
1

Accelerated Conformational Entropy Calculations Using

Graphic Processing Units

Qian Zhang
1
, José M. García

3
, Junmei Wang

2
, Youyong Li

1
, Horacio Pérez-

Sánchez
4*

, Tingjun Hou
1,2*

1
Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key

Laboratory for Carbon-Based Functional Materials & Devices, Soochow University,

Suzhou, Jiangsu 215123, China

2
College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang

310058, China

3
Computer Engineering Department, School of Computer Science, 30100

University of Murcia, Spain

4
Computer Science Department, 30107 Catholic University of Murcia (UCAM),

Spain

Corresponding authors:

Tingjun Hou

E-mail: tingjunhou@hotmail.com or tingjunhou@zju.edu.cn

Tel: +86 (512) 65882039

Horacio Pérez-Sánchez

Email: horacio@ucam.edu

Keywords：GPU; Graphic processing units; Solvent accessible surface area;
Entropy; Free energy

mailto:tingjunhou@hotmail.com
mailto:tingjunhou@zju.edu.cn

For Table of Contents Use Only

Abstract

Conformational entropy calculation, usually computed by normal mode analysis

(NMA) or quasi harmonic analysis (QHA), is extremely time-consuming. Here,

instead of NMA or QHA, a solvent accessible surface area (SASA) based model was

employed to compute the conformational entropy, and a new fast GPU-based method

called MURCIA (Molecular Unburied Rapid Calculation of Individual Areas) was

implemented to accelerate the calculation of SASA for each atom. MURCIA employs

two different kernels to determine the neighbours of each atom. The first kernel (K1)

uses brute force for the calculation of the neighbours of atoms, while the second one

(K2) uses an advanced algorithm involving hardware interpolations via GPU texture

memory unit for such purpose. These two kernels yield very similar results. Each

kernel has its own advantages depending on the protein size. K1 performs better than

K2 when the size is small, and vice versa. The algorithm was extensively evaluated for

three protein datasets, and achieves good results for all of them. This GPU-accelerated

version is ~600 times faster than the former sequential algorithm when the number of

the atoms in a protein is up to 10
5
.

1. Introduction

Prediction of free energy, especially binding free energy, is one of the central interests

in computational chemistry and computational biology. Many approaches have been

developed for the prediction of binding free energy, such as thermodynamic

integration (TI),
1
 free energy perturbation (FEP),

1
 linear interaction energy (LIE)

approach,
2
 molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA),

3, 4

molecular mechanics/Generalized Born surface area (MM/GBSA),
3, 4

 etc.. The main

idea of TI and FEP is to compute the free energy difference (ΔG) between two similar

structures from molecular dynamics (MD) and Monte Carlo (MC) simulations by

summing the ΔGs of the transient states between two different structures. TI and FEP

are theoretically rigorous but they are computationally expensive, thus impeding their

applications for large scale computations. For LIE, different fitted parameters are

needed while applying this method into different systems, and therefore it is system-

dependent and not convenient.
2
 Recently, the MM/GBSA and MM/PBSA approaches

are becoming more and more popular due to its high efficiency.
5-16

 In the MM/PBSA

and MM/GBSA theory, the free energy of a molecule is calculated using the

following equations:
3, 4

 ()

(¡Error! Marcador no

definido.)

 (3)

where, in Equation 1, Hgas represents the gas phase enthalpy, which can be roughly

replaced by Egas for a molecule in condensed phase. Gsolv consists of two parts, the

polar and nonpolar solvation free energies. The polar part is usually calculated by

either a Poisson-Bolzmann (PB) or Generalized Born (GB) model and the nonpolar

part is estimated by the solvent accessible surface area (SASA)
3
. Sconf was

decomposed into three components: Strans, Srot and Svib. Strans and Srot are translational

and rotational contributions of entropy, and they can be directly estimated by the

standard equations. The vibrational entropy (Svib) is usually estimated by quasi

harmonic analysis (QHA) of MD trajectories or by normal mode analysis (NMA) on

selected snapshots.
4

 Conformation entropy calculations by QHA or NMA is time-consuming, and

therefore we have developed a SASA-based approach to calculate Sconf.
17

 This method

shows good efficiency and accuracy when compared with NMA. In our method, the

Shrake-Rupley algorithm
18

 was employed to generate a mesh of points to represent

the sphere of each atom. Then, the distance between any two points in the surface and

core of each atom is calculated to determine which sphere points are accessible to

solvent. Afterwards, the SASA of each atom is computed by taking into account the

proportion of all points accessible to solvent. Finally, based on a set of fitted

parameters for different atom types, the calculated SASAs are used to compute Sconf.

This method does perform well for small molecules, but it is computationally

expensive for large molecules. For example, when the atom number of a protein is

over 20,000, the computational cost for calculating the SASAs is more than 180

seconds. Therefore, the calculations of SASAs become the computational bottleneck

for relatively large systems.

In this study, in order to accelerate the calculation of SASAs, a GPU (Graphic

Processing Unit)-based algorithm named MURCIA (Molecular Unburied Rapid

Calculation of Individual Areas) was implemented. The use of GPUs has attracted

great attention recently for scientific computing. GPU is not only a graphics engine,

but also a processor that provides excellent performance in parallel calculations. It is

designed for a particular class of applications with the following features:

computational requirements are extensive, parallelism is substantial and throughput is

more important than latency.
19

 In the fields of computational biology and computer-

aided drug design (CADD), the applications of GPUs are becoming more and more

popular,
20-34

 and many molecular simulation packages have been updated in line with

the GPU architecture. For example, AMBER includes full GPU support for the MD

simulations in PMEMD
35

; VMD employs GPUs for displaying and animating large

biomolecular systems using 3-D graphics and built-in scripting;
36

 and NAMD, the

first MD package implemented on GPU, achieves significantly improved boost of

performance with GPUs.
37

Here, we used CUDA (Compute Unified Device Architecture) that is NVIDIA's

parallel computing architecture to develop our algorithm.
38

 The flow chart of the

algorithm for entropy calculations is shown in Figure 1. The key point is to compute

the neighbour atoms and then the SASA of each atom. Once the SASA of each atom

has been computed, the following formula is used to calculate the entropy of a

molecule.

 (4)

 (5)

where wi has already been parameterized in our previous study
17

, rprob is 0.8Å, SASAi

represents the SASA of atom i, and BSASAi stands for the buried SASA of atom i. k is

set to be 0.461, which was found to be the most suitable value in this formula. S

represents Sconf, and it is the weighted sum of the SASA and BSASA for each atom.

2. Materials and Methods

This section describes how the calculation of entropy is carried out started from the

values of the radii and the positions of the atoms in a molecule. First, the SASA

calculation using an improved version of MURCIA
39

 was described and then the

conformational entropy was calculated. The information of CPU, GPU and CUDA is

listed below:

CPU: Intel Xeon E5506 @ 2.13GHz

GPU: NVIDA Tesla C2075, 448 CUDA Cores @1147 MHz (1.15 GHz)

CUDA: Driver Version = 4.2, Runtime Version = 4.2

Copying memory from host to device. We use GPU for the SASA calculations, and

the processors on GPU cannot access CPU memory directly. One important step is to

copy the protein data from host memory to device memory on GPU. In CUDA, we

should perform memory allocation, and free this memory when calculations are

finished. In the MURCIA method protein data is read and stored on CPU, and then the

size of required GPU memory is calculated and reserved. Finally, all protein data is

copied from host to device.

Neighbour calculation. Neighbour calculation is necessary for computing SASA,

and it is the crucial step to accelerate the entropy calculations. As depicted in Figure

1, two different kernels, K1 and K2, were designed and discussed in the following

section.

In K1, each block performs the calculations for one atom. In one block, there are

128 threads by default. For atom i, 128 threads are used to calculate the distances

between the other atoms. If the distance is smaller than the predefined cut-off, we then

consider the atom as a neighbour. If the number of atoms is small than the maximum

number of blocks, the block size will be equal to the number of atoms, and if not, it

will be set as the maximum number of blocks. The time cost of this kernel is O(n
2
), so

when the number of atoms increases, the computational cost increases substantially.

Pseudocode of this method is shown in Figure 2(A). How the blocks and threads

actually work in this method is illustrated in Figure 2(B). All threads in a thread-block

cooperate together to calculate all their neighbours using shared memory for sharing

common variables to all of them. Calculations between two threads in different blocks

are used to generate the distance between two atoms they represent to judge whether

they are neighbours or not. For example, thread 1 of Block(2,2) works together with

thread 1 of Block(2,3) to confirm if this two atoms can be regarded as neighbours, the

same for thread 2 of Block(2,2) and thread 2 of Block(2,4).

In order to accelerate the speed of calculation, we developed a new algorithm called

K2 to compute the neighbours. In this alternatively designed kernel, the whole system

is divided into several cubic grids, and the edge length of one grid is set to be 2rmax,

and rmax is the maximum radius among the radii of all atoms. Each atom is allocated to

a hash value according to its position.

 (6)

where pos is the position of the cell in which the atom locates, and size represents the

number of cells in each direction.

Same value will be set for the atoms in the same cell, and then they are sorted by

the hash values. The sorting function is implemented from the Thrust library
40

, which

uses the radix sort method. After the sorting, atoms in the same cell are reordered

according to its previous index, and the index of the starting and ending atoms of each

cell are calculated. Atoms are regarded as neighbours if they are in the same or

surrounding cells. This method will change the complexity from O(n
2
) to O(n),

because it does not need to go over all atoms to confirm whether this atom is a

neighbour or not. Figure 3 shows a brief description of this kernel. Atom i is in one of

the cell, and the others in the same cell like i1, i2 or the surrounding cells are regarded

as neighbours.

Creation of sphere points. A regular spherical grid of points is placed over the

surface of each atom. This idea can simplify the calculation of SASA by just

computing the portion of sphere points which fits the condition we set with its

neighbour atoms.

There are two ways to set the sphere points or atomic grid. One is to import a file of

sphere point, which contains the predefined grid coordinates, but only 72 and 500

point models are available. The other is to use the grid coordinates that we define in

the grids.h file. The number of points ranges from 12 to 1000. The 72 point model

was obtained from the Lebedev’s algorithm,
41

 and the others were gained from the

Saff E’s sphere grid.
42

Computing SASAs. After all the preparations have been done, the calculations of

SASAs can be accomplished in a very efficient way. Similar to the generation of

sphere points, in this part, for K1, each thread is used to qualify whether this point is

in the solvent accessible surface of the corresponding atom by computing the distance

between this point and the atom’s neighbours. If the distance is bigger than the

threshold we set, the out points’ number dnonburied increases by one. After the

calculation is finished, we will get the SASAi for atom i.

 (7)

where Nsphere represents the number of each atom's sphere points.

For K2, there is a little difference with respect to K1. The whole system is divided

into many cells, and there are several atoms in each cell. For each sphere point of one

atom, the distance is calculated between this point and the other atoms which are in

the same cell or its neighbour cells. If the distance is bigger than the cut-off, the

number of out points increases. The rest of the procedure follows those used by K1.

Calculation of Conformational entropy. After the calculation of SASA for each

atom is finished, the conformational entropy of a molecule is computed by using

Equations 4 and 5. These two equations are explained and tested in our previous

study
17

. Here we used a GPU-based algorithm to accelerate the process of entropy

calculation, and we obtained significant improvements in terms of computing speed.

3. Results and Discussions

We used three data sets to test our method. Data Set I contains 12 protein decoys

generated by the Rosetta software package (http://www.rosettacommons.org), Data

Set II includes 120 proteins that are randomly chosen from the RCSB protein data

bank
43

 and larger than those used in the first data set, and Data Set III contains 511

PDB files downloaded from the RCSB protein data bank with the number of chains

ranging from 15 to 25.

http://www.rosettacommons.org/

Validation for 12 protein decoys. The first data set was used in our previous study to

evaluate the algorithm of entropy calculations. The computational costs of the CPU-

based Shrake-Rupley algorithm and the GPU-based MURCIA algorithm for

calculating SASAs were compared by averaging the results from 5 independent runs

(details are shown in Supporting Information S1). The ratio between the two running

times was used to compare the performance of these two algorithms, and the results

are summarized in Table 1. We can observe that when the number of atoms increases,

the running time ratio between CPU and GPU becomes larger.

The conformational entropies for the proteins in Test set I were predicted based on

the SASA values calculated by the CPU-based Shrake-Rupley algorithm and those

calculated by the GPU-based MURCIA algorithm. We found that the conformational

entropies predicted by the CPU-based and GPU-based algorithms are almost identical

with r
2

of 1 (Figure 4). Therefore, the new method based on MURCIA performs as

well as the previous one in predicting the conformational entropies for Test set I.

We should mention that for small proteins, the performance of the GPU-based

method is not optimal, because GPU cannot generate a sufficient number of threads at

the same time. So for the proteins with small number of atoms (10~100), the

calculations of the GPU-based method cannot be substantially accelerated compared

with those of the CPU-based version.

Validation for big proteins. For the second data set, the running time ratio between

CPU and GPU versus the number of atoms is shown in Figure 5. Because of the

bigger protein size than the first data set, the results become more significant. As we

can see, the ratio arises as a quadratic form, indicating that the GPU-based method

will become faster than the CPU-based version when protein size increases. For K2,

as we have introduced before, its time cost is O(n). But for the CPU-based method,

though it also cuts the whole system into cubes, the edge length of the cube just

changes accordingly with change of the protein size to keep the number of cubes

constant. Assuming there are n atoms in one protein and m cubes, the average number

of the atoms in each cell is n/m, and it is easy to understand that the time cost of the

CPU-based version is O(n
2
), so the tendency of the ratio is quite reasonable.

All the above GPU-based results were generated by K2, which computes the

neighbour atoms in a very efficient way. We used Data set II and Data set I to

evaluate K1 at the same time, and the results are illustrated in Figure 6. From the

figure, we can see that when the number of atoms is less than 500, the K1 kernel is

faster than the K2 kernel, but when the number of atoms exceeds 500, K2 outperforms

K1 in terms of processing speed. The observations are not surprising because in K1,

the algorithm just finds out the neighbours and calculates the SASA for each atom,

but in K2, a cell sorting should be done firstly in order to make the further neighbour

finding and SASA calculations faster. When the number of atoms is small, each

thread just runs once for the calculation of SASA, and therefore K2 needs more time

for the extra computation of cell sorting when the number of atoms is not very large.

Validation for proteins with the number of chains ranging from 15 to 25. Proteins

in the third data set are larger than those in the second one. This data set was used to

characterize the difference of the computing ability between K2 and K1 when the

number of atoms exceeds 10,000 or even 50,000. The results for this data set are

illustrated in Figure 7. We can make the following conclusion: when K1 was used to

generate the neighbour atoms, our new method based on MURCIA can be regarded to

be quadratic, and if K2 was used, the MURCIA-based method is just linear with r
2
 of

0.99.

The entropy calculations for K2 and K1 were compared to confirm whether this

new algorithm can yield good results for this big data set. As shown in Figure 8, r
2

equals to 1. The absolute error Δ was calculated to see if these two results are the

same:

 (8)

where EK2 and EK1 are the entropies calculated by GPU-based K2 and K1,

respectively. The average of the 511 proteins was 4.45, which is a very small value

compared to the large entropy results, and obviously the predicted entropies based on

the K1 and K2 kernels are almost the same.
 According to the three data sets, we can conclude that when the number of atoms is

smaller than 500, K1 is a good choice to get the neighbours for each atom. However,

when the number goes over 500, K2 will be better than K1. And the difference will

become larger when the protein size increases due to the different behaviour,

quadratic vs. linear.

4. Conclusions

We have developed a GPU-based method for accelerating the calculation of the

conformational entropy of molecules. This method can speed up the computing time

in a very impressive way. We have tested this method using three data sets. The first

set proved that the calculated entropies predicted by the new method are almost

identical to those predicted by the method reported in our previous study. The tests for

the second data set suggest that this method is much faster than the previous one. The

third data set was used to manifest the difference between K1 and K2. K1 is quadric

and K2 is linear, and K2 will be faster than K1 when the number of atoms exceeds

500.

It will be a very efficient way to use our method to compute the conformational

entropy of biomolecules, especially for large structures, and we hope it will be helpful

in calculating binding free energies and some other applications, such as protein

folding and protein-protein docking, in computational biology and CADD in the

future.

Supporting Information

Table S1. Comparison of the running time between CPU- and GPU-based methods

generated by 5 independent runs.

Acknowledgments

This research was supported by the National Science Foundation of China under grant

21173156, the National Basic Research Program of China (973 program) under grant

2012CB932600), the Priority Academic Program Development of Jiangsu Higher

Education Institutions (PAPD), the Fundación Séneca (Agencia Regional de Cienciay

Tecnología, Región de Murcia) under grant 15290/PI/2010, by the Spanish MEC and

European Commission FEDER under grants CSD2006-00046 and TIN2009-14475-

C04 and a postdoctoral contract from the University of Murcia (30th December 2010

resolution).

Reference

1. Beveridge, D. L.; Dicapua, F. M., Free-Energy Via Molecular Simulation - Applications to

Chemical and Biomolecular Systems. Annual Review of Biophysics and Biophysical Chemistry

1989, 18, 431-492.

2. Aqvist, J.; Medina, C.; Samuelsson, J. E., New Method for Predicting Binding-Affinity in

Computer-Aided Drug Design. Protein Engineering 1994, 7, (3), 385-391.

3. Kollman, P. A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S. H.; Chong, L.; Lee, M.; Lee, T.;

Duan, Y.; Wang, W.; Donini, O.; Cieplak, P.; Srinivasan, J.; Case, D. A.; Cheatham, T. E.,

Calculating structures and free energies of complex molecules: Combining molecular mechanics

and continuum models. Accounts of Chemical Research 2000, 33, (12), 889-897.

4. Wang, J. M.; Hou, T. J.; Xu, X. J., Recent advances in free energy calculations with a

combination of molecular mechanics and continuum models. Current Computer-Aided Drug

Design 2006, 2, (3), 287-306.

5. Gohlke, H.; Kiel, C.; Case, D. A., Insights into protein-protein binding by binding free energy

calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes. J. Mol.

Biol. 2003, 330, (4), 891-913.

6. Hou, T.; Li, N.; Li, Y.; Wang, W., Characterization of Domain-peptide Interaction Interface:

Prediction of SH3 Domain-Mediated Protein-protein Interaction Network in Yeast by Generic

Structure-Based Models. J. Proteome Res. 2012, 11, (5), 2982.

7. Hou, T.; Wang, J.; Li, Y.; Wang, W., Assessing the Performance of the MM/PBSA and

MM/GBSA Methods. 1. The Accuracy of Binding Free Energy Calculations Based on

Molecular Dynamics Simulations. J. Chem. Inf. Model. 2011, 51, (1), 69-82.

8. Hou, T.; Yu, R., Molecular dynamics and free energy studies on the wild-type and double

mutant HIV-1 protease complexed with amprenavir and two amprenavir-related inhibitors:

mechanism for binding and drug resistance. J. Med. Chem. 2007, 50, (6), 1177-1188.

9. Hou, T. J.; Li, Y. Y.; Wang, W., Prediction of peptides binding to the PKA RII alpha subunit

using a hierarchical strategy. Bioinformatics 2011, 27, (13), 1814-1821.

10. Hou, T. J.; Wang, J.; Li, Y. Y.; Wang, W., Assessing the performance of the molecular

mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized Born surface

area methods. II. The accuracy of ranking poses generated from docking. J. Comput. Chem.

2011, 32, (5), 866-877.

11. Huo, S.; Wang, J.; Cieplak, P.; Kollman, P. A.; Kuntz, I. D., Molecular dynamics and free

energy analyses of cathepsin D-inhibitor interactions: insight into structure-based ligand design.

J. Med. Chem. 2002, 45, (7), 1412-1419.

12. Kuhn, B.; Gerber, P.; Schulz-Gasch, T.; Stahl, M., Validation and use of the MM-PBSA

approach for drug discovery. J. Med. Chem. 2005, 48, (12), 4040-4048.

13. Li, L.; Li, Y.; Zhang, L.; Hou, T., Theoretical Studies on the Susceptibility of Oseltamivir

against Variants of 2009 A/H1N1 Influenza Neuraminidase. J. Chem. Inf. Model. 2012, 52, (10),

2715-2729.

14. Liu, H.; Yao, X.; Wang, C.; Han, J., In silico identification of the potential drug resistance sites

over 2009 influenza A (H1N1) virus neuraminidase. Mol. Pharmaceut. 2010, 7, (3), 894-904.

15. Zhang, J.; Hou, T.; Wang, W.; Liu, J. S., Detecting and understanding combinatorial mutation

patterns responsible for HIV drug resistance. Proc. Natl. Acad. Sci. USA 2010, 107, (4), 1321-

1326.

16. Wang, J.; Morin, P.; Wang, W.; Kollman, P. A., Use of MM-PBSA in reproducing the binding

free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of

efavirenz by docking and MM-PBSA. Journal of the American Chemical Society 2001, 123,

(22), 5221-5230.

17. Wang, J.; Hou, T., Develop and Test a Solvent Accessible Surface Area-Based Model in

Conformational Entropy Calculations. Journal of chemical information and modeling 2012, 52,

(5), 1199-1212.

18. Shrake, A.; Rupley, J., Environment and exposure to solvent of protein atoms. Lysozyme and

insulin. Journal of molecular biology 1973, 79, (2), 351-371.

19. Owens, J. D.; Houston, M.; Luebke, D.; Green, S.; Stone, J. E.; Phillips, J. C., GPU computing.

Proceedings of the IEEE 2008, 96, (5), 879-899.

20. Miao, Y.; Merz, K. M., Jr., Acceleration of Electron Repulsion Integral Evaluation on Graphics

Processing Units via Use of Recurrence Relations. Journal of Chemical Theory and

Computation 2013, 9, (2), 965-976.

21. Ruymgaart, A. P.; Elber, R., Revisiting Molecular Dynamics on a CPU/GPU System: Water

Kernel and SHAKE Parallelization. Journal of Chemical Theory and Computation 2012, 8, (11),

4624-4636.

22. Tanner, D. E.; Phillips, J. C.; Schulten, K., GPU/CPU Algorithm for Generalized Born/Solvent-

Accessible Surface Area Implicit Solvent Calculations. Journal of Chemical Theory and

Computation 2012, 8, (7), 2521-2530.

23. Pratas, F.; Sousa, L.; Dieterich, J. M.; Mata, R. A., Computation of Induced Dipoles in

Molecular Mechanics Simulations Using Graphics Processors. Journal of Chemical Information

and Modeling 2012, 52, (5), 1159-1166.

24. Kim, J.; Martin, R. L.; Ruebel, O.; Haranczyk, M.; Smit, B., High-Throughput Characterization

of Porous Materials Using Graphics Processing Units. Journal of Chemical Theory and

Computation 2012, 8, (5), 1684-1693.

25. Liu, P.; Agrafiotis, D. K.; Rassokhin, D. N.; Yang, E., Accelerating Chemical Database

Searching Using Graphics Processing Units. Journal of Chemical Information and Modeling

2011, 51, (8), 1807-1816.

26. Ma, C.; Wang, L.; Xie, X.-Q., GPU Accelerated Chemical Similarity Calculation for Compound

Library Comparison. Journal of Chemical Information and Modeling 2011, 51, (7), 1521-1527.

27. Liu, L.; Liu, X.; Gong, J.; Jiang, H.; Li, H., Accelerating All-Atom Normal Mode Analysis with

Graphics Processing Unit. Journal of Chemical Theory and Computation 2011, 7, (6), 1595-

1603.

28. Liao, Q.; Wang, J.; Watson, I. A., Accelerating Two Algorithms for Large-Scale Compound

Selection on GPUs. Journal of Chemical Information and Modeling 2011, 51, (5), 1017-1024.

29. Korb, O.; Stutzle, T.; Exner, T. E., Accelerating Molecular Docking Calculations Using

Graphics Processing Units. Journal of Chemical Information and Modeling 2011, 51, (4), 865-

876.

30. Tunbridge, I.; Best, R. B.; Gain, J.; Kuttel, M. M., Simulation of Coarse-Grained Protein-Protein

Interactions with Graphics Processing Units. Journal of Chemical Theory and Computation

2010, 6, (11), 3588-3600.

31. Jha, P. K.; Sknepnek, R.; Guerrero-Garcia, G. I.; de la Cruz, M. O., A Graphics Processing Unit

Implementation of Coulomb Interaction in Molecular Dynamics. Journal of Chemical Theory

and Computation 2010, 6, (10), 3058-3065.

32. Haque, I. S.; Pande, V. S.; Walters, W. P., SIML: A Fast SIMD Algorithm for Calculating

LINGO Chemical Similarities on GPUs and CPUs. Journal of Chemical Information and

Modeling 2010, 50, (4), 560-564.

33. Buch, I.; Harvey, M. J.; Giorgino, T.; Anderson, D. P.; De Fabritiis, G., High-Throughput All-

Atom Molecular Dynamics Simulations Using Distributed Computing. Journal of Chemical

Information and Modeling 2010, 50, (3), 397-403.

34. Liao, Q.; Wang, J.; Webster, Y.; Watson, I. A., GPU Accelerated Support Vector Machines for

Mining High-Throughput Screening Data. Journal of Chemical Information and Modeling 2009,

49, (12), 2718-2725.

35. t , A. W.; Williamson, M. J.; Xu, D.; Poole, D.; Le Grand, S.; Walker, R. C., Routine

microsecond molecular dynamics simulations with amber on gpus. 1. generalized born. Journal

of Chemical Theory and Computation 2012, 8, (5), 1542-1555.

36. Humphrey, W.; Dalke, A.; Schulten, K., VMD: visual molecular dynamics. Journal of

molecular graphics 1996, 14, (1), 33-38.

37. Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel,

R. D.; Kale, L.; Schulten, K., Scalable molecular dynamics with NAMD. Journal of

computational chemistry 2005, 26, (16), 1781-1802.

38. Nvidia, C., Compute unified device architecture programming guide. 2007.

39. E. J. Cepas Quiñonero, H. P.-S., J.M. Cecilia, J.M. García, MURCIA: Fast parallel solvent

accessible surface area calculation on GPUs and application to drug discovery and molecular

visualization. NETTAB 2011 workshop focused on Clinical Bioinformatics 2011, 52-55.

40. Hoberock, J.; Bell, N., Thrust: A parallel template library. Online at http://thrust. googlecode.

com 2010.

41. Lebedev, V. I.; Laikov, D. In A quadrature formula for the sphere of the 131st algebraic order

of accuracy, Doklady. Mathematics, 1999; MAIK Nauka/Interperiodica: 1999; pp 477-481.

42. Saff, E. B.; Kuijlaars, A. B., Distributing many points on a sphere. The Mathematical

Intelligencer 1997, 19, (1), 5-11.

43. Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.; Weissig, H.; Shindyalov, I. N.;

Bourne, P. E., The protein data bank. Nucleic acids research 2000, 28, (1), 235-242.

http://thrust/

Legend of Figures

Figure1: Flow chart for entropy calculation using MURCIA. Neighbour calculation is

carried our either using distances (K1) or via hardware interpolation (K2)

Figure2: (A) The pseudocode of K1; (B) How the Blocks and Threads work in K1.

Figure3: Brief introduction of K2.

Figure4: Entropy comparison between CPU and GPU (K2) for small proteins

Figure5: Running time ratio between CPU and GPU (K2) for proteins in the 10
4
 size

range

Figure6: Running times comparison between K1 and K2 in the 10
4
 size, subfigure is

the part with atoms’ number ranging from 0 to 2500

Figure7: Running time (seconds) in SAS calculation for K1 and K2 kernels in the 1-

10
5
 protein size range

Figure8: Entropy comparison between K1 and K2

Table 1. Running time ratio between CPU and GPU (K2) for small proteins

AtomN
a
 Ratio

b
 AtomN Ratio

209 5.195531 462 9.296971

335 7.779898 489 12.29839

342 7.733893 494 12.26562

364 7.451665 512 12.71114

372 8.535273 568 14.61603

410 9.212902 575 12.04921
aAtomN represents the number of atoms; bRatio represents the time ratio

between CPU and GPU

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

