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Abstract 
 

Conformational entropy calculation, usually computed by normal mode analysis 

(NMA) or quasi harmonic analysis (QHA), is extremely time-consuming. Here, 

instead of NMA or QHA, a solvent accessible surface area (SASA) based model was 

employed to compute the conformational entropy, and a new fast GPU-based method 

called MURCIA (Molecular Unburied Rapid Calculation of Individual Areas) was 

implemented to accelerate the calculation of SASA for each atom. MURCIA employs 

two different kernels to determine the neighbours of each atom. The first kernel (K1) 

uses brute force for the calculation of the neighbours of atoms, while the second one 

(K2) uses an advanced algorithm involving hardware interpolations via GPU texture 

memory unit for such purpose. These two kernels yield very similar results. Each 

kernel has its own advantages depending on the protein size. K1 performs better than 

K2 when the size is small, and vice versa. The algorithm was extensively evaluated for 

three protein datasets, and achieves good results for all of them. This GPU-accelerated 

version is ~600 times faster than the former sequential algorithm when the number of 

the atoms in a protein is up to 10
5
.  

  



1. Introduction 

Prediction of free energy, especially binding free energy, is one of the central interests 

in computational chemistry and computational biology. Many approaches have been 

developed for the prediction of binding free energy, such as thermodynamic 

integration (TI),
1
 free energy perturbation (FEP),

1
 linear interaction energy (LIE) 

approach,
2
 molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA),

3, 4
 

molecular mechanics/Generalized Born surface area (MM/GBSA),
3, 4

 etc.. The main 

idea of TI and FEP is to compute the free energy difference (ΔG) between two similar 

structures from molecular dynamics (MD) and Monte Carlo (MC) simulations by 

summing the ΔGs of the transient states between two different structures. TI and FEP 

are theoretically rigorous but they are computationally expensive, thus impeding their 

applications for large scale computations. For LIE, different fitted parameters are 

needed while applying this method into different systems, and therefore it is system-

dependent and not convenient.
2
 Recently, the MM/GBSA and MM/PBSA approaches 

are becoming more and more popular due to its high efficiency.
5-16

 In the MM/PBSA 

and MM/GBSA theory, the free energy of a molecule is calculated using the 

following equations:
3, 4
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where, in Equation 1, Hgas represents the gas phase enthalpy, which can be roughly 

replaced by Egas for a molecule in condensed phase. Gsolv consists of two parts, the 

polar and nonpolar solvation free energies. The polar part is usually calculated by 

either a Poisson-Bolzmann (PB) or Generalized Born (GB) model and the nonpolar 

part is estimated by the solvent accessible surface area (SASA)
3
. Sconf was 

decomposed into three components: Strans, Srot and Svib. Strans and Srot are translational 

and rotational contributions of entropy, and they can be directly estimated by the 

standard equations. The vibrational entropy (Svib) is usually estimated by quasi 

harmonic analysis (QHA) of MD trajectories or by normal mode analysis (NMA) on 

selected snapshots.
4
  

  Conformation entropy calculations by QHA or NMA is time-consuming, and 

therefore we have developed a SASA-based approach to calculate Sconf.
17

 This method 



shows good efficiency and accuracy when compared with NMA. In our method, the 

Shrake-Rupley algorithm
18

 was employed to generate a mesh of points to represent 

the sphere of each atom. Then, the distance between any two points in the surface and 

core of each atom is calculated to determine which sphere points are accessible to 

solvent. Afterwards, the SASA of each atom is computed by taking into account the 

proportion of all points accessible to solvent. Finally, based on a set of fitted 

parameters for different atom types, the calculated SASAs are used to compute Sconf. 

This method does perform well for small molecules, but it is computationally 

expensive for large molecules. For example, when the atom number of a protein is 

over 20,000, the computational cost for calculating the SASAs is more than 180 

seconds. Therefore, the calculations of SASAs become the computational bottleneck 

for relatively large systems.  

In this study, in order to accelerate the calculation of SASAs, a GPU (Graphic 

Processing Unit)-based algorithm named MURCIA (Molecular Unburied Rapid 

Calculation of Individual Areas) was implemented. The use of GPUs has attracted 

great attention recently for scientific computing. GPU is not only a graphics engine, 

but also a processor that provides excellent performance in parallel calculations. It is 

designed for a particular class of applications with the following features: 

computational requirements are extensive, parallelism is substantial and throughput is 

more important than latency.
19

 In the fields of computational biology and computer-

aided drug design (CADD), the applications of GPUs are becoming more and more 

popular,
20-34

 and many molecular simulation packages have been updated in line with 

the GPU architecture. For example, AMBER includes full GPU support for the MD 

simulations in PMEMD
35

; VMD employs GPUs for displaying and animating large 

biomolecular systems using 3-D graphics and built-in scripting;
36

 and NAMD, the 

first MD package implemented on GPU, achieves significantly improved boost of 

performance with GPUs.
37

  

Here, we used CUDA (Compute Unified Device Architecture) that is NVIDIA's 

parallel computing architecture to develop our algorithm.
38

 The flow chart of the 

algorithm for entropy calculations is shown in Figure 1. The key point is to compute 

the neighbour atoms and then the SASA of each atom. Once the SASA of each atom 

has been computed, the following formula is used to calculate the entropy of a 

molecule. 
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where wi has already been parameterized in our previous study
17

, rprob is 0.8Å, SASAi 

represents the SASA of atom i, and BSASAi stands for the buried SASA of atom i. k is 

set to be 0.461, which was found to be the most suitable value in this formula. S 

represents Sconf, and it is the weighted sum of the SASA and BSASA for each atom.  

 

 

2. Materials and Methods 

This section describes how the calculation of entropy is carried out started from the 

values of the radii and the positions of the atoms in a molecule. First, the SASA 

calculation using an improved version of MURCIA
39

 was described and then the 

conformational entropy was calculated. The information of CPU, GPU and CUDA is 

listed below: 

CPU: Intel Xeon E5506 @ 2.13GHz 

GPU: NVIDA Tesla C2075, 448 CUDA Cores @1147 MHz (1.15 GHz) 

CUDA: Driver Version = 4.2, Runtime Version = 4.2 

 

Copying memory from host to device. We use GPU for the SASA calculations, and 

the processors on GPU cannot access CPU memory directly. One important step is to 

copy the protein data from host memory to device memory on GPU. In CUDA, we 

should perform memory allocation, and free this memory when calculations are 

finished. In the MURCIA method protein data is read and stored on CPU, and then the 

size of required GPU memory is calculated and reserved. Finally, all protein data is 

copied from host to device. 

 

Neighbour calculation. Neighbour calculation is necessary for computing SASA, 

and it is the crucial step to accelerate the entropy calculations. As depicted in Figure 

1, two different kernels, K1 and K2, were designed and discussed in the following 

section.  

In K1, each block performs the calculations for one atom. In one block, there are 

128 threads by default. For atom i, 128 threads are used to calculate the distances 

between the other atoms. If the distance is smaller than the predefined cut-off, we then 

consider the atom as a neighbour. If the number of atoms is small than the maximum 

number of blocks, the block size will be equal to the number of atoms, and if not, it 

will be set as the maximum number of blocks. The time cost of this kernel is O(n
2
), so 



when the number of atoms increases, the computational cost increases substantially. 

Pseudocode of this method is shown in Figure 2(A). How the blocks and threads 

actually work in this method is illustrated in Figure 2(B). All threads in a thread-block 

cooperate together to calculate all their neighbours using shared memory for sharing 

common variables to all of them. Calculations between two threads in different blocks 

are used to generate the distance between two atoms they represent to judge whether 

they are neighbours or not. For example, thread 1 of Block(2,2) works together with 

thread 1 of Block(2,3) to confirm if this two atoms can be regarded as neighbours, the 

same for thread 2 of Block(2,2) and thread 2 of Block(2,4). 

In order to accelerate the speed of calculation, we developed a new algorithm called 

K2 to compute the neighbours. In this alternatively designed kernel, the whole system 

is divided into several cubic grids, and the edge length of one grid is set to be 2rmax, 

and rmax is the maximum radius among the radii of all atoms. Each atom is allocated to 

a hash value according to its position.  

                                             (6) 

where pos is the position of the cell in which the atom locates, and size represents the 

number of cells in each direction. 

Same value will be set for the atoms in the same cell, and then they are sorted by 

the hash values. The sorting function is implemented from the Thrust library
40

, which 

uses the radix sort method. After the sorting, atoms in the same cell are reordered 

according to its previous index, and the index of the starting and ending atoms of each 

cell are calculated. Atoms are regarded as neighbours if they are in the same or 

surrounding cells. This method will change the complexity from O(n
2
) to O(n), 

because it does not need to go over all atoms to confirm whether this atom is a 

neighbour or not. Figure 3 shows a brief description of this kernel. Atom i is in one of 

the cell, and the others in the same cell like i1, i2 or the surrounding cells are regarded 

as neighbours. 

 

Creation of sphere points. A regular spherical grid of points is placed over the 

surface of each atom. This idea can simplify the calculation of SASA by just 

computing the portion of sphere points which fits the condition we set with its 

neighbour atoms. 

There are two ways to set the sphere points or atomic grid. One is to import a file of 

sphere point, which contains the predefined grid coordinates, but only 72 and 500 



point models are available. The other is to use the grid coordinates that we define in 

the grids.h file. The number of points ranges from 12 to 1000. The 72 point model 

was obtained from the Lebedev’s algorithm,
41

 and the others were gained from the 

Saff E’s sphere grid.
42

 

 

Computing SASAs. After all the preparations have been done, the calculations of 

SASAs can be accomplished in a very efficient way. Similar to the generation of 

sphere points, in this part, for K1, each thread is used to qualify whether this point is 

in the solvent accessible surface of the corresponding atom by computing the distance 

between this point and the atom’s neighbours. If the distance is bigger than the 

threshold we set, the out points’ number dnonburied increases by one. After the 

calculation is finished, we will get the SASAi for atom i. 

 
      

          

       
             

   (7) 

where Nsphere represents the number of each atom's sphere points. 

For K2, there is a little difference with respect to K1. The whole system is divided 

into many cells, and there are several atoms in each cell. For each sphere point of one 

atom, the distance is calculated between this point and the other atoms which are in 

the same cell or its neighbour cells. If the distance is bigger than the cut-off, the 

number of out points increases. The rest of the procedure follows those used by K1.  

 

Calculation of Conformational entropy. After the calculation of SASA for each 

atom is finished, the conformational entropy of a molecule is computed by using 

Equations 4 and 5. These two equations are explained and tested in our previous 

study
17

. Here we used a GPU-based algorithm to accelerate the process of entropy 

calculation, and we obtained significant improvements in terms of computing speed. 

 

3. Results and Discussions 

We used three data sets to test our method. Data Set I contains 12 protein decoys 

generated by the Rosetta software package (http://www.rosettacommons.org), Data 

Set II includes 120 proteins that are randomly chosen from the RCSB protein data 

bank
43

 and larger than those used in the first data set, and Data Set III contains 511 

PDB files downloaded from the RCSB protein data bank with the number of chains 

ranging from 15 to 25.  

http://www.rosettacommons.org/


 

Validation for 12 protein decoys. The first data set was used in our previous study to 

evaluate the algorithm of entropy calculations. The computational costs of the CPU-

based Shrake-Rupley algorithm and the GPU-based MURCIA algorithm for 

calculating SASAs were compared by averaging the results from 5 independent runs 

(details are shown in Supporting Information S1). The ratio between the two running 

times was used to compare the performance of these two algorithms, and the results 

are summarized in Table 1. We can observe that when the number of atoms increases, 

the running time ratio between CPU and GPU becomes larger.  

The conformational entropies for the proteins in Test set I were predicted based on 

the SASA values calculated by the CPU-based Shrake-Rupley algorithm and those 

calculated by the GPU-based MURCIA algorithm. We found that the conformational 

entropies predicted by the CPU-based and GPU-based algorithms are almost identical 

with r
2 

of 1 (Figure 4). Therefore, the new method based on MURCIA performs as 

well as the previous one in predicting the conformational entropies for Test set I. 

We should mention that for small proteins, the performance of the GPU-based 

method is not optimal, because GPU cannot generate a sufficient number of threads at 

the same time. So for the proteins with small number of atoms (10~100), the 

calculations of the GPU-based method cannot be substantially accelerated compared 

with those of the CPU-based version.  

 

Validation for big proteins. For the second data set, the running time ratio between 

CPU and GPU versus the number of atoms is shown in Figure 5. Because of the 

bigger protein size than the first data set, the results become more significant. As we 

can see, the ratio arises as a quadratic form, indicating that the GPU-based method 

will become faster than the CPU-based version when protein size increases. For K2, 

as we have introduced before, its time cost is O(n). But for the CPU-based method, 

though it also cuts the whole system into cubes, the edge length of the cube just 

changes accordingly with change of the protein size to keep the number of cubes 

constant. Assuming there are n atoms in one protein and m cubes, the average number 

of the atoms in each cell is n/m, and it is easy to understand that the time cost of the 

CPU-based version is O(n
2
), so the tendency of the ratio is quite reasonable. 

All the above GPU-based results were generated by K2, which computes the 

neighbour atoms in a very efficient way. We used Data set II and Data set I to 



evaluate K1 at the same time, and the results are illustrated in Figure 6. From the 

figure, we can see that when the number of atoms is less than 500, the K1 kernel is 

faster than the K2 kernel, but when the number of atoms exceeds 500, K2 outperforms 

K1 in terms of processing speed. The observations are not surprising because in K1, 

the algorithm just finds out the neighbours and calculates the SASA for each atom, 

but in K2, a cell sorting should be done firstly in order to make the further neighbour 

finding and SASA calculations faster. When the number of atoms is small, each 

thread just runs once for the calculation of SASA, and therefore K2 needs more time 

for the extra computation of cell sorting when the number of atoms is not very large.  

 

Validation for proteins with the number of chains ranging from 15 to 25. Proteins 

in the third data set are larger than those in the second one. This data set was used to 

characterize the difference of the computing ability between K2 and K1 when the 

number of atoms exceeds 10,000 or even 50,000. The results for this data set are 

illustrated in Figure 7. We can make the following conclusion: when K1 was used to 

generate the neighbour atoms, our new method based on MURCIA can be regarded to 

be quadratic, and if K2 was used, the MURCIA-based method is just linear with r
2
 of 

0.99. 

The entropy calculations for K2 and K1 were compared to confirm whether this 

new algorithm can yield good results for this big data set. As shown in Figure 8, r
2 

equals to 1. The absolute error Δ was calculated to see if these two results are the 

same: 

             (8) 

where EK2 and EK1 are the entropies calculated by GPU-based K2 and K1, 

respectively. The average  of the 511 proteins was 4.45, which is a very small value 

compared to the large entropy results, and obviously the predicted entropies based on 

the K1 and K2 kernels are almost the same.  
  According to the three data sets, we can conclude that when the number of atoms is 

smaller than 500, K1 is a good choice to get the neighbours for each atom. However, 

when the number goes over 500, K2 will be better than K1. And the difference will 

become larger when the protein size increases due to the different behaviour, 

quadratic vs. linear. 

 

4. Conclusions 



We have developed a GPU-based method for accelerating the calculation of the 

conformational entropy of molecules. This method can speed up the computing time 

in a very impressive way. We have tested this method using three data sets. The first 

set proved that the calculated entropies predicted by the new method are almost 

identical to those predicted by the method reported in our previous study. The tests for 

the second data set suggest that this method is much faster than the previous one. The 

third data set was used to manifest the difference between K1 and K2. K1 is quadric 

and K2 is linear, and K2 will be faster than K1 when the number of atoms exceeds 

500.  

It will be a very efficient way to use our method to compute the conformational 

entropy of biomolecules, especially for large structures, and we hope it will be helpful 

in calculating binding free energies and some other applications, such as protein 

folding and protein-protein docking, in computational biology and CADD in the 

future. 

 

Supporting Information 

Table S1. Comparison of the running time between CPU- and GPU-based methods 

generated by 5 independent runs. 
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Legend of Figures 

Figure1: Flow chart for entropy calculation using MURCIA. Neighbour calculation is 

carried our either using distances (K1) or via hardware interpolation (K2) 

Figure2: (A) The pseudocode of K1; (B) How the Blocks and Threads work in K1.  

Figure3: Brief introduction of K2.  

Figure4: Entropy comparison between CPU and GPU (K2) for small proteins 

Figure5: Running time ratio between CPU and GPU (K2) for proteins in the 10
4
 size 

range 

Figure6: Running times comparison between K1 and K2 in the 10
4
 size, subfigure is 

the part with atoms’ number ranging from 0 to 2500 

Figure7: Running time (seconds) in SAS calculation for K1 and K2 kernels in the 1-

10
5
 protein size range 

Figure8: Entropy comparison between K1 and K2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Table 1. Running time ratio between CPU and GPU (K2) for small proteins 

AtomN
a
 Ratio

b
 AtomN Ratio 

209 5.195531 462 9.296971 

335 7.779898 489 12.29839 

342 7.733893 494 12.26562 

364 7.451665 512 12.71114 

372 8.535273 568 14.61603 

410 9.212902 575 12.04921 
aAtomN represents the number of atoms; bRatio represents the time ratio  

between CPU and GPU 
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Figure 2 

 

 

 

 

 



 

 

Figure 3 
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Figure 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 7 

 

  



 

 

Figure 8 


