increase
in parallelism and the savings in terms of operations drive
this enhancement. A slight enhancement (around 10-20%) is
obtained by (3) generating random numbers with a device
function on the GPU, instead of using the NVIDIA CU-
RAND library. Although randomness could, in principle, be
compromised, this function is used by the sequential code.
The next big enhancement in performance is obtained by
(4) using the nearest-neighbour list (NNList). The NN List
limits the generation of many costly random numbers. For
a NN = 30, we report up to 6.71x speed up factor for
the biggest benchmark instance in the Table II (pr2392).
Allocating the tabu list in the shared memory (5) enhances
the performance for small-medium benchmark instances (up
to 1.7x speed up factor). However, this trend is limited by the
tabu list implementation being on a bitwise basis for biggest
benchmarks. To manage this design, many modulo and inte-
ger divisions are required, which produces an extra overhead.
Using the texture memory (6) for random numbers gains
a 25% of performance improvement. Finally, our proposal
of increasing the data-parallelism obtains the best speed up
factor for the att48 benchmark, being close to 4x between
8 and 6 kernel versions. However, it tends to decrease along
with the random number generation difference between both



Table II
EXECUTION TIMES (IN MILLISECONDS) FOR VARIOUS TOUR CONSTRUCTION IMPLEMENTATIONS (TESLA C1060).

Code version TSPLIB benchmark instance (problem size)
att48 kroC100 a280 pcb442 d657 pr1002 pr2392

1. Baseline Version 13.14 56.89 497.93 1201.52 2770.32 6181 63357.7
2. Choice Kernel 4.83 17.56 135.15 334.28 659.05 1912.59 18582.9
3. Without CURAND 4.5 15.78 119.65 296.31 630.01 1624.05 15514.9
4. NNList 2.36 6.39 33.08 72.79 143.36 338.88 2312.98
5. NNList + Shared Memory 1.81 4.42 21.42 44.26 84.15 203.15 2450.52
6. NNList + Shared&Texture Memory 1.35 3.51 16.97 38.39 75.07 178.3 2105.77
7. Increasing Data Parallelism 0.36 0.93 13.89 37.18 125.17 419.53 5525.76
8. Data Parallelism + Texture Memory 0.34 0.91 12.12 36.57 123.17 417.72 5461.06
Total speed-up attained 38.09x 62.83x 41.09x 32.86x 22.49x 14.8x 11.6x

designs. Nevertheless, comparing both probabilistic designs
((3) and (8)), the speed up factor reaches up to 17.42x.

2) Evaluation of pheromone update kernel: In this case,
the baseline version is our best-performing kernel version,
which uses atomic instructions and shared memory. From
there, we show the slow-downs incurred by each technique.
As previously explained, this kernel presents a tradeoff
between the number of accesses to global memory for
avoiding costly atomic operations and the number of those
atomic operations (called loads : atomic). The “scatter to
gather” computation (5) pattern presents the major difference
between both parameters. This imbalance is reflected in
the performance degradation showed by the bottom-row on
Table III. The slow-down increases exponentially with the
benchmark size, as expected.

The tiling technique (4) improves the application band-
width with the scatter to gather approach. The Reduction
technique (3) actually reduces the overall number of accesses
to either shared or device memory by having half the number
of threads of versions 4 or 5. This also uses tiling to alleviate
the pressure on device memory. Even though the number of
loads per thread remains the same, the overall number of
loads in the application is reduced.

B. Overall performance
Figure 4 shows the speed-up factor between sequential

code and both GPUs. Figure 4(a) shows the speed-up ob-
tained by simulating the Nearest Neighbour tour construction
with 30 Nearest Neighbours (NN = 30). This tour construc-
tion reduces the requirement for random number generation,
and thus, the computation workload for the application. For
the smallest benchmarks, the sequential code is faster than
the GPU code. The number of ants, which is equivalent to
the number of threads running in parallel on the GPU, is
relatively small for these instances; i.e. 48, 100. Besides,
those threads are quite heavy-weight threads based on task-
parallelism. The CPU is not only theoretically, but now
empirically demonstrated to be, better suited to deal with
this coarse-grained task.

However, the GPU obtains better performance as long
as the benchmark size increases, reaching up to 2.65 x on

Figure 5. Speed-up factor for pheromone update kernel.

Tesla C1060 and 3x on Tesla C2050. We note that the max-
imum performance is obtained for the pr1002 benchmark,
after which point the performance improvement begins to
decrease. This behaviour is even worse for the Tesla C1060.
From that benchmark, the GPU occupancy is drastically
affected, and for the Tesla C1060 the tabu list can only be
located on a bit bases in shared memory, which introduces
an extra overhead.

Figure 4(b) shows the effect of implementing our proposal
for increasing the data-parallelism, compared to the fully
probabilistic version of the sequential code. We observe
an up to 22x speed up factor for Tesla C1060, and up to
29x for Tesla M2050. This version presents much more
fine-grained parallelism, where the threads are light-weight.
This is reflected in the performance enhancement on the
smallest benchmarks. However, this version launches as
many random numbers as number of cities, and performs
a reduction each tiling step. This begins to negatively affect
performance for biggest the biggest benchmark instances,
such as pr2392.

Figure 5 shows the speed-up factor for the best version
of the pheromone update kernel compared to the sequential
code. The pattern of computation for this kernel is based on
data-parallelism, showing a linear speed-up along with the
problem size. However, the lack of supporting atomic oper-
ations on Tesla C1060 for floating points operations means
that, for the smallest benchmark instances, the sequential



Table III
EXECUTION TIMES (IN MILLISECONDS) FOR VARIOUS PHEROMONE UPDATE IMPLEMENTATIONS (TESLA C1060).

Code version TSPLIB benchmark instance (problem size)
C1060 att48 kroC100 a280 pcb442 d657 pr1002
1. Atomic Ins. + Shared Memory 0.15 0.35 1.76 3.45 7.44 17.45
2. Atomic Ins. 0.16 0.36 1.99 3.74 7.74 18.23
3. Instruction & Thread Reduction 1.18 3.8 103.77 496.44 2304.54 12345.4
4. Scatter to Gather + Tilling 1.03 5.83 242.02 1489.88 7092.57 37499.2
5. Scatter to Gather 2.01 11.3 489.91 3022.85 14460.4 200201
Total slow-down incurred 12.73x 31.42x 278.7x 875.29x 1944.23x 11471.59x

Table IV
EXECUTION TIMES (IN MILLISECONDS) FOR VARIOUS PHEROMONE UPDATE IMPLEMENTATIONS (TESLA M2050).

Code version TSPLIB benchmark instance (problem size)
M2050 att48 kroC100 a280 pcb442 d657 pr1002
1. Atomic Ins. + Shared Memory 0.04 0.09 0.43 0.79 1.85 4.22
2. Atomic Ins. 0.04 0.09 0.45 0.88 1.98 4.37
3. Instruction & Thread Reduction 0.83 2.76 88.25 501.32 2302.37 12449.9
4. Scatter to Gather + Tilling 0.8 4.45 219.8 1362.32 6316.75 33571
5. Scatter to Gather 0.66 4.5 264.38 1555.03 7537.1 40977.3
Total slow-downs attained 17.3x 50.73 587.96x 1737.95x 3859.52x 9478.68x

(a) Nearest Neighbour List (NN = 30). (b) Fully probabilistic selection.

Figure 4. Speed-up factor for tour construction kernel.

code obtains better performance. As long as the level of par-
allelism increases, the performance also increases, obtaining
up to 3.87x speed-up for Tesla C1060 and 18.77x for Tesla
M2050.

VI. CONCLUSIONS AND FUTURE WORK

Ant Colony Optimisation (ACO) belongs to the family of
population-based meta-heuristic that has been successfully
applied to many NP-complete problems. As a population-
based algorithm, it is intrinsically parallel, and thus well-
suited to implementation on parallel architectures. The ACO
algorithm comprises two main stages; tour construction and
pheromone Update. Previous efforts for parallelizing ACO
on the GPU focused on the former stage, using task-based
parallelism. We demonstrated that this approach does not fit
well on the GPU architecture, and provided an alternative
approach based on data parallelism. This enhances the GPU
performance by both increasing the parallelism and avoiding
warp divergence.

In addition, we provided the first known implementation
of the pheromone update stage on the GPU. In addition,
some GPU computing techniques were discussed in order
to avoid atomic instructions. However, we showed that
those techniques are even more costly than applying atomic
operations directly.

Possible future directions will include investigating the
effectiveness of GPU-based ACO algorithms on other NP-
complete optimisation problems. We will also implement
other ACO algorithms, such as the Ant Colony System,
which can also be efficiently implemented on the GPU.
The conjunction of ACO and GPU is still at a relatively
early stage; we emphasise that we have only so far tested a
relatively simple variant of the algorithm. There are many
other types of ACO algorithm still to explore, and as such,
it is a potentially fruitful area of research. We hope that this
paper stimulates further discussion and work.



ACKNOWLEDGEMENT

This work was partially supported by a travel grant from
HiPEAC, the European Network of Excellence on High
Performance and Embedded Architecture and Compilation
(http://www.hipeac.net).

REFERENCES

[1] M. Dorigo and T. Stützle, Ant Colony Optimization. Scituate,
MA, USA: Bradford Company, 2004.

[2] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony opti-
mization,” IEEE Computational Intelligence Magazine, vol. 1,
no. 4, pp. 28–39, 2006.

[3] C. Blum, “Ant colony optimization: Introduction and recent
trends,” Physics of Life reviews, vol. 2, no. 4, pp. 353–373,
2005.

[4] E. Lawler, J. Lenstra, A. Kan, and D. Shmoys, The Traveling
Salesman Problem. Wiley New York, 1987.

[5] V. M. M. Dorigo and A. Colorni, “Positive feedback as a
search strategy,” Tech. Rep. Technical Report No. 91-016,
1991.

[6] M. Dorigo, V. Maniezzo, and A. Colorni, “The ant system:
Optimization by a colony of cooperating agents,” IEEE Trans-
actions on Systems, Man, and Cybernetics-Part B, vol. 26, pp.
29–41, 1996.

[7] M. Dorigoa, E. Bonabeaub, and G. Theraulazc, “Ant algo-
rithms and stigmergy,” Future Generation Computer Systems,
vol. 16, pp. 851–871, 2000.

[8] T. Stützle, “Parallelization strategies for ant colony optimiza-
tion,” in PPSN V: Proceedings of the 5th International Con-
ference on Parallel Problem Solving from Nature. London,
UK: Springer-Verlag, 1998, pp. 722–731.

[9] X. JunYong, H. Xiang, L. CaiYun, and C. Zhong, “A novel
parallel ant colony optimization algorithm with dynamic
transition probability,” Computer Science-Technology and Ap-
plications, International Forum on, vol. 2, pp. 191–194, 2009.

[10] Y. Lin, H. Cai, J. Xiao, and J. Zhang, “Pseudo parallel ant
colony optimization for continuous functions,” International
Conference on Natural Computation, vol. 4, pp. 494–500,
2007.

[11] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym,
“NVIDIA Tesla: A unified graphics and computing architec-
ture,” IEEE Micro, vol. 28, no. 2, pp. 39–55, 2008.

[12] W. Jiening, D. Jiankang, and Z. Chunfeng, “Implementation
of ant colony algorithm based on GPU,” in CGIV ’09:
Proceedings of the 2009 Sixth International Conference on
Computer Graphics, Imaging and Visualization. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 50–53.

[13] Y.-S. You, “Parallel ant system for Traveling Salesman Prob-
lem on GPUs,” in GECCO 2009 - Genetic and Evolutionary
Computation., 2009, pp. 1–2.

[14] J. Li, X. Hu, Z. Pang, and K. Qian, “A parallel ant colony op-
timization algorithm based on fine-grained model with GPU-
acceleration,” International Journal of Innovative Computing,
Information and Control, vol. 5, pp. 3707–3716, 2009.

[15] Johnson, David S. and Mcgeoch, Lyle A., The
Traveling Salesman Problem: A Case Study
in Local Optimization, 1997. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.92.1635

[16] M. Dorigo, “Optimization, learning and natural algorithms,”
Ph.D. dissertation, Politecnico di Milano, Italy, 1992.

[17] R. Michel and M. Middendorf, “An island model
based ant system with lookahead for the shortest
supersequence problem,” in Proceedings of the 5th
International Conference on Parallel Problem Solving
from Nature, ser. PPSN V. London, UK: Springer-
Verlag, 1998, pp. 692–701. [Online]. Available:
http://portal.acm.org/citation.cfm?id=645824.668614

[18] L. Chen, H.-Y. Sun, and S. Wang, “Parallel implementation
of ant colony optimization on MPP,” in Machine Learning
and Cybernetics, 2008 International Conference on, vol. 2,
2008, pp. 981 –986.

[19] J. Nickolls, I. Buck, M. Garland, and K. Skadron,
“Scalable parallel programming with CUDA,” Queue,
vol. 6, pp. 40–53, March 2008. [Online]. Available:
http://doi.acm.org/10.1145/1365490.1365500

[20] NVIDIA, NVIDIA CUDA C Programming Guide 3.1.1, 2010.

[21] T. Scavo, “Scatter-to-gather transformation for
scalability,” Aug 2010. [Online]. Available:
https://hub.vscse.org/resources/223

[22] G. Reinelt, “TSPLIB— a Traveling Salesman Problem li-
brary,” ORSA Journal on Computing, vol. 3, no. 4, pp. 376–
384, 1991.

[23] NVIDIA, Whitepaper NVIDIA’s Next Generation CUDA
Compute Architecture: Fermi, 2009.


