
Distrib. Comput.
DOI 10.1007/s00446-014-0215-6

Soft-error mitigation by means of decoupled transactional
memory threads

Daniel Sánchez · Juan M. Cebrián ·
José M. García · Juan L. Aragón

Received: 18 April 2012 / Accepted: 8 April 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract CMOS scaling exacerbates hardware errors mak-
ing reliability a big concern for recent and future microar-
chitecture designs. Mechanisms to provide fault tolerance
in architectures must accomplish several objectives such as
low performance degradation, power consumption and area
overhead. Several studies have already proposed fault toler-
ance for parallel codes. However, these proposals are usually
implemented over non-realistic environments including the
use of shared-buses among processors or modifying highly
optimized hardware designs such as caches. Our attempt to
face this multiple challenge is an architectural design called
LBRA (Log-Based Redundant Architecture). Based on a
Hardware Transactional Memory architecture, LBRA exe-
cutes redundant threads which communicate through a pair-
shared virtual memory log allocated in cache. Our initial
version of LBRA executes these redundant threads in SMT
cores. To avoid the performance penalty inherent to this archi-
tecture, we propose to decouple their execution in different
cores, solving the inter-core communication by means of a
log buffer empowered by a simple prefetch strategy. Sim-
ulation results using a variety of scientific and multimedia
applications show that the execution time overhead of our
best design is less than 7 % over a base case without fault
tolerance. Additionally, we show that LBRA outperforms

D. Sánchez (B) · J. M. Cebrián · J. M. García · J. L. Aragón
Computer Engineering Department, Facultad de Informática,
University of Murcia, 30100 Murcia, Spain
e-mail: dsanchez@ditec.um.es

J. M. Cebrián
e-mail: jcebrian@ditec.um.es

J. M. García
e-mail: jmgarcia@ditec.um.es

J. L. Aragón
e-mail: jlaragon@ditec.um.es

previous proposals that we have implemented and evaluated
in the same framework.

Keywords Reliability · Fault tolerance · Soft-errors ·
Hardware transactional memory

1 Introduction

Increasing device density offers designers the opportunity to
place more functionality per unit area. Billions of transis-
tors are available within a single chip but existing techniques
cannot further exploit exploit the ILP (Instruction Level Par-
allelism). The solution manufacturers have adopted is to use
this vast amount of transistors for the integration of large
caches and many cores into the same chip or CMP (Chip
Multi Processor) [22] to exploit the TLP (Thread Level Par-
allelism). These CMPs are usually implemented around a
shared-memory environment in which some levels of the
memory hierarchy are private but coherent (typically the L1
cache), while the rest of the levels are shared. First implemen-
tations connect the cores by means of shared-buses and/or
crossbars. However, as the number of cores grows, these net-
works become non-scalable due to area and power constraints
[15]. The most promising approach to provide both efficiency
and scalability are directory-based cache coherence proto-
cols [8,10] which operate in direct-network environments.
Therefore, it seems that future architectures which include
many cores in a single chip will be designed according to
these parameters [32,33].

Unfortunately, the scaling of device area has been accom-
panied by, at least, two negative consequences: a slowdown
of both voltage scaling and frequency increase, as a result
of the decreased scaling of leakage current (Dennard Scal-
ing) as compared to area scaling [5,12,31]; and a shift to

123



D. Sánchez et al.

probabilistic designs and less reliable silicon primitives, due
to static [6] and dynamic [7] variations.

These trends forecast that the performance and cost ben-
efits from area scaling will be hindered unless scalable tech-
niques are developed to address power and reliability chal-
lenges. In particular, it will no longer be possible to operate
all on-chip resources, even at the minimum voltage for safe
operation, due to power constraints (Dark Silicon [11]) with-
out an exponential sensitivity increase to transient faults.

Being reliability a major concern for hardware architects,
several mechanisms to detect and recover from faults have
been already implemented in microarchitectures. This is the
case of ECC (Error Correcting Codes), which is nowadays
applied in large CAM (Content Addressable Arrays) arrays
such as caches or RAM (Random Access Memory) memo-
ries. Unfortunately, ECC cannot be extensively used through
all hardware structures. On the contrary, architectural-level
mechanisms provide a more flexible framework in which
multiple hardware structures are covered in comparison to
cycle-level techniques which are focused on single units.

In this paper we present a new architectural-level pro-
posal called LBRA: A Log-Based Redundant Architecture
for reliable parallel computation. With LBRA, we explore
the use of a HTM (Hardware Transactional Memory) sys-
tem to build a fault tolerant architecture. The main idea is
to execute redundant copies of the same software thread in
two different hardware contexts which check for computa-
tion mismatches.

LBRA provides high flexibility, allowing the programmer
to manually declare which areas of the program may be pro-
tected. Program instructions in these areas are divided into
virtual execution groups that we call pseudo-transactions
(p-XACTs) or chunks [9]. The master thread executes p-
XACTs as regular instructions but, additionally, it keeps the
results of its progress in a pair-shared log. By means of this
log, the slave verifies that the results produced by the mas-
ter are correct. We provide a highly decoupled environment
since the master is allowed to execute multiple p-XACTs
without verification, which is carried out off the critical path
by the slave thread. This high decoupling allows the latencies
due to memory or inter-core communication to be hidden.

A preliminary version of this work was presented in [26].
The major contributions of this paper are:

– An architecture design which, on top of Hardware Trans-
actional Memory system and SMT (Simultaneous Multi
Threaded) cores, includes fault tolerance measures in a
parallel point-to-point network environment.

– In addition to [26], we study the implications of running
redundant threads in different cores. Since most of the
performance degradation is caused by the resource con-
tention inherent to SMT architectures, with this measure
we increase the efficiency of the proposed mechanism.

– A set of hardware mechanisms to reduce and/or hide the
inter-core communication latency. These mechanisms
include a log buffer combined with a simple prefetch
strategy and slight modifications of coherence actions.

– A detailed comparison among the proposed architecture
design and state-of-the art previous proposals within the
same framework. For this evaluation, we make use of
a great variety of parallel benchmarks executed in both
SMT and non-SMT cores.

The remainder of the paper is organized as follows: Sect. 2
summarizes relevant previous approaches and motivates this
work. Section 3 briefly introduces Hardware Transactional
Memory and explains how it can be adapted for fault tol-
erance purposes. In Sect. 4 we discuss the implementation
details of LBRA in 2-way SMT cores, whereas in Sect. 5 we
extend it to redundant regular cores as a way to reduce the
performance penalty inherent to the use of simultaneous mul-
tithreading. The evaluation setup and analysis are described
in Sect. 6. Finally, Sect. 7 summarizes the main conclusions
of this work.

2 Background and related work

As we move into the late CMOS technologies, system reli-
ability is compromised. Among different events which can
lead to unsafe computations we find: (i) process variability,
which causes heterogeneous or erratic behavior of identi-
cal hardware components in the same chip; (ii) increased
aging/wear-out due to extreme operating conditions, which
leads to permanent hardware faults; and (iii) an increased
sensitivity to soft/transient faults, which grows exponentially
and is the subject of our study.

Transient faults are radiation-induced faults which can
manifest themselves as transient errors. Radiation induced
events include alpha-particles from packaging materials and
neutrons from the atmosphere. It is well established that the
strike of particles such as alpha particles or neutrons over a
logical device can overwhelm the circuit inducing its mal-
function. For instance, an SRAM (Static Random Access
Memory) cell, which forms cache memories, could alter its
value from 0 to 1 or vice versa due to one of these events. In
the fault model we assume a system prone to transient faults
which can affect all pipeline structures, which our mecha-
nism would be able to detect and correct. These faults can
cause either single or double bit flips. However, array struc-
tures such as the register file or caches are assumed to be
fault-free because of the use of ECC codes.

While there are different approaches to provide both detec-
tion and correction of transient faults, one of the most studied
group of techniques are those based on redundant execution.

123



Decoupled transactional memory threads

Table 1 Main characteristics of several redundant architectures

SoR Synchronization Input replication Output comparison

SRT(R) [24,34] Pipeline, registers Staggered execution Strict (queue-based) Instruction by instruction

CRT(R) [13,21]

Reunion [28] Pipeline, registers, L1Cache Loose coupling Relaxed input replication Fingerprints

DCC [16] Pipeline, registers, L1Cache Thousands of instructions Consistency window Fingerprints, checkpoints

HDTLR [23] Pipeline, registers, L1Cache Thousands of instructions Sub-epochs Fingerprints, checkpoints

2.1 Fault tolerance by means of redundant execution

Redundant execution is a traditional methodology to detect
transient faults. Under this methodology a redundant core/
thread which is fed with the same inputs as the checked
core/thread should produce the same outputs. When the
redundant one produces a different result, a transient fault
is detected.

To classify different redundant approaches we can use four
main characteristics: sphere of replication, input replication,
output comparison and synchronization.

– Sphere of replication (SoR) [24]. The SoR determines
the components in the architecture whose functionality
is replicated, i.e. all faults that occur within the sphere
will be detected.

– Input replication. In order to assure that redundant
copies perform exactly the same work, they must be pro-
vided with the same view of the memory. If not, even if
redundant executions perform correct computations, they
may follow different paths due to data races.

– Output comparison. The output comparison defines
error detection latency. Generally, lower latency increases
the pressure over the hardware, e.g. comparing the regis-
ter updates, while higher latency increases the recovery
time after a fault.

– Synchronization interval. Which defines how often out-
put comparison takes place.

2.1.1 Previous work

One of the first proposals for full redundant execution is
Lockstepping [2], a mechanism in which two statically
bound execution cores receive the same inputs and exe-
cute the same instructions step by step. Later, the fam-
ily of techniques Simultaneous and Redundantly Threaded
processors (SRT) [24], SRTR [34], CRT [21] and CRTR
[13] was proposed. A more recent study [25] showed that
their ability to deal with faults in shared-memory environ-
ments seriously degrades performance even in a fault-free
scenario.

Another set of studies has been directly applied to a
multiprocessor domain. Reunion [28] describes a mecha-
nism in which redundant threads access memory indepen-
dently (relaxed input replication). Due to data races, relaxed
input replication leads to divergences in the memory val-
ues observed by the redundant threads (input incoherences).
These divergences are treated as faults, inducing a seri-
alized execution (very similar to lock-stepped execution)
between redundant cores, and degrading the overall perfor-
mance of the architecture. Dynamic Core Coupling (DCC)
[16] reduces the overhead of Reunion by providing a decou-
pled execution of instructions, having larger comparison
intervals (thousand of instructions) and reducing the network
traffic. At the end of each interval, the architectural state of
redundant pairs is interchanged and, if no error is detected, a
new checkpoint is taken.

In the same fashion, Highly-Decoupled Thread-Level
Redundancy (HDTLR) [23] is proposed, also using a shared
bus. HDTLR architecture is similar to DCC in the sense
that the recovery mechanism is based on checkpoints which
reflect the architecture changes between epochs. In addition,
memory updates, which are buffered in a PCB (Post Commit
Buffer), are not visible to the L2 until verification. However,
in HDTLR each redundant thread is executed in a differ-
ent hardware context (computing wavefront and verification
wavefront), maintaining coherency independently. This way,
the consistency window is avoided. Unfortunately, the asyn-
chronous progress of the two hardware contexts may lead
to memory races, which result in different execution out-
comes. These events are masked by the architecture as tran-
sient faults. In a worst-case scenario, not even a rollback
would guarantee forward progress. Thus, an order-tracking
mechanism, which enforces the same access pattern in redun-
dant threads, is proposed. This mechanism implies the recur-
rent creation of sub-epochs by expensive global synchroniza-
tions. Our LBRA approach provides decoupled execution as
DCC and HDTLR while using a more scalable network. Fur-
thermore, our mechanism does not require modifications on
optimized structures such as caches. Table 1 summarizes the
characteristics of all these previous proposals.

Another piece of work is based on checkpointing tech-
niques. Rebound [1] proposes a coordinated local check-

123



D. Sánchez et al.

pointing scheme for recovery purposes in order to solve
the scalability problems inherent to global checkpointing
approaches. Finally, another approach towards fault detec-
tion follows a scheme based on symptoms [17] which is
inspired by ReStore [35]. This study presents a characteriza-
tion of how errors affect either application or OS behaviour
with almost no hardware overhead. The detection mecha-
nism is based on the observation of abnormal events such
as fatal hardware traps, application exits or hangs in either
the program or the OS. If a fault is detected, the execu-
tion is rolled-back to a previous safe state. However, this
approach cannot provide a solution for those errors which
do not modify the behaviour of applications, such as those
affecting values but not control flow. Furthermore, it still
requires the use of rollback mechanisms such as those pre-
viously cited.

Similar to our approach, FaultTM [37] is based on hard-
ware transactional memory. In FaultTM, programs are exe-
cuted redundantly following a lazy update policy. This means
that only after the execution is proved to be correct, the mem-
ory updates are made visible. This has two main advantages:
(i) the redundant thread perceives memory as its checked
pair thread since no modifications were made, satisfying the
input replication; (ii) faults are not propagated to the rest of
the system, making recovery a very fast process. Nonetheless
this presents additional problems that LBRA aims to solve:
(i) redundant executions are tightly coupled and, frequently,
execution is stalled because one execution thread must wait
until the execution of its pair; (ii) after a successful verifica-
tion, buffered values must be made visible to the rest of the
system. This involves an increased pressure over the memory
hierarchy affecting system performance; (iii) the mechanism
is not suited for parallel, shared-memory applications, since
lazy update policies of big transactions lead to transaction
conflicts which are solved by aborts. Based on this pros and
cons, in LBRA we chose to implement an eager update pol-
icy which allows for decoupled execution and low-overhead
for parallel applications.

2.1.2 Some previous work in detail

In this section we present a detailed analysis of two of the
previous approaches we will use for comparison purposes:
REPAS [25] and DCC [16].

Fault tolerance by means of SMT cores
REPAS is an architecture based on the SRTR/CRTR

[13,34] family. In this approach, the input replication is
assured by means of the LVQ (Load Value Queue) and output
comparison is achieved by means of the SVQ (Store Value
Queue), in which the master thread keeps memory values
loaded and stored, respectively. This way, the delay between
master and slave thread is given by the buffering capabil-

ities of these queues (usually, in the order of hundred of
instructions), which allows to partially hide the latencies of
cache misses, among others. The major problem addressed
by REPAS is the potential violation of the consistency when
executing parallel benchmarks in SRTR/CRTR. These incon-
sistencies may arise when two different master threads try
to acquire the access to a shared area by means of locks.
Since master threads do not update memory until verifica-
tion, with no additional support, two threads may enter the
same critical section without noticing. To avoid this, REPAS
proposes to update memory before verification ruling out
this possibility. To avoid the propagation of potentially faulty
blocks, unverified data is marked in the cache and cannot be
shared. The major drawback of REPAS is precisely the com-
plexity it introduces in the pipeline, e.g. the LVQ and SVQ
queues.

Fault tolerance by means of redundant cores
DCC (Dynamic Core Coupling), on the other hand, imple-

ments Dual Modular Redundancy (DMR) by binding pairs of
cores in a CMP connected by a shared-bus. To provide fault
tolerance, cores in a pair re-execute the program instructions
to verify each other’s execution. At the end of a checkpoint
interval (in the order of 10,000 cycles), redundant cores inter-
change their architectural state, which are checked to detect
errors. If so, the architectural state of the whole machine
is restored to a previous checkpoint and the execution is
restarted from that point.

In DCC, both cores are allowed to access the memory sub-
system. Therefore, several measures are introduced to assure
both coherence and consistency. At the coherence level, only
one of the two cores is responsible for sharing unverified
data, something which involves several changes in the coher-
ence protocol. But the major obstacle is found at the consis-
tency level. Since both cores access memory, an intervening
store from another core could cause the value loaded by the
same dynamic load to be different. To overcome this issue,
DCC implements a consistency mechanism by means of an
age table. The age table keeps, for every load and store, the
number of committed loads and stores since the last check-
point. When an invalidation or upgrade request reaches a
core, it interchanges its age with its pair. If a mismatch is
found, it means that the request could cause an incoherence.
Therefore, the request is nacked.

The fundamental issue in DCC is that it is based on a
shared-bus as interconnection network. As we noted previ-
ously, the area required by a shared-bus or a crossbar as the
number of cores grows, increases to the point of becoming
impractical [15]. A direct-network introduces an indirection
with undesirable impacts over the checkpoint creation and,
foremost, over the age table mechanism. Specifically, in a
shared-bus environment, the mechanism implies a three-way
interchange, while in a direct-network the number of hops
increases to four, as we can see in Fig. 1.

123



Decoupled transactional memory threads

Fig. 1 DCC master-slave
consistency

(a) (b)

3 HTM support for reliable computation

3.1 Brief summary

Hardware Transactional Memory (HTM) is an alternative
to traditional lock-based synchronization mechanisms. The
main idea is to generalize LL/SC (Load Link/Store Con-
ditional) primitives to provide atomic accesses not to one
but to several independent memory locations. This allows
the programmer to produce parallel code more easily which,
hopefully, is also more efficient. To this end, instead of rely-
ing on fine-grain and difficult-to- program critical sections,
HTM introduces the concept of coarse-grain units of work
called transactions. Within a transaction, multiple load and
store instructions are executed atomically and in isolation
with instructions of other transactions. When two or more
concurrent transactions access the same data block and, at
least, one of the accesses is a write, a transactional conflict
occurs. This means that the atomicity of the transactions can-
not be assured. To preserve the atomicity, HTM systems must
implement mechanisms to detect transactional conflicts and
to solve them, which usually implies the abort of one or more
of the involved transactions.

In this paper we propose to build a redundant, fault-
tolerant system based on a HTM implementation called
LogTM-SE [38]. The first thread (master thread) executes
the program instructions divided into different transactions.
But, additionally, it also performs three actions: (i) tracking
producer/consumer dependencies with other threads in the
system by means of the conflict detection support provided
by LogTM-SE; (ii) maintaining a log of the memory actions
it has taken; and (iii) generating a signature (verification sig-
nature) which summarizes the results of the performed work.
The redundant thread re-executes the transactions, fetching
memory values from the log to satisfy the input replication.
Store instructions, though, do not update memory since they
were already exposed by the master thread. Finally, the redun-
dant thread checks for a positive match of the verification sig-
nature. In case of a negative match (meaning that the signa-
tures are not identical), a fault is detected. This event triggers
a fault recovery mechanism which involves: (i) a rollback to
a previous safe state of the affected core; and (ii) the rollback

of potentially affected consumers of the faulty computation,
which were tracked previously.

In the rest of the section we will make an overview of
how we adapt LogTM-SE to fulfill the required reliability
requirements such as the input replication and the output
comparison (Sect. 3.2. Finally, we will discuss how to track
inter-thread dependencies (Sect. 4.4.1).

3.2 Enforcing reliability requirements

3.2.1 Input replication

In RMT (Redundant Multi-Threading) approaches like
LBRA the input replication defines how redundant threads
observe the same data. Since master and slave thread exe-
cution is not lockstepped [2], the execution of redundant
memory instructions would probably lead to input incoher-
ences. To solve this issue, we extend the functionality of
the log already proposed in LogTM-SE. The log is simply
a memory space allocated in virtual memory which con-
tains the history related to memory operations in the format
<address><value>.

In LBRA we use this log to keep track of the data values
that the master thread accesses. This way, slave data load
instructions are served through the log where they obtain the
same values as its master-pair, thus avoiding input incoher-
ences. Notice that, as the log is written at instruction commit,
it will only keep instructions of the correct execution path and
in program order.

3.2.2 Output comparison

In our LBRA approach, we define the output comparison
granularity at pseudo-transaction (p-XACT) level.1 A p-
XACT defines the unit of work which is considered to be
either incorrect or correct, depending on whether faults have
been detected within its execution or not.

1 We could increase fault detection granularity to memory operations
as well, but this requires a bigger log. Refer to Sect. 4.1.1 for more
details.

123



D. Sánchez et al.

The semantic and execution of a p-XACT differ from
a regular transaction in LogTM-SE. Firstly, p-XACTs are
dynamically created at execution time, whereas traditional
transactions are manually coded in the application. Secondly,
as opposed to LogTM-SE transactions, p-XACTs do not
ensure isolation and/or atomicity of the executed instruc-
tions. This means that, in our approach dirty memory blocks
are shared as in a non-transactional environment, relying on
other synchronization mechanisms (such as locks or barriers)
to ensure the correct behavior.

During the execution of the p-XACT, the master thread
computes what we call the Verification Signature. This sig-
nature summarizes the computation performed during the
execution of the p-XACT. When the p-XACT finishes, the
Verification Signature is allocated in a special hardware struc-
ture. We call this step the commit of the p-XACT. In the same
way, the slave thread computes its own signature. When the
p-XACT ends, both signatures are checked, a step which we
call consolidation. If both signatures match, the p-XACT
execution is considered fault free. If not, a fault is detected
triggering the recovery mechanism.

The Verification Signature is a CRC-32 hash code similar
to the one proposed in Fingerprinting [29] and employed in
DCC [16] and Reunion [28]. The signature is obtained by
hashing the instruction results as they complete. Based on
Hamming codes, these signatures have an aliasing ratio, and
therefore a probability of undetected or masked faults, of
2−32 (2.3 ∗ 10−10), which has been traditionally considered
above commercial requirements [16,23,28].

3.2.3 Sphere of replication (SoR)

In LBRA, the SoR includes the processor pipeline as well
as first level data caches (L1). This means that all faults
affecting other parts of the chip must be protected by other
mechanisms. Additionally, we enforce cache data integrity by
assuming SECDED (Single Error Correction, Double Error
Detection).

3.2.4 Synchronization interval

Redundant threads in LBRA are highly decoupled. We sup-
port this feature by allowing redundant threads to run up to
thousands of instructions apart in time. To this end, we allow
the execution of several p-XACTs in-flight without the need
of verification

3.2.5 I/O events

Regarding I/O events, due to its unrecoverable nature (e.g.
print screen), a mechanism which detects the faults before
propagation must be used. In our approach, we rely on a
mechanism like lockstepped execution [2]. Before an I/O

event or system call is about to be executed, we need to make
sure that the current architectural state is correct. To this end,
master and slave threads have to be synchronized and all the
inflight transactions have to be consolidated. After that, the
execution of redundant threads is changed to lockstep mode.
In lockstep or cycle-by-cycle mode, both master and slave
threads execute the same program instructions at the same
cycle being their outputs compared by means of a checker
circuit. In case of mismatch, the affected instructions are
reissued. In case of a successful check, the instructions results
are committed.

There are different ways to implement lockstep execution
mode, but we refer the reader to the description of two com-
mercial products such as the Compaq Nonstop Series [3] and
the IBM S/390 G5 microprocessors [30] for further details.
Finally, after the I/O event or system call is solved the exe-
cution mode is changed to the normal one described along
this paper.

4 LBRA implementation details

One of the major drawbacks in RMT approaches is the
penalty resulting from the time spent on the synchroniza-
tion between redundant threads. This penalty includes both
the effect of stalling execution and comparing architec-
tural states. As a measure to pay off this penalty, previous
approaches make use of long checkpoint intervals. However,
this increases detection latency. Our approach eliminates this
penalty independently of whether synchronizations are com-
mon or not. To achieve this, we use a decoupled approach
and the ability to execute multiple p-XACTs before verifi-
cation. Each p-XACT has a small hardware context which
includes a Master and a Slave Log pointers, a Verification
Signature, and the Producer and Consumer registers. These

Fig. 2 LBRA hardware overview. Shadowed boxes represent the added
structures

123



Decoupled transactional memory threads

Table 2 Alternatives in log
content for loads and stores Address Value Old-value Provides

Loads Yes Yes – Input replication; Fault detection in address calculation

No Yes – Input replication

Stores Yes Yes Yes Fault detection in address calculation and value, fault recovery

Yes No Yes Fault detection in address calculation, fault recovery

hardware additions are depicted in Fig. 2 and explained in
following sections. All these memory structures are assumed
to be especially protected by means of cycle-level techniques
such as 10-T transistors [14].

4.1 Accessing the log

To provide access to the log, both master and slave threads
should share the same memory space. To this end, unlike in
true SMT threads, master and slave threads appear to the OS
as a single one.

The master thread writes in the log through the Master Log
Pointer. For every memory operation, the master generates
a new write instruction whose destination address is indi-
cated by this pointer. This new write enables the redundant
thread to satisfy the input replication and output comparison
as explained in Sect. 3.2. Memory operations are logged at
commit stage, therefore the content of the log is structured
in program order.

The slave accesses to the log require a special treatment.
In order to ensure the input replication, each load access
must be redirected to the log. For that purpose, at memory
access time, destination addresses of loads are switched with
the Log Slave Pointer which indicates the location of the
memory value previously read by the master thread. Then,
the memory access is performed as usual and the log pointer
is set to the next entry in the log.

In the case of stores, the mechanism differs slightly. Since
slaves do not update memory, their stores become reads to
the log. For this reason, the destination address is switched
with the Log Slave Pointer one and the data value is retrieved
from the log to perform the corresponding checks.

These pointers are assumed to be protected by means of
circuit-level mechanisms such as the use of 10-T transistors.

4.1.1 Log content and fault detection granularity

The size of the log is a major concern in our approach since
if it grows too much, it decreases the effective cache space
damaging the performance of the application. In this section
we discuss how to decrease the size of the log by reducing
the amount of data to store, something which also affects the
detection granularity. The different alternatives can be seen
in Table 2.

Faults in load addresses
To satisfy input replication, it is mandatory to include in

the log every data value read by the master thread. However,
the address of the load is optional. If we include it, we could
detect faults affecting address calculation. But this presents
two major drawbacks. First the log size increases. Second,
we increase the hardware pressure by adding an additional
master-slave check on every load. Since our first goal is to
reduce performance penalty, we choose to store the minimum
information possible, i.e. only data values, and to rely in the
consolidation process to determine the correct execution of
all the p-XACT.

Faults in store addresses
Likewise, we try to reduce the information we keep from

stores to decrease the log size as much as possible. In order
to recover from a fault, we rely on the LogTM-SE handler
which restores modified memory values. For this purpose, we
need to keep the address and the old value for every memory
update in the log. Additionally, we could keep the current
value to be stored. If so, a fault in the calculation of this
value could be detected when the slave thread accesses the
log. However, for the same reasons as for loads, we avoid
keeping the new value, waiting for faults to be detected at
consolidation phase.

4.2 Circular log

LBRA provides a high decoupled execution of redundant
threads. This is achieved because the forward progress of the
master is rarely interrupted since the latencies inherent to the
verification process are virtually hidden. For this purpose,
the master thread is allowed to execute and commit several
p-XACTs without verification. In parallel with this, the slave
thread checks the correct execution of already committed
p-XACTs and, as a final step, performs consolidations.

In order to allow multiple p-XACTs to be committed with-
out verification, each one needs its own architectural support.
This support includes its own R/W and verification signa-
tures together with log pointers among others, as depicted in
Fig. 2. The amount of extra hardware is determined by the
maximum number of in-flight p-XACTs allowed.

However, the major implication derived from this sup-
port does affect the management of the log. LogTM-SE
only allows one transaction to be executed at a time. After

123



D. Sánchez et al.

commit, signatures are cleared and log pointers are reset.
Thus, the next XACT will start writing the log from the begin-
ning of the reserved memory space, as we can see in Fig. 3.
However, in LBRA the log must be preserved for the slave
thread. Therefore, instead of resetting log pointers, after the
commit of a p-XACT, the following one starts writing from
the last entry used by the previous p-XACT, as we can see
on the right in Fig. 3. When the pointer reaches the limit of
the memory reserved for the log, it is set to the beginning
of the latter. In case the master thread runs out of p-XACTs
and/or the log space due to the slow execution of the redun-
dant thread, its execution must be stalled. We will see the
performance impact of these stalls in the evaluation section.

In case the slave thread crashes due to a soft error, the cor-
responding p-XACT would never be released and the master
thread could be indefinitely stalled. To avoid such a problem
we make use of a watchdog timer which triggers the recovery
mechanism in case of a lack of forward progress.

4.3 In-order consolidation

In our approach, memory blocks are updated in place (L1
cache) and are allowed to be shared even before consolida-
tion takes place. This eager approach allows fast commits
in the common case (a fault free environment). However,
this mechanism affects the consolidation order of p-XACTs
since, if additional mechanisms are not implemented, faults
could be spread all around the system.

It is clear that if a p-XACT pi has consumed data pro-
duced from another p-XACT p j , the consolidation of pi can-
not take place before the consolidation of p j . Otherwise, a
faulty block produced in p j would be silently consolidated
in pi . To keep track of these dependencies we introduce the
Consumer and Consolidated-Ids registers, as explained in
Sect. 4.4.1, which gather the information provided by the
coherence protocol. To achieve this in our approach, mem-
ory coherence messages are extended to include the p-XACT
identifier providing the data, which are used by the requester
to fill the Consumer register, and the last consolidated p-
XACT identifier.

The in-order consolidation process works as follows. After
completing the verification of state, the slave thread checks
the Consumer vector for the current p-XACT. If it is empty,
it means that this p-XACT has not consumed data from any
other p-XACT, so the consolidation process may take place
without any additional checks. If the Consumer register is
not empty, then, for every dependence, the slave checks if the
producer p-XACT has already been consolidated by checking
the Consolidated register. If all the dependencies satisfy this
condition, then the p-XACT is finally consolidated. If not,
we initiate a look-up mechanism. The slave thread requests
its producers to supply the last consolidated id until all the
dependencies are satisfied.

Fig. 3 LogTM-SE and LBRA log management

4.3.1 Cycle avoidance

There exists a danger of deadlock in the consolidation process
if we allow cycles to be formed. For example, let us consider
the case in which pi is the producer of p j which, at the same
time, is the producer of pk and, finally, pi consumes data
from pk . In this case, none of the three p-XACT could be
consolidated since a cycle has been created. Although this
case is rare, we need to present a mechanism to avoid it.

Our goal is to create a DAG (Directed Acyclic Graph).
DAGs assure that a topological order exists although this
order, in general, is not unique. Therefore, we implement a
simple policy: we disallow situations in which a p-XACT
is both producer and consumer of other p-XACTs at the
same time. When a master thread which is already a producer
receives data produced by a p-XACT, the active p-XACT is
forced to commit and a new one is started before consuming
these data. Likewise, if a consumer p-XACT is requested to
provide data (becoming a producer), it is forced to commit
and the dependence is created in a new p-XACT. This guar-
antees that no cycles can be created avoiding consolidation
deadlocks.

4.4 Fault recovery in LBRA

Upon a fault detection the recovery mechanism is triggered.
In our approach, this mechanism is taken by a combination
of both software and hardware processes for local and global
recovery which act on the youngest p-XACT of the core.
The correctness of the proposed mechanism is proved since
dependencies form a DAG, so a topological order can be
established.

4.4.1 Tracking inter-thread dependencies

As memory values are allowed to be shared despite of mod-
ifications, potential faults could be spread across the system.
To keep track of shared blocks among different p-XACTs we

123



Decoupled transactional memory threads

use the conflict detection mechanism provided by LogTM-
SE.

LogTM-SE provides eager conflict detection by means of
the coherence protocol and decoupling the mechanism from
caches by using R/W signatures. External requests arriving at
a core are checked through these signatures and, on a possible
conflict2, requests are NACKed. What we propose is to use
these signatures to maintain a pair of per-transaction registers
called Producer Register and Consumer Register, see Fig. 2.
The Producer and Consumer registers keep the transaction
identifiers involved in the data sharing of all the cores in the
system.

The proposed mechanism works as follows. A core receiv-
ing a forward request checks its write signatures from all
active p-XACTs (those which have been already committed
by the master or are still in execution). For a positive match
in an active p-XACT, the core updates the Producer Register
storing the transaction id for the involved core. In the same
way, the requester of the block, when obtaining a response,
updates its Consumer Register indicating the core and trans-
action id produced by the previously-obtained block. All the
required information is obtained from memory request mes-
sages.

The functionality of these registers is twofold. First, when
a fault is detected, the Producer Register is used in the recov-
ery process to abort all the p-XACTs involved, since their
states are potentially corrupted, as we will see later. Sec-
ondly, the Consumer Register is used to provide an order in
the consolidation mechanism, needed to avoid SDCs (Silent
Data Corruptions), as we saw in Sect. 4.3.

4.4.2 Local recovery

The local recovery is the rollback to a safe state previous to the
execution of a faulty p-XACT in a processor. For this process
we rely on the software approach proposed in LogTM-SE to
abort transactions. This software writes back the old values to
their appropriate addresses from the log. After that, the trans-
actional hardware of the current p-XACT is reset. Addition-
ally, if this mechanism were triggered by an external request,
it would acknowledge the requester.

4.4.3 Global recovery

Given the fact that blocks are shared before consolidation,
potential faults could be spread among cores. In case that
a p-XACT is detected as faulty, the recovery mechanism is
also responsible for notifying its consumers (including the
lower p-XACTs of the same node). Thus, upon fault detec-
tion, the mechanism carries out different actions, depending

2 A conflict occurs when an address appears in the write-set of two
transactions or the write-set of one and the read-set of another [38].

on whether the affected p-XACT is either a consumer or a
producer:

– Consumer. If the current p-XACT is a consumer, the pro-
duced values were not previously shared, therefore poten-
tial faults were not spread outside the core. In this case,
a local recovery of the current p-XACT is performed. If
the recovery process is initiated by an external request, an
ACK is sent back to the source of the request. Likewise,
the mechanism is repeated for the upper p-XACT.

– Producer. In this case, the process sends a rollback
request to all the consumers of the current p-XACT (indi-
cated by its Producer Register). When all the ACKs are
collected, a local recovery of the current p-XACT is
initiated and this mechanism is repeated for the upper
p-XACT.

The recovery process finishes when all the p-XACTs in
a core have been recovered. As as a final step, the register
checkpoint is written back to both master and slave, and the
execution is resumed. Hence, on the one hand, the described
method assures that, for a faulty core, a younger p-XACT is
“undone” before an older one. On the other hand, consumers
are restored before producers, in case of dependencies among
different cores. We can see an example of a fault recovery in
Fig. 4.

5 Performance enhancements via spatial thread
decoupling

So far we have focused our discussion on the execution of
redundant pair threads in 2-way SMT cores. The benefits of
having both threads in the same core include a better use of
the resources, the hiding of latencies (e.g., cache misses) and
the avoidance of additional hardware. However, the major
problem this design entails is the performance degradation
due to resource contention associated with SMT architec-
tures. To avoid this penalty and to provide a low-overhead
solution, we propose to execute redundant threads in different
cores rather than in different SMT contexts.

5.1 Decoupling thread execution into different cores

The support for the execution of redundant threads in differ-
ent cores is pretty straightforward given the software nature
of threads. This support includes the creation of the redun-
dant thread by the OS and the initialization of all the registers
and related hardware structures including the log pointers.

However, the major drawback we must face in this
new scenario is inter-core communication. Proposals like
Reunion [28] rely on the use of dedicated fast lines to com-
municate redundant cores since the latency of the messages

123



D. Sánchez et al.

C0 C1 C2 C3

p0

p1

p2

p3

p0p0p0

p1 p1 p1

p2 p2 p2

p3 p3 p3

(a)

C0 C1 C2 C3

p0

p1

p2

p3

p0p0p0

p1 p1 p1

p2 p2 p2

p3 p3 p3

(b)

C0 C1 C2 C3

p0

p1

p2

p3

p0p0p0

p1 p1 p1

p2 p2 p2

p3 p3 p3

(c)

C0 C1 C2 C3

p0

p1

p2

p3

p0p0p0

p1 p1 p1

p2 p2 p2

p3 p3 p3

(d)

C0 C1 C2 C3

p0

p1

p2

p3

p0p0p0

p1 p1 p1

p2 p2 p2

p3 p3 p3

(e)

C0 C1 C2 C3

p0

p1

p2

p3

p0p0p0

p1 p1 p1

p2 p2 p2

p3 p3 p3

(f)

Fig. 4 Fault recovery mechanism. In this example, four cores C0, C1,
C2 and C3 have executed four p-XACTs p0, p1, p2 and p3. In the fig-
ures, the data sharing is represented by a solid line and an arrow, while
the order of precedence is indicated by a dotted line. In (a), a fault is
detected in p0 from C2, which initiates the recovery mechanism. In (b)
the recovery mechanism proceeds with p3 from C2, the youngest p-
XACT of the core. As p3 has no consumers, it is locally recovered. C2
repeats the same process with p2 and p1, which are also locally recov-
ered. As p0 in C2 is producer, it cannot be recovered yet. In (c), C2 sends
invalidations to its consumers C1 and C3 and waits for the correspond-
ing ACKs. In (d), C1 performs the recovery for p3. As p3 is producer of
C2, it sends a rollback request which is acknowledged by C2 since p3

has already been recovered. Then, p3 and p2 from C1 are rolled-back.
Given the fact that p2 recovery was requested by C2, C1 informs it that
the recovery for the affected p-XACT has been performed. In the same
way, C3 recovers from p3, p2, p1 and p0. As p0 is the oldest p-XACT,
the registered checkpoint is also recovered and finally, C3 acks C2.
In (e), C2 has received all the ACKs, thus performing the rollback of
p0 and restoring the backup of the register file. Meanwhile, C1 sends
an abort request to C0 since p0 is its producer. C0 recovers from p3,
p2, p1, p0, restores the register file checkpoint and acknowledges C1.
Finally, in (f), C1 receives the acknowledgement from C0 and performs
the rollback from p0 and recovers the register file backup

is crucial for its performance. Nonetheless, this measure is
not desirable given the fact that it reduces the flexibility and
adds a considerable hardware overhead.

Instead of that, our approach uses the interconnection net-
work to communicate redundant cores. The major implica-
tion of this approach, thus, is the increase of the latency

123



Decoupled transactional memory threads

when accessing the log. This additional delay results from
the travel across the chip of log blocks from master to slave
cache. Eventually, if the latency is too high, the performance
of the slave thread may be affected considerably. Nonethe-
less, this decreased slave thread performance slightly impacts
on the master thread forward progress because of the tempo-
ral decoupling inherent to LBRA, which allows the master
thread to commit several p-XACTs without the need of slave
consolidations. If this buffering results insufficient, we can
still adopt measures like allowing a higher number of in-
flight p-XACTs, something which requires more hardware,
or increasing the p-XACT size, which impacts directly on the
total log size and reduces the effective capacity of the cache.

6 Evaluation

6.1 Simulation environment

To evaluate the proposed LBRA architecture, we have sim-
ulated a tiled-CMP by means of Virtutech Simics [19] and
GEMS [20]. Simics is a functional simulator executing a
Solaris 10 Unix distribution simulating the UltraSPARC-III
ISA. GEMS is a timing simulator which, coupled to Simics,
supplies a hardware implementation of a transactional mem-
ory model called LogTM-SE [38]. We have performed sev-
eral modifications to the simulator to provide the redundant
execution of software threads, as well as other modifications
related to the way in which the log is accessed. Furthermore,
we have implemented all the hardware additions as described
in Sect. 4, together with all the mechanisms needed for the
detection of transient faults.

Table 3 shows the main parameters of the evaluated archi-
tecture. Each core of our 16-core CMP is a dual-threaded
SMT with private L1 cache and a shared portion of the
L2 cache. We conduct our experiments by executing sev-
eral applications from SPLASH-2 [36] (barnes, fft, radix,
raytrace, waternsq and watersp), ALPBench [18] (facerec,
mpgdec and mpgenc) and PARSECv2.1 [4] (blackscholes,
canneal and swaptions) benchmark suites. The experimental
results reported here correspond to the parallel phase of each
program. Each experiment has been run with several random
seeds as to take into account the variability of the multi-
threaded execution. Although LBRA allows the program-
mer to explicitly activate the redundancy in specific program
parts, in this work we assume full protection. Thus, every
program instruction is redundantly executed.

6.2 Area overhead

LBRA support increases the hardware overhead with respect
to a common LogTM-SE implementation, as we have seen
in Sect. 4. Nonetheless, this hardware addition is moderated.

Table 3 Simulation parameters

16-way Tiled-CMP
Processor speed 2 GHz

Memory and cache

Mem. size 4 GB

Mem. latency 300 cycles

Cache line size 64 bytes

L1 cache 32KB, 1 cycle/hit

L2 cache 512KB/core, 15 cycles/hit

Network

Topology 2D-Mesh

Protocol MESI directory

Link latency 4 cycles

Flit size 4 bytes

Link bandwidth 1 fit/cycle

LogTM-SE

R/W signatures Variable size (see Sect. 6.4)

Verification latency 10 cycles

Log contents Loads: data (4 bytes)

Stores: data + address (8 bytes)

As depicted in Table 4 the largest structures are the register
file checkpoint, which is used to rollback to a safe state in
case of a fault, and the Verification Signature, which is used
to compare the state of redundant threads. The impact of the
rest of structures is negligible. It is also worth noting that for
every in-flight p-XACT, new hardware structures are needed.

6.3 p-XACT size analysis

The size of a p-XACT is a key parameter in the architec-
ture. A bigger size helps to increase the decoupling between
master and slave threads. Unfortunately, this also increases
the size of the log, incurring in a greater occupancy of the
cache. Figure 5a shows a sensitivity analysis of the p-XACT
base size in terms of memory instructions. The bars are nor-
malized with respect to the case in which p-XACT length is
25 memory instructions. As we can see, decreasing p-XACT
size from 1,000 instructions to 100 instructions brings perfor-
mance gains. However, further decreasing the p-XACT size
below 50 instructions it is not worthwhile. On average, 50-
instruction size performs 3, 2 and 3 % better than 25 instruc-
tion size for SPLASH-2, PARSEC and ALP studied bench-
marks, respectively. For smaller sizes (under 25 instructions),
performance decreases because it is not possible to pay off
the cost of the p-XACT creation.

Another interesting parameter is the maximum number
of p-XACTs which the master can commit without consol-
idation. At one end, a higher number of in-flight p-XACTs
facilitates decoupling, but it also adds more hardware as seen

123



D. Sánchez et al.

Table 4 Storage overhead in LBRA

Structure Checkpoint registers Consolidated IDs Log pointers Verification signature Producer register Consumer register

Size (bytes) 4 8 10 128 8 8

(a)

(b)

Fig. 5 Sensitivity analysis for p-XACT size and number of in-flight
p-XACTs

in Fig. 2. In addition, the size of the log grows, increasing
thus the cache miss ratio of the architecture. At the other
end, if the number of in-flight p-XACTs is low, in situations
in which the slave thread is unable to keep up with the master
(e.g. because of dependencies in consolidations), this turns
in a bottleneck since the master must be stalled. This behav-
iour can be observed in Fig. 5b. For 4 in-flight p-XACTs, the
stalls of the master execution are responsible for a perfor-
mance degradation of 16 % in SPLASH-2 and 2 % for ALP
(almost no degradation for PARSEC benchmarks) in rela-
tion to 5 in-flight p-XACTs, which is the best configuration
for the studied benchmarks. For a higher number of in-flight
p-XACTs, the overhead specially increases in benchmarks
such as blackscholes and canneal, in which the cache miss
ratio raises significantly.

6.4 Signature size analysis

LBRA makes use of R/W signatures to keep track of the inter-
actions among p-XACTs. To compute these signatures we
implement the double-bit-select (DBS) algorithm as previ-
ously proposed in LogTM-SE [38]. A smaller signature size
reduces the hardware overhead whereas, in general, the num-
ber of false positives increases, something which may lead to
performance drawbacks. Specifically, false positives lead to
an increase of premature commits due to producer/consumer
constraints as explained in Sect. 4.3.1. Therefore the number
of used p-XACTs increases and may lead to stalls due to lack
of resources.

In Fig. 6 we can see the performance of different signa-
tures sizes (from 64 bits to 2,048 bits) compared to the use
of perfect signatures. As depicted, small signature sizes per-
form comparably to perfect signatures for most of the bench-
marks. However, in benchmarks such as watersp and facerec
the use of small signatures impacts dramatically on perfor-
mance due to the large number of false positives. As we can
see, 64 bit signatures, which lead to an average of 50 % of
false positives, incur in a 11 % of performance degradation.
On the other hand, 2,048 bit signatures obtain virtually no
performance degradation. While the use of perfect signatures
is not feasible in real hardware, using 1,024–2,048 bit sig-
natures provides a good tradeoff between area overhead and
performance.

6.5 Overhead of the fault-free case

In this section we compare our proposed architecture to a base
case composed by a 16-core CMP running the 16-threaded

Fig. 6 Impact of signature size on LBRA performance

123



Decoupled transactional memory threads

Fig. 7 LBRA performance in a fault-free scenario

Fig. 8 LBRA L1 miss rate increase

applications mentioned in Sect. 6.1. We quantify the per-
formance in a fault-free scenario which can be considered
the common case. Although LBRA allows the programmer
to select specific program areas to protect while leaving the
rest unprotected, for the evaluation, we provide redundant
execution for all of the program instructions.

Three different factors are responsible for the performance
overhead of LBRA. First and foremost, the cost of redun-
dancy itself (note that the use of dual SMT cores aggravates
this overhead as a result of the higher resource contention
of master-slave pair threads). Second, the capacity of the
L1 cache, which is reduced by the log used to bypass data
between master and slave thread and to provide a backup.
This way, smaller p-XACTs normally achieve better perfor-
mance. And finally, the stalls in the consolidation phase due
to dependencies among two or more p-XACTs. Fortunately,
these consolidation stalls are uncommon (virtually non exis-
tent). Furthermore, the master thread is rarely stalled as a
result of the proposed mechanism which allows to execute
several p-XACTs without consolidation.

Figure 7 depicts the behaviour of the coupled LBRA
approach labeled as LBRA_C. As we can see, the perfor-
mance degradation in our first approach ranges between 38 %
(facerec) and 16 % (radix) with an average of 24 %. Although
the experimented degradation is noticeable across all the
studied benchmarks, it is worth noting the impact over ALP
benchmarks because of the inherent SMT degradation. These
results are consistent with related studies such as Sasanka
et al. [27], where CMP architectures obtain a better perfor-
mance when compared to SMT architectures for multimedia
workloads.

To overcome this issue we propose to enhance LBRA
by using decoupled redundant threads in different non-SMT
cores, as explained in Sect. 5. Thus, we avoid degradation
due to resource sharing but we increase the hardware require-
ments. Specifically, the number of cores increases to 32 dis-
tributed in a 4×8 2D-mesh in which master and slave cores
are placed at a 1 link distance. LBRA_D in Fig. 7 shows the
overhead of this approach which ranges from 32 (raytrace) to
2 % (blackscholes) with an average of 11 %, clearly outper-
forming LBRA_C (24 % on average). But, besides the hard-
ware overhead, LBRA_D results in a noticeable increase of
the L1 cache miss ratio as we can see in Fig. 8. However, the
size of the log remains constant with an average of 1 KB (up
to 2.4 KB) for all the studied benchmarks. Thus, it is clear
that the miss ratio increase is due to the conflicts between
master and slave cores when accessing the log.

6.6 Leveraging coherence actions

In a coupled environment the log is allocated in the L1 cache
and, virtually, all its accesses result in hits for both master
and slave threads due to temporal locality. In a decoupled
environment, though, the log blocks are written by the mas-
ter in its private cache and requested by the slave thread. This
implies a cache-to-cache request and a transfer of the block
permissions from M to S.3 This extra latency only affects
slave performance as we noted before. But the major prob-
lem results when the master thread eventually reuses a por-
tion of the log. Since the last state of the log block is S, the
master thread must re-acquire the write permissions, some-
thing which implies an invalidation message to the sharers
(the slave thread in this case) and a subsequent acknowledge-
ment. This results in an increase of log latency in the master
which may affect the forward progress of the application.

In order to avoid this issue and given the singularity of
this producer-consumer pattern, we have added a small hard-
ware structure on the slave side together with the use of non-
coherent requests to access the log. We call this structure
the log buffer, a FIFO queue which stores log blocks. Slave
accesses are performed through it. When the requested data

3 Provided that the cache coherence protocol is MESI.

123



D. Sánchez et al.

is not present in the log buffer, the slave thread performs
a cache-to-cache request which does not alter the coher-
ence state of the memory subsystem. The capacity of the
log buffer can be as small as one entry. Nonetheless, our
experimental analysis shows that with a capacity of three
blocks, we obtain the optimum performance by using a sim-
ple prefetch mechanism. The prefetch strategy we follow
consists of requesting the next logical log block whenever
there is, at least, one free entry in the buffer. This approach is
labeled in Fig. 7 as LBRA_D+LOG_BUFFER. In this case,
the time overhead is reduced to the range between 17 (ray-
trace) and 1 % (radix) with an average of 6.5 % for all the
studied benchmarks. The performance improvement in com-
parison to LBRA_D is easily explained due to the reduction
in the cache misses, as we can see in Fig. 8. In conclusion,
the benefit of LBRA_D+LOG_BUFFER is twofold. First,
we avoid performance degradation thanks to the redundant
threads in the same SMT core. And second, we decrease the
impact over the miss ratio by leveraging the coherence for
log blocks.

6.7 Comparison against previous work

Now, let us evaluate the performance impact of previ-
ous approaches in a common framework, i.e. a) a direct-
network environment and, b) using 2-way SMT core redun-
dancy or simply core redundancy. LBRA_C, LBRA_D and
LBRA_D+LOG_BUFFER are the presented mechanisms in
this paper. Finally, REPAS [25] executes redundant threads
in SMT cores whereas DCC [16] use redundant cores which
communicate through the network to detect faults.

While LBRA_C uses the cache to communicate log values
between redundant threads, REPAS uses specialized hard-
ware, something which imposes a considerable complexity
overhead. Besides, as we can see in Fig. 9, LBRA_C reduces
the execution time overhead of REPAS for the majority of
studied benchmarks with a 8 % on average with respect to
the base case. For applications that lay more pressure over
the LVQ and SVQ queues such as watersp and swaptions,
REPAS incurs in noticeable overheads, since the leading
thread must be stalled until resources are available. LBRA_C
does not suffer from this problem since all the data commu-
nication is performed through the cache.

In the same Fig. 9, we can see the execution time over-
head of DCC and LBRA_D implementing the log buffer.
In both cases, redundant threads are executed in different
cores, eliminating thus the degradation inherent to the SMT
execution. The counterpart, however, is that the number of
cores is increased 2× in both approaches. The consistency
mechanism is the major degradation source in DCC, as we
explained in Sect. 2.1.2, increasing time overhead in 31 % on
average with respect to the base case.

Fig. 9 Performance comparison of LBRA versus REPAS and DCC

Fig. 10 Execution time overhead for several fault rates

Finally, in Fig. 10 we can see the execution time overhead
for LBRA_D (with log buffer), REPAS and DCC in a faulty
environment. Rather than injecting faults all across differ-
ent areas of the processor (which would require extensive
simulation), we simply mark faulty transactions based on a
random probability. The evaluated fault rates are expressed
in number of faults per million of execution cycles. Since
realistic rates barely affect the performance of mechanisms,
in this experiment we have used rates which are higher than
those expected in a real scenario so to characterize the behav-
ior of the different approaches. The time to recover from a
fault depends on the speed to detect the fault and to undo
all potentially affected work. REPAS is the fastest mech-
anism to detect and correct an error because of the small
delay between redundant threads (less than 200 cycles). On
the contrary, DCC spends roughly 10,000 cycles to recover
because of its long checkpoint intervals. The overhead of
LBRA_D stays in the middle of the other two. As depicted
in Fig. 10, while the fault rate is less than 10 faults per mil-
lion of cycles, LBRA_D is still the best approach but, when
the fault rate increases to 100, the small overhead introduced

123



Decoupled transactional memory threads

by REPAS makes it the best choice. DCC’s performance is
always the worst in a faulty environment because of its long
checkpoint intervals.

To sum up, we have shown that both LBRA_C and
LBRA_D are able to outperform previous approaches in the
same environment with several advantages. First, we avoid
the use of queues to bypass data values between threads
as in REPAS, something which augments considerably the
complexity of the design. Second, the modifications over the
memory system are minimum whereas DCC induces virtu-
ally to the creation of a specific and new coherence protocol
[16] and requires special measures to deal with master-slave
inconsistencies. In the same way, in a faulty environment
with realistic fault rates, LBRA_D is also the best approach
in terms of performance degradation.

7 Conclusions and future work

CMOS scaling exacerbates hardware errors making reliabil-
ity a big concern for present and future microarchitecture
designs. However, mechanisms to provide fault tolerance in
architectures must accomplish several objectives such as low
performance degradation, power consumption and area over-
head.

In this work, we present a novel low-overhead mechanism
to deal with transient faults in present and future architec-
tures. To this end, we introduce LBRA, an architecture design
based upon LogTM-SE, a well-established hardware imple-
mentation of Transactional Memory. LBRA executes redun-
dant threads which communicate through a virtual memory
log placed in cache. The goal of the log is twofold. First, it
provides input replication for both threads and, second, it is
used to recover the architectural state of the system after a
fault is detected.

LBRA main features include a) a consistent view of the
memory between master and slave thread, avoiding input
incoherences; b) both transient fault detection and recovery;
c) more scalability and higher decoupling than previous pro-
posals; d) low-performance overhead.

LBRA is presented in two flavours. In the first approach,
redundant threads are executed in the same dual-threaded
SMT core. This provides a low-hardware overhead but
imposes a noticeable performance degradation as a counter-
part. To solve this issue, we have proposed a second approach
in which redundant threads are executed in different cores,
increasing, thus, hardware requirements. To address the inter-
core communication latency, we rely on the use of a sim-
ple yet effective mechanism comprised by a log buffer, a
prefetch strategy and slight modifications of specific coher-
ence actions.

We have compared and evaluated the proposed designs
using full system simulation to measure the performance

degradation in a fault-free environment with parallel bench-
marks. We have shown that our proposals address the fault-
tolerant goal imposing 20 and 7 % execution time overhead
for the coupled and decoupled mechanism, respectively. Fur-
thermore, we have shown that LBRA presents several advan-
tages with respect to state-of-the-art approaches that we have
also evaluated in the same framework.

As future work, we plan to study the behaviour of lazy
policies in a similar approach to Reunion. In that case, mem-
ory updates are not effective until blocks are verified. The
major advantage is that slave threads can access memory
independently. However, the major drawback to confront is
that external writes between the same dynamic memory oper-
ation could create input incoherences. This would only be
detected at consolidation time when all the executed work
have been discarded.

Acknowledgments Thanks to the anonymous reviewers for their
comments and suggestions which definitely improved this work. This
work was jointly supported by the Spanish MINECO and Spanish MEC,
as well as European Commission FEDER funds under grant numbers
TIN2012-38341-C04-03 and TIN2012-31345.

References

1. Agarwal, R., Garg, P., Torrellas, J.: Rebound: scalable checkpoint-
ing for coherent shared memory. In: Proceeding of the 38th Annual
International Symposium on Computer Architecture, ISCA ’11,
pp. 153–164. ACM, New York (2011)

2. Bartlett, J., Gray, J., Horst, B.: Fault tolerance in tandem computer
systems. In: The Evolution of Fault-Tolerant Systems (1987)

3. Bernick, D., Bruckert, B., Vigna, P. D., Garcia, D., Jardine, R.,
Klecka, J., Smullen, J.: Nonstop advanced architecture. In: Pro-
ceedings of the 2005 International Conference on Dependable Sys-
tems and Networks (DSN’05), pp. 12–21. Yokohama, Japan (2005)

4. Bienia, C., Kumar, S., Singh, J.P., Li, K.: The parsec benchmark
suite: characterization and architectural implications. In: Proceed-
ings of the 17th International Conference on Parallel Architectures
and Compilation Techniques, pp. 72–81 (2008)

5. Borkar, S.: Design challenges of technology scaling. IEEE Micro
19(4), 23–29 (1999)

6. Borkar, S., Karnik, T., Narendra, S., Tschanz, J., Keshavarzi, A.,
De, V.: Parameter variations and impact on circuits and microar-
chitecture. In: DAC ’03: Proceedings of the 40th Annual Design
Automation Conference, pp. 338–342, ACM, New York (2003)

7. Bowman, K., Tschanz, J., Wilkerson, C., Lu, S.-L., Karnik, T., De,
V., Borkar, S.: Circuit techniques for dynamic variation tolerance.
In: DAC ’09: Proceedings of the 46th Annual Design Automation
Conference, pp. 4–7. ACM, NY (2009)

8. Censier, L.M., Feautrier, P.: Readings in computer architecture.
chapter a new solution to coherence problems in multicache sys-
tems, pp. 576–582. Morgan Kaufmann Publishers Inc., San Fran-
cisco (2000)

9. Ceze, L., Tuck, J., Montesinos, P., Torrellas, J.: Bulksc: bulk
enforcement of sequential consistency. In: Proceedings of the 34th
International Symposium on Computer Architecture, pp. 278–289
(2007)

10. Culler, D., Singh, J.P., Gupta, A.: Parallel Computer Architecture:
A Hardware/Software Approach (1998)

123



D. Sánchez et al.

11. Esmaeilzadeh, H., Blem, E., St. Amant, R., Sankaralingam, K.,
Burger, D.: Dark silicon and the end of multicore scaling. In: Pro-
ceedings of the 38th Annual International Symposium on Computer
Architecture, pp. 365–376 (2011)

12. Frank, D.J.: Power-constrained CMOS scaling limits. IBM J. Res.
Dev. 46(2/3), 235–244 (2002)

13. Gomaa, M., Scarbrough, C., Vijaykumar, T.N., Pomeranz, I.:
Transient-fault recovery for chip multiprocessors. In: Proceedings
of the 30th International Symposium on Computer Architecture,
pp. 98–109. San Diego, California (2003)

14. Kim, T.-H., Liu, J., Keane, J., Kim, C.: A 0.2 v, 480 kb subthreshold
sram with 1 k cells per bitline for ultra-low-voltage computing.
IEEE J. Solid-State Circuits 43(2), 518–529 (2008)

15. Kumar, R., Zyuban, V., Tullsen, D.M.: Interconnections in multi-
core architectures: understanding mechanisms, overheads and scal-
ing. In: Proceedings of the 32th International Symposium on Com-
puter Architecture (ISCA’05), pp. 408–419. Madison, Wisconsin
(2005)

16. LaFrieda, C., Ipek, E., Martinez, J.F., Manohar, R.: Utilizing
dynamically coupled cores to form a resilient chip multiprocessor.
In: Proceedings of the 37th International Conference on Depend-
able Systems and Networks, pp. 317–326. Edinburgh, UK (2007)

17. Li, M.-L., Ramachandran, P., Sahoo, S., Adve, S., Adve, V., Zhou,
Y.: Understanding the propagation of hard errors to software and
implications for resilient system design. In: Proceedings of the
13th International Conference on Architectural Support for Pro-
gramming Language and Operating Systems, pp. 265–276. Seattle,
WA, USA (2008)

18. Li, M.-L., Sasanka, R., Adve, S.V., Kuang Chen, Y., Debes, E.: The
alpbench benchmark suite for complex multimedia applications. In:
Proceedings of the IEEE International Symposium on Workload
Characterization, pp. 34–45 (2005)

19. Magnusson, P.S., Christensson, M., Eskilson, J., Forsgren, D., Hall-
berg, G., Hogberg, J., Larsson, F., Moestedt, A., Werner, B., Werner,
B.: Simics: a full system simulation platform. Computer 35(2), 50–
58 (2002)

20. Martin, M.M.K., Sorin, D.J., Beckmann, B.M., Marty, M.R., Xu,
M., Alameldeen, A.R., Moore, K.E., Hill, M.D., Wood, D.A.: Mul-
tifacet’s general execution-driven multiprocessor simulator (gems)
toolset. SIGARCH Comput. Archit. News 33(4), 92–99 (2005)

21. Mukherjee, S., Kontz, M., Reinhardt, S.K.: Detailed design and
evaluation of redundant multithreading alternatives. In: Proceed-
ings of the 29th International Symposium on Computer Architec-
ture, pp. 99–110. Anchorage, Alaska, USA (2002)

22. Olukotun, K., Nayfeh, B.A., Hammond, L., Wilson, K., Chang, K.:
The case for a single-chip multiprocessor. SIGPLAN Not. 31, 2–11
(1996)

23. Rashid, M., Huang, M.: Supporting highly-decoupled thread-level
redundancy for parallel programs. In: Proceedings of the 14th Inter-
national Symposium on High Performance Computer Architecture,
pp. 393–404. Salt Lake City, USA (2008)

24. Reinhardt, S.K., Mukherjee, S.: Transient fault detection via simul-
taneous multithreading. In: Proceedings of the 27th International
Symposium on Computer Architecture, pp. 25–36. Vancouver,
British Columbia, Canada (2000)

25. Sánchez, D., Aragón, J.L., García, J.M.: Repas: reliable execution
for parallel applications in tiled-cmps. In: 15th International Euro-
pean Conference on Parallel and Distributed Computing (Euro-Par
2009), pp. 321–333 (2009)

26. Sánchez, D., Aragón, J.L., García, J.M.: A log-based redundant
architecture for reliable parallel computation. In: 17th International
Conference on High Performance Computing (HiPC), pp. 1–10.
Goa (India) (2010)

27. Sasanka, R., Adve, S.V., Chen, Y.-K., Debes, E.: The energy effi-
ciency of cmp vs. smt for multimedia workloads. In: Proceedings
of the 18th Annual International Conference on Supercomputing,
ICS ’04, pp. 196–206. ACM, NY (2004)

28. Smolens, J.C., Gold, B.T., Falsafi, B., Hoe, J.C.: Reunion:
complexity-effective multicore redundancy. In: Proceedings of the
39th International Symposium on Microarchitecture, pp. 223–234.
Orlando, Florida, USA (2006)

29. Smolens, J.C., Gold, B.T., Kim, J., Falsafi, B., Hoe, J.C., Nowatzyk,
A.G.: Fingerprinting: bounding soft-error-detection latency and
bandwidth. IEEE Micro. 24(6), 22–29 (2004)

30. Spainhower, L., Gregg, T.A.: Ibm s/390 parallel enterprise server
g5 fault tolerance: a historical perspective. IBM J. Res. Dev. 43,
863–873 (1999)

31. Taur, Y.: CMOS design near to the limit of scaling. IBM J. Res.
Dev. 46(2/3), 213–222 (2002)

32. Taylor, M.B., Kim, J., Miller, J., Wentzlaff, D., Ghodrat, F., Green-
wald, B., Hoffman, H., Johnson, P., Lee, J.-W., Lee, W., Ma, A.,
Saraf, A., Seneski, M., Shnidman, N., Strumpen, V., Frank, M.,
Amarasinghe, S., Agarwal, A.: The raw microprocessor: a compu-
tational fabric for software circuits and general-purpose programs.
IEEE Micro 22(2), 25–35 (2002)

33. Vangal, S., Howard, J., Ruhl, G., Dighe, S., Wilson, H., Tschanz,
J., Finan, D., Iyer, P., Singh, A., Jacob, T., Jain, S., Venkataraman,
S., Hoskote, Y., Borkar, N.: An 80-tile 1.28tflops network-on-chip
in 65nm cmos. In: Solid-State Circuits Conference, 2007, ISSCC
2007. Digest of Technical Papers. IEEE, International, pp. 98–589
(2007)

34. Vijaykumar, T., Pomeranz, I., Cheng, K.: Transient fault recov-
ery using simultaneous multithreading. In: Proceedings of the 29th
International Symposium on Computer Architecture, pp. 98–109.
Anchorage, Alaska (2002)

35. Wang, N.J., Patel, S.J.: Restore: symptom-based soft error detection
in microprocessors. IEEE Trans. Dependable Secur. Comput. 3(3),
188–201 (2006)

36. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The
SPLASH-2 programs: characterization and methodological con-
siderations. In: Proceedings of the 22th International Symposium
on Computer Architecture (ISCA’95), pp. 24–36. Santa Margherita
Ligure, Italy (1995)

37. Yalcin, G., Unsal, O., Hur, I., Cristal, A., Valero, M.: Faultm: fault-
tolerance using hardware transactional memory. In: The 3nd Work-
shop on Parallel Execution of Sequential Programs on Multi-core
Architectures (PESPMA 2010), pp. 34–47 (2010)

38. Yen, L., Bobba, J., Marty, M. R. Moore, K.E., Volos, H., Hill, M.D.,
Swift, M.M., Wood, D.A.: Logtm-se: decoupling hardware trans-
actional memory from caches. In: Proceedings of the 19th Interna-
tional Symposium on High-Performance Computer Architecture,
pp. 261–272 (2007)

123


	Soft-error mitigation by means of decoupled transactional memory threads
	Abstract 
	1 Introduction
	2 Background and related work
	2.1 Fault tolerance by means of redundant execution
	2.1.1 Previous work
	2.1.2 Some previous work in detail


	3 HTM support for reliable computation
	3.1 Brief summary
	3.2 Enforcing reliability requirements
	3.2.1 Input replication
	3.2.2 Output comparison
	3.2.3 Sphere of replication (SoR)
	3.2.4 Synchronization interval
	3.2.5 I/O events


	4 LBRA implementation details
	4.1 Accessing the log
	4.1.1 Log content and fault detection granularity

	4.2 Circular log
	4.3 In-order consolidation
	4.3.1 Cycle avoidance

	4.4 Fault recovery in LBRA
	4.4.1 Tracking inter-thread dependencies
	4.4.2 Local recovery
	4.4.3 Global recovery


	5 Performance enhancements via spatial thread decoupling
	5.1 Decoupling thread execution into different cores

	6 Evaluation
	6.1 Simulation environment
	6.2 Area overhead
	6.3 p-XACT size analysis
	6.4 Signature size analysis
	6.5 Overhead of the fault-free case
	6.6 Leveraging coherence actions
	6.7 Comparison against previous work

	7 Conclusions and future work
	Acknowledgments
	References


