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Abstract—This paper describes the foundation, design, implementation, and evaluation of DualFS, a new high-performance journaling

file system which has the same consistency guarantees as traditional journaling file systems but a greater performance. DualFS places

data and metadata in different devices (usually, two partitions of the same storage device) and manages them in very different ways.

The metadata device is organized as a log-structured file system, whereas the data device is organized as groups. The new design

allows DualFS not only to recover the consistency quickly after a system crash, but also to improve the overall file system performance.

We have evaluated DualFS and we have found that it greatly reduces the total I/O time taken by the file system in most workloads as

compared to other file systems (Ext2, Ext3, ReiserFS, XFS, and JFS). The work carried out has also allowed us to draw some lessons

which ought to be taken into account when implementing new file systems.

Index Terms—File systems management, secondary storage, operating systems.
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1 INTRODUCTION

COMPUTING systems rely on several hardware and soft-
ware elements to fulfill their jobs. Although some

environments require specialized elements (i.e., high-
performance computing environments), many of them use
off-the-shelf elements which must have good performance
in order to accomplish computing jobs as quickly as
possible.

One of those off-the-shelf elements is the file system. In

many computing systems, the file system is a key element

which provides a friendly means to store data, executable

files, partial and final results, etc. For some computing jobs,

the file system used must be fast, others require a quickly

recoverable file system, and, for other jobs, both features are

important.
File system consistency and performance have to do to a

large extent with metadata. With respect to consistency,

many file systems [1], [2], [3], [4], [5], [6], [7], [8] use a

metadata log approach for fast recovery after a system

crash. Other approaches [9], [10] implement some kind of

persistent storage which avoids the loss of the most recent

updates.
Regarding throughput, file systems should produce as

many large sequential accesses as possible. A problem in

achieving that kind of access is that metadata requests are

usually small and spread across the storage device, which

can seriously downgrade file system performance [4], [7],

[11], [12], [13]. Moreover, we will show that metadata, even

being a very small part of the file system, has a great impact

on the overall file system performance. It should, therefore,

receive special treatment.
The problems pointed out above indicate that a new file

system focused on metadata management is necessary.

Current file systems treat data and metadata somewhat

differently; however, they are completely different.
This paper describes the foundation, design, implementa-

tion, and evaluation of DualFS, a new-generation journaling

file system which has the same consistency guarantees as

traditional journaling file systems but greater performance.
DualFS is focused on metadata. It separates metadata

blocks from data blocks completely and gives them

specialized treatment. To the best of our knowledge, no

other file system does the same. Metadata blocks are

organized as a log-structured file system [5], whereas data

blocks are organized in groups (much as in other file

systems [3], [6], [14], [15], [16]). The metadata log used by

DualFS not only allows DualFS to recover its consistency

quickly after a system crash (as occurs in traditional

journaling file systems), but also greatly improves metadata

operations and, hence, the overall file system performance.
Although the separation between data and metadata is

not a new idea, the DualFS design and implementation

prove, for the first time, that the separation can significantly

improve file systems’ performance without requiring extra

hardware (previous proposals for the separation of data

and metadata, such as the multistructured file system [17],

and the interposed request routing [18], use several storage

devices).
The rest of the paper is organized as follows: Related

work is discussed in Section 2. Section 3 describes the

rationale for a new file-system. Section 4 shows an overview

of DualFS. Sections 5 and 6 describe the data and metadata

devices, respectively. Section 7 explains how DualFS has

been tuned by analyzing its sensibility to configuration

changes. In Section 8, we describe our benchmarking
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methodology and, in Section 9, we present our experimental
results. Section 10 concludes the paper.

2 RELATED WORK

In this paper, references to other publications are inserted as
they come up in a particular context. Given the organization
of our paper, we believe that this is a more natural way of
referring to other related proposals. Hence, this section
merely makes reference to work that is basic to under-
standing DualFS.

Journaling file systems [3], [6], [8], [16], [19], [20] are the
most common kind of file system found in many current
computing systems. DualFS can be considered as a journal-
ing file system but with two important differences at least:
DualFS separates data and metadata blocks completely and
it writes every metadata block only once (traditional
journaling file systems have to write each metadata block
twice: once to the log and another time to the final location
of the block in the storage device).

Separation of data and metadata has been proposed in
the past in order to manage several storage devices and
improve performance [17]. Nowadays, this separation is
widely used in many distributed/clustered file systems and
it is a cornerstone for achieving scalability in those storage
systems [18], [21], [22]. DualFS, however, does not need
several storage devices.

Finally, a key element in the DualFS design is the
structure of the metadata device. The metadata device is
organized as a log-structured file system [5], [23] which,
unlike the original design, is intended to store only
metadata blocks.

3 RATIONALE FOR A NEW FILE SYSTEM

Since the new journaling file system is based on the
separation between data and metadata, we need to know
if that separation makes sense. We have analyzed the disk
I/O traffic for different common workloads over several
days and we have separated data requests from metadata

requests. NFS disk traces have been obtained from a server
machine running Linux 2.2.14, with 64MB of RAM and an
8GB hard disk, whereas the other traces have been obtained
from another server running Linux 2.2.14 with 128MB of
RAM and a 3GB hard disk. The results can be seen in
Tables 1 and 2.

The first table shows the percentages of data and
metadata requests for different workloads and the corre-
sponding percentages of I/O time. The distribution of read
and write requests also appears in parentheses.

The second table shows the percentages of sequential
requests for the same workloads. For the two columns under
the Same-type requests title, two requests are considered as
sequential when both involve blocks which are both con-
tiguous in disk and of the same type (either data blocks or
metadata blocks). For the other two columns, we consider two
requests as sequential when both involve blocks which are
contiguous in disk, regardless of their types.

The results of the disk backup are expected: Read data
requests are predominant and they are mainly sequential.
This workload, however, occurs from time to time during a
short time period.

The results of the other workloads are more interesting.
As we can see, metadata requests represent more than
45 percent of the disk requests and more than 40 percent of
the I/O time. Besides, these requests are primarily random
writes. These results prove that metadata, even though a
very small part of the file system, can have a great impact
on the overall file system performance.

Although the results of Tables 1 and 2 are Ext2-specific
(they were obtained by instrumenting the Linux kernel and
using its default file system), we think they are extensible to
other file systems such as Ext3 (which has almost the same
structure as Ext2), XFS, and JFS (which share some design
principles with Ext2).

Moreover, results achieved are similar to those obtained
by Muller and Pasquale [17], Ruemmler and Wilkes [24],
and Vogels [25]. There are two main differences between
their work and ours. The first one is that they do not
calculate the percentage of I/O time taken separately by
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TABLE 1
Distribution of Data and Metadata Disk Requests for Different Workloads

TABLE 2
Sequentiality of Data and Metadata Requests for Different Workloads



data requests and metadata requests. The second one is that
they analyze the sequentiality of file access, but not that of
disk requests. I/O time and sequentiality are key informa-
tion to better understand the performance of a file system.

Our study shows that, if we want to design a new file
system to be better than others, we must take into account
the special behavior of metadata. Clearly, the new file
system must improve metadata writes without damaging
either data writes or data and metadata reads.

4 DUALFS OVERVIEW

The key idea of this new file system is to manage data and
metadata in completely different ways, giving a special
treatment to metadata. Metadata blocks are located on the
metadata device, whereas data blocks are located on the data
device.

It is important to clarify that, by metadata, we understand
i-nodes, indirect blocks, directory “data” blocks, and symbolic-
links “data” blocks. Obviously, bitmaps, superblocks, etc., are
also metadata elements. By data, we understand the data
blocks of regular files.

Files (regular or not) are implemented in DualFS as in other
file systems. Every file has an i-node which contains its
attributes, and 15 disk addresses: 12 addresses of direct blocks
and three addresses of indirect blocks (the simply, doubly, and
triply indirect blocks). In DualFS, the number of i-nodes can
grow, as in other file systems such as XFS and JFS.

Direct blocks contain data (or metadata) and their disk
addresses refer to the data device, if the file is regular, or to
the metadata device, if the file is a directory or a symbolic
link. Indirect blocks contain disk addresses of direct blocks
or other indirect blocks.

The file system is described by a superblock which
contains file system parameters (block size, data and
metadata devices’ sizes, etc.). The superblock is replicated
in the data device and throughout the metadata device in
order to allow recovery from media failures which corrupt
the primary copy of the superblock.

In our current implementation, data and metadata
devices are adjacent partitions on the same disk (see
Fig. 1). However, other options are also possible. For
example, we can use only one disk partition with two areas,
one for data blocks and another for metadata blocks,
managed by the file system itself. Another possibility is to

put the data and metadata devices on different disks, which

can improve the performance. This option is similar to

putting the log of a journaling file system on a separate disk.

However, there is an important difference. Whereas other

journaling file systems can exploit the parallelism offered

by two disks only for metadata writes, DualFS can exploit

the parallelism for both reads and writes of metadata

blocks. This is an important advantage for DualFS.

5 THE DATA DEVICE

The structure of the data device is quite simple. This device

only contains data blocks of regular files and uses the

concept of group of data blocks (similar to the cylinder group

concept) for organizing data blocks (see Fig. 1).
The data-block allocation algorithm of DualFS is based

on those of Ext2 and Ext3. Since the allocation algorithms

used by the three file systems are equivalent, we expect a

behavior of DualFS similar to that of Ext2 and Ext3 when

the data partition is almost full.
DualFS groups data blocks for several regular files in a

per directory basis. When a new directory is created, it is

assigned a data-block group in the data device. DualFS

specifically selects the group which has the greatest number

of free blocks (i.e., the emptiest one). If there are several of

them which meet that condition, the group with the

smallest number of associated files is selected. Data blocks

of regular files created in the same directory are put

together in the group assigned to the directory (or in nearby

groups if the corresponding group is full). Besides, DualFS

tries to allocate all the data blocks of a regular file in such a

way as to optimize sequential access.
From the file-system point of view, data blocks are not

important for consistency, so they do not receive any special

treatment, as metadata does [3], [6], [8]. However, they

must be taken into account for security reasons. When a

new data block is added to a regular file, DualFS writes it to

disk before writing its related metadata blocks. Violating

this requirement would not actually damage the consis-

tency, but it could potentially lead to a file containing a

previous file’s contents after crash recovery, which is a

security risk. Ext3 [16] also imposes this order between data

and metadata writes by default.
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Fig. 1. DualFS overview. Arrows are pointers stored in segments of the metadata device. These pointers are numbers of blocks in both the data

device (data blocks) and the metadata device (metadata blocks).



5.1 Directory Affinity

As we have said before, when a new directory is created in

DualFS, it is assigned the emptiest group in the data device.

Note, however, that when creating a directory tree, DualFS

has to select a new group every time a directory is created.

This can cause a change of group and, hence, a large seek.

However, the new group for the new directory may be only

slightly better than that of the parent directory. A better

option is to remain in the parent directory’s group and to

change only when the new group is good enough according

to a specific threshold. The latter is called directory affinity in

DualFS and can greatly improve DualFS performance, as

we will see in Section 7.
The directory affinity of DualFS is based on the

“directory affinity” concept used by Anderson et al. [18],

but with some differences. For example, their directory

affinity is a probability (the probability of a new directory

being placed on the same server as its parent), whereas it is

a threshold in our case. Moreover, their concept is applied

to the design of a new network storage while ours is used

for the design of a new journaling file systems.

6 THE METADATA DEVICE

The structure of the metadata device is fundamental to

DualFS since this structure describes almost all of the file

system. Moreover, DualFS performance and fast consis-

tency recovery guarantees depend on it.

6.1 Disk Layout

The metadata device is organized as a log-structured file

system [5], that is, there is only one log where all of the

metadata blocks are sequentially written (see Fig. 2). Our

implementation is based on the BSD-LFS implementation

[23]. However, it is important to note that, unlike BSD-LFS,

our log does not contain data blocks, only metadata ones.

The implementation is also different in some other aspects.
The metadata device is divided into pieces of equal size

called segments (see Fig. 2a). Each segment is 2 MB in size

by default, although the segment size can be specified when

formatting the file system.
Metadata blocks are written in variable-sized chunks

called partial segments (see Fig. 2b). Partial segments can be

as large as a segment, although a segment often accom-

modates several partial segments which are written

asynchronously. For the remainder of this paper, segment

will be used to refer to the physical partitioning of the

metadata device and partial segment will be used to refer to

the unit of writing.
There is always one, and only one, active partial segment

where the last-modified metadata blocks are written to. The

active partial segment can be in main memory for some

time. This allows multiple metadata updates to be batched

into a single log write, which increases the efficiency of the

log with respect to the underlying device [5].
A partial segment is a transaction unit and must be

entirely written to disk to be valid. If a system crash occurs

when a partial segment is being written, that partial

segment will be dismissed during the file system recovery.

Actually, a partial segment is a compound transaction because

it is the result of several file system operations.
The structure of a partial segment is similar to that of

BSD-LFS. The first element of the structure is the partial

segment descriptor, which is made up of a descriptor

header, finfo structures, and i-node numbers (see Fig. 2c).

All of the information in the partial segment descriptor is

used both for rapidly recovering a crashed file system and

for cleaning segments.
The descriptor header has information about the partial

segment and its structure is shown in Fig. 2d. Since a partial

segment is a transaction unit, it is important to know when

a partial segment on disk is valid. In order to know that, the

descriptor header has two checksum fields, one for the

entire descriptor (descriptor checksum) and another for the

entire partial segment (partial segment checksum)—actually,

and like BSD-LFS [23], the checksum of the entire partial

segment is computed from the first 4 bytes of every partial

segment block since checksum computation is very CPU-

consuming. These checksums allow DualFS to validate

partial segments independently of whether the disk con-

troller reorders writes or not and independently of whether

all blocks which make up a partial segment are written to

disk or not.
Finfo structures are next. These structures determine the

corresponding i-node and logical block number of every

block in the partial segment. There is one finfo structure for

every file (regular or not) which has at least one metadata

block in the partial segment. Fields which make up a finfo

are shown in Fig. 2e. Finfo structures ultimately determine

the i-node and logical block number of every metadata

block in the partial segment. This information will be used

by the garbage collection process (the cleaner) to reclaim

space from the file system.
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Fig. 2. Structure of the metadata device.



Finally, there is a list of i-node numbers which contains the
numbers of the i-nodes in the partial segment. There are at
least as many i-node numbers as finfo structures.

After the partial segment descriptor, there are metadata
blocks which belong to several files: indirect blocks, “data”
blocks of directories, and “data” blocks of symbolic links.

Finally, at the end of the partial segment, there are
several blocks which contain i-nodes. Every block contains
as many nonconsecutive i-nodes as it is able to, i.e., the
number of blocks is the minimum to contain all the i-nodes
in the partial segment.

By using the partial segment structure described above,
Fig. 3 shows how metadata blocks of different files are
allocated in the metadata device.

6.2 Ifile

Since i-nodes do not have a fixed location on disk, we need
an i-node map (IMap), i.e., a structure that, given an i-node
number, returns the location of the i-node on disk. Our
IMap is an array addressed by i-node number. Each IMap
entry stores the disk block address of the corresponding
i-node and the offset of the i-node inside the block. In
DualFS, the i-node map is part of the content of a file called
IFile. It is quite obvious that we cannot store the disk
address of the IFile’s i-node in the IFile itself, so we use the
superblock instead.

The structure of our IFile (see Fig. 4) is similar to that of
the BSD-LFS IFile [23], but it has two additional elements:
the DGDT and the DGBT.

The data-block group descriptor table (DGDT) has a role
similar to the block group descriptor table of Ext2 [14]. Each
data-block group descriptor contains information about the

number of i-nodes associated with a group and the number

of free data blocks in the group. Both values are useful

when DualFS has to assign a new directory to a group. The

i-nodes associated with a group are the i-nodes of the

directories assigned to the group and the i-nodes of the files

created in those directories (except subdirectories).
After the DGDT comes the data-block group bitmap table

(DGBT). We have a bitmap block for every data-block
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Fig. 3. File allocation in the metadata device. In (a), three files have been written: file1, file2, and file3. In (b), the middle block of file1 has been
modified. A new version of it is added to the log, as well as a new version of its corresponding i-node. File2 has been deleted. Although (b) does not
show it, a new version of file2 i-node is written in the partial segment of the second segment. Next, two more blocks are appended to file3, causing
the blocks and a new version of file3 i-node to be appended to the log. Finally, file4 is created, causing its metadata blocks and i-node to be
appended to the log.

Fig. 4. Structure of the IFile.



group. Therefore, the number of entries in the DGDT table
is equal to the number of entries in the DGBT table. Every
bitmap indicates which blocks are free and which are busy
in a group.

6.3 Cleaner

As a log-structured file system, our metadata device needs a
segment cleaner. A segment may contain information still in
use (the “live bytes”), but also obsolete information
(information superseded by other information in a different
segment or information which is no longer valid). A
segment that contains live bytes is a dirty segment.
Otherwise, it is a clean segment. When the number of clean
segments is small, the cleaner can collect the live bytes of
several dirty segments and write them in a new segment.
Hence, dirty segments will become clean. Obviously, if all
dirty segments are full of live bytes, cleaning will be
senseless.

Our cleaner is started in two cases: 1) every 5 seconds if
the number of clean segments drops below a specific
threshold and 2) when we need a new clean segment and all
segments are dirty.

At the moment, our attention is not on the cleaner, so we
have implemented a simple one, based on Rosenblum and
Ousterhout’s cleaner [5]. The threshold we have chosen is
also very simple (it is a fixed number), though it should
depend on both the metadata device size and the workload
in a production file system.

In order to select a segment to be cleaned, our cleaner
computes valuei for each segment as a cost-benefit function:

valuei ¼
benefiti
costi

¼ ð1� utilizationiÞ � lastmodtimei
1þ utilizationi

;

where

utilizationi ¼
livebytesi

segment size
:

livebytesi and lastmodtimei values are obtained from the
segment usage table (a data structure in the IFile). This cost-
benefit function is the same as that used by Rosenblum and
Ousterhout.

The segment with the greatest valuei is cleaned. If the
number of clean segments is not large enough after
cleaning a segment, the DualFS cleaner recomputes valuei
for each segment, cleans the segment with the greatest
valuei, and so on.

6.4 Log Recovery

Our file system is considered consistent when information
about metadata is correct. Like other approaches [6], [8], [26],
some loss of data is allowed in the event of a system crash.

Since our metadata device is organized as a log-
structured file system, DualFS can quickly recover its
consistency by rolling forward from the last checkpoint.
Checkpointing is performed every 60 seconds by writing
partial segments still in memory, the dirty blocks of the
IFile, and the superblock (which contains a reference to the
last checkpoint).

Recovering a DualFS file system basically means
recovering its IFile. This file is only written to disk at each

checkpoint, so its content may be lost at a system crash.
During recovery, i-nodes of every partial segment written
after the last checkpoint are analyzed to update the IFile.
There are three cases for each i-node analyzed:

1. The i-node is new (its IMap entry appears as free). If
the new file is regular, we update the DGBT and
DGDT tables according to the disk addresses of the
file blocks and the SUT table according to the disk
addresses of the file’s indirect blocks. If the file is not
regular, we only have to update the SUT table.
Whether the file is regular or not, we must update
the corresponding IMap entry of the IFile and
several block counters in the superblock.

2. The i-node already exists (its IMap entry appears as
busy). We have to find the disk addresses which are
different in the previous copy of the i-node and the
new one and update the DGBT, DGDT, and SUT
tables of the IFile correspondingly. We also have to
update the IMap entry in order to reflect the new
position of the i-node.

3. The i-node appears as deleted (its reference count
field is 0 and its IMap entry appears as busy). This
case is similar to the first one, except that data
blocks, metadata blocks, and the i-node must be
marked as free.

Partial segments are timestamped and checksummed so
that the recovering process can easily detect whether a
partial segment is valid or not and, hence, when the end of
the log is reached.

Note that recovery does not involve redoing or undoing
any metadata operation, only updating information in the
IFile. It is also clear that the recovery time is proportional to
the intercheckpoint interval, not to the file-system size. The
same occurs in other journaling file systems.

6.5 Metadata Prefetching

Reading a regular file in DualFS is inefficient because data
blocks and their related metadata blocks are a long way
from each other and many long seeks are needed.1 A
solution to this problem is metadata prefetching.

The metadata prefetching implemented in DualFS is
straightforward: When a metadata block is needed, DualFS
reads a group of consecutive metadata blocks from disk
where the metadata block is needed. Prefetching is not
performed when the metadata block requested is already in
memory. The idea is not to force an unnecessary disk I/O
request, but to take advantage of a compulsory disk-head
movement to the metadata zone. Since all metadata blocks
prefetched are consecutive, we also take advantage of the
built-in cache of the disk drive.

But, in order to be efficient, our prefetching mechanism
needs some kind of metadata locality. As we have seen,
DualFS metadata blocks are sequentially written to the log
in partial segments. All metadata blocks in a partial
segment have been created or modified at the same time.
Hence, some kind of relationship between them is expected.
Moreover, many relationships between metadata blocks are
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1. Since the data and the metadata devices are independent, we could
locate them in separate disks, which would solve the read inefficiency.



due to metadata blocks belonging to the same file (e.g.,

indirect blocks). This kind of temporal and spatial metadata

locality present in the DualFS log is what makes our

prefetching highly efficient.
Once we have decided when to prefetch, the next step is

to decide which and how many metadata blocks must be

prefetched. Due to the metadata block order in the DualFS

log, the greater part of the metadata blocks which must be

prefetched are generally before the needed metadata block.

Therefore, our prefetching mechanism has two parameters:

. size, which is the amount of metadata blocks
prefetched, and

. after-before ratio, the percentage of metadata blocks
prefetched which are after the requested metadata
block.

Later, we will calculate suitable values for these parameters.
It is important to note that, unlike other prefetching

methods [27], [28], DualFS prefetching is I/O-time efficient,

that is, it does not cause extra I/O requests which can in

turn cause long seeks. Also note that our simple prefetching

mechanism works because it takes advantage of the unique

features of our metadata device.

6.6 Online Metadata Relocation

The metadata prefetching efficiency may deteriorate due to

several reasons:

. files are read in an order which is very different from
the order in which they were written,

. the read pattern can change over the course of the
time, or

. file-system aging.

An inefficient prefetching increases the number of

metadata read requests and, hence, the number of disk-

head movements between the data zone and the metadata

zone. Moreover, it can become counterproductive because it

can fill up the buffer cache with useless metadata blocks. In

order to avoid prefetching degradation (and to improve its

performance in some cases), we have implemented an

online metadata relocation mechanism in DualFS which

increases temporal and spatial metadata locality.
The metadata relocation works as follows: When a

metadata element (i-node, indirect block, directory block,

etc.) is read, it is written to the log like any other just-

modified metadata element. Note that it does not matter

whether the metadata element was already in memory

when it was read or if it was read from disk.
Metadata relocation is mainly performed in two cases:

. when reading a regular file (its indirect blocks are
relocated) or

. when reading a directory (its “data” and indirect
blocks are relocated).

This constant relocation adds more metadata writes.

However, these writes are very efficient in DualFS because

they are performed sequentially and in big chunks. There-

fore, it is expected that this relocation, even when very

aggressive, will not increase the total I/O time significantly.

We will analyze relocation overhead in the next section.

Since a file is usually read in its entirety [29], the
metadata relocation puts together all metadata blocks of the
file. The next time the file is read, all its metadata blocks will
be together and the prefetching will be very efficient.

The explicit metadata relocation also puts together the
metadata blocks of different files read at the same time (i.e.,
the metadata blocks of a directory and its regular files). If
those files are also read later, at the same time and even in
the same order, the prefetching will work very well. This
assumption in the read order is made by many prefetching
techniques [27], [28].

It is important to note that our metadata relocation exposes
the relationships between files by writing together the
metadata blocks of the files which are read at the same time.
Unlike other prefetching techniques [27], [28], this relation-
ship is permanently recorded on disk and it can be exploited
by our prefetching mechanism after a system restart.

Besides the explicit relocation, there also exists an
implicit metadata relocation which we have not mentioned
yet. When a file is read, the access time field in its i-node
must be updated. If several files are read at the same time,
their i-nodes will also be updated at the same time and
written together in the log. In this way, when an i-node is
read later, the other i-nodes in the same block will also be
read. This implicit prefetching is very important since it
exploits the temporal locality in the log and can potentially
reduce file-open latencies and the overall I/O time.

This implicit metadata relocation can have an effect
similar to that achieved by the embedded i-nodes proposed
by Ganger and Kaashoek [11]. In their proposal, i-nodes of
files in the same directory are put together and stored inside
the directory itself. Note, however, that they exploit the
spatial locality, whereas we exploit both spatial and
temporal localities.

7 DUALFS TUNING

In the previous section, we described the general structure
of DualFS and the operation of several additional mechan-
isms implemented for improving file system performance.
Some mechanisms, such as prefetching and directory
affinity, are configurable by using several values. Others,
such as online metadata relocation, can only be either active
or inactive and do not have configuration values.

The next subsections summarize the main results of a
tuning process carried out on DualFS. Our main purpose
has been not only to determine the configuration of the
DualFS mechanisms which provides the best performance
in general, but also to analyze DualFS’s sensibility to
configuration changes. The study was performed by using
the microbenchmarks described in the next section,
although it was necessary to use specific benchmarks in
some cases. The system used under test was also the same
as that described in the next section.

There exist some aspects of DualFS which have not been
analyzed because, from our point of view, they are of little
interest (they hardly affect DualFS performance or there is
only one valid value for configuration). These aspects, and
their configuration values, are: the logical block size (4 KB),
the segment size (512 logical blocks or 2 MB), the checkpoint
interval (60 seconds), and the data and metadata devices’
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sizes (respectively, 90 percent and 10 percent of the storage
device).

7.1 Directory Affinity

This is the simplest mechanism because it only affects the
data device. We have obtained different results for one and
four processes. For one process, a big improvement of
around 16 percent in application time occurs for as small a
directory affinity as 10 percent (that is, a newly created
directory is assigned the emptiest group, instead of its
parent directory’s group, if the emptiest group has at least
10 percent more free data blocks). For greater directory
affinities, improvement is marginal. For four processes, a
big improvement also occurs at 10 percent of directory
affinity. However, two facts deserve a comment.

The first one is that performance improvement due to
directory affinity is not as great for four processes as for
one. This is because requests tend to be spread across the
disk when there are several processes and directory affinity
provides little help for reducing the number of disk head
movements.

The second fact is that increasing directory affinity does
not always mean an increase in performance. The reason is
that the greater the directory affinity, the greater the
probability of two or more processes competing for the free
space in the same group. This competition translates into
more file fragmentation and, hence, worse performance.

The conclusion is that small values of directory affinity
can greatly improve DualFS performance, whereas large
values may deteriorate it when the number of processes
grows. Therefore, we will use a directory affinity of
10 percent in DualFS by default.

7.2 Metadata Prefetching

As we have seen before, metadata prefetching behavior is
determined by two parameters: prefetching size and after-
before ratio. When there is not enough information (or it is
expensive to obtain it from an I/O time perspective), we use
default values for both parameters. This occurs in most
cases. Otherwise, we use operation-suitable values. This
subsection is focused on determining which default value is
more convenient for each parameter. Let us analyze both
separately.

We have noted that the DualFS performance improves
when the prefetching size grows, independently of the
after-before ratio. Improvements of up to 75 percent in
the application time have been achieved in some
microbenchmarks with a prefetching size of 32 blocks.
We have also observed that prefetching results are much
better when the number of processes increases; this
phenomenon will be analyzed in detail in Section 9.

From the results analysis, we have decided to select
16 blocks as the prefetching size. There are several reasons.
First, this size matches the DMA transfer size used by Linux
(64 KB or 16 blocks of 4 KB). Second, additional performance
improvements achieved by greater prefetching sizes are
small. And third, medium-size transfers allow DualFS to
make better use of the built-in segmented cache of the
current disk drives.

With respect to the after-before ratio, there are important
differences between the right order (that is, all prefetched

blocks are before the requested block) and the wrong order
(the prefetched blocks are after the requested block). The
former corresponds to an after-before ratio value of
0 percent, which will be the default value used by DualFS
from now on, whereas the latter corresponds to a
100 percent value.

However, we must remark that the results obtained for
after-before ratio values of 0 percent and 30 percent are very
similar. This is an important fact because it means that it
could be profitable to use after-before ratio values some-
what greater than 0 percent in those systems where read
patterns may change over the course of the time or do not
exactly match with write patterns.

7.3 Online Metadata Relocation

In Section 6.6, we have explained that the online metadata
relocation moves metadata blocks during reads. This block
movement makes the study of this mechanism more
complex than that of directory affinity and metadata
prefetching.

As we have already mentioned, relocation adds over-
head, but it can improve metadata locality in general and
metadata prefetching in particular. However, the relocation
can also have unexpected effects; for example, if a process
reads files when other (possibly unrelated) processes are
reading or writing other files, then relocation can partially
break the metadata locality. This is because metadata blocks
which are read by the process are mixed with other
metadata blocks which are being read or written at the
same time. Due to all of the above, the study has been
broken down into three parts: overhead, profits provided,
and drawbacks.

With respect to the overhead, relocation increases the
application time up to 2 percent in benchmarks which
involve both data and metadata blocks. The increase goes as
far as 9 percent in benchmarks which only involves
metadata blocks. Nevertheless, the DualFS performance in
this metadata benchmarks is very good as compared to
other file systems, so the 9 percent increase is not a problem.

The study of the profits provided by the relocation
requires a test without reads and a lot of create/write/
delete operations. The aging tools developed by Smith [30]
meet our requirements. These tools allow us to age a test file
system by replaying a workload which simulates the
activity of a real file system over 299 days. After aging a
DualFS file system, we read it in its entirety twice and
compare the times taken by the first read (without
relocation) and the second read (just after relocation).

This benchmark has allowed us to draw two conclusions.
The first is that I/O time reduction provided by the implicit
relocation of i-nodes is very important. The second is that
the online metadata relocation mechanism can guarantee
prefetching effectiveness and protect DualFS from aging.
Moreover, this explicit relocation reduces the I/O time of
DualFS more than 10 percent, which compensates for the
aforementioned 2 percent overhead, and makes DualFS the
best file system in this benchmark among the file systems
compared in Section 9.

Finally, in order to study the possible drawbacks of the
metadata relocation, we have implemented a benchmark
which simulates a worst-case scenario: There are as many
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reads as writes and they are performed at the same time.
This benchmark, however, does not represent a common
workload because reads are a more frequent operation than
writes [25], [29], [31]. The results show that relocation has a
limited adverse effect because the application time increases
less that 5 percent for one process and this increase is even
less when the number of processes grows.

To summarize, we can say that the online metadata
relocation is a beneficial mechanism in general, which
improves the metadata prefetching effectiveness in many
workloads at the expense of a little overhead. Therefore, this
mechanism will be active in DualFS by default.

7.4 Cleaner

One of the main drawbacks of a log-structured file system is
the cleaner [32]. Since our metadata device is implemented
as an LFS, we must evaluate the impact of the cleaner on the
DualFS performance.

In order to do that, we have designed a benchmark
which produces a lot of half-full dirty segments. The
benchmark copies a directory tree and then removes
87.5 percent (7/8) of its regular files. The copy and erasure
steps are repeated 40 times in order to make the benchmark
take enough time.

This experiment has been carried out for two configura-
tions of DualFS: one that uses the default cleaner and
another one that cleans a segment every five seconds. The
latter configuration makes the cleaner very intrusive, but it
gives us a conservative estimation of the impact of the
cleaner on performance.

The results obtained show that the default cleaner hardly
runs. However, the intrusive cleaner increases the I/O time
by 15 percent. This increase is due to the current
implementation of our cleaner, which does the following:
1) Lock any new file system operation, 2) write to disk all
partial segments in memory, and 3) clean segments.

Steps 1) and 2) downgrade the file system performance
because they lock regular disk operations for a long time.
Furthermore, Step 2) is especially problematic because it
writes to disk many data blocks which will be deleted soon
after (remember that DualFS writes new data blocks to disk
before writing their related metadata blocks). If the write
order between metadata and new data blocks is omitted,
results are much better: The I/O time also increases
15 percent, but it is quite a bit smaller than that obtained
when the write order is enforced.

We are convinced that the above performance problems
can be mitigated to a large extent by an efficient cleaner
implementation which gets rid of the aforementioned
Steps 1) and 2). Moreover, we could take advantage of
some proposed approaches intended to reduce the cleaner
overhead [33]. However, the enhancement has not been
carried out because the default DualFS cleaner has run so
seldom in all the benchmarks executed (including those
described in the next section) that its impact has been
negligible.

7.5 Partial Segment Write

The last DualFS aspect which deserves an evaluation is the
effect of the period length of partial-segment writes from
memory to disk. The value of this period affects two

conflicting interests: the file system performance and the
consistency recovery after a system crash. With respect to
the former, a long period may improve the file system
throughput because it tends to create big partial segments
which are written to disk by means of a few large and
sequential requests. With respect to the latter, it is better to
have short periods so that the amount of transactions lost at
a system crash is small.

From the results, we can conclude that we can obtain a
good performance by using a period as short as 5 seconds.
For longer periods, the performance improves marginally
and not in all cases. This result is important since we can
considerably limit the loss of metadata in the event of a
system crash without sacrificing throughput.

7.6 Lessons Learned

From the tuning process carried out for DualFS, we have
drawn a couple of lessons which could be applied to the
design of other file systems. The first one is that the file system
must favor temporal locality in disk as much as possible.
Although many file systems organize the storage device in
groups in order to improve spatial locality and, at the same
time, temporal locality, there is not always a straightforward
relationship between both kinds of locality. DualFS, however,
has an explicit online metadata relocation mechanism which
is especially able to improve temporal locality and, besides, to
protect the file system against aging (as we have confirmed,
the relocation mechanism adds a small overhead, which is
indeed advantageous in the long run).

Temporal locality can provide many benefits. First, it can
cause shorter disk seeks, as spatial locality does. Second, it
makes it possible to implement efficient prefetching
mechanisms, much like in DualFS. And third, it could
improve the performance of some disk schedulers [34].

The second lesson learned is that the group structure and
the directories’ allocation policies used by many file
systems can produce many long seeks when traversing a
directory tree, especially if there are several processes. The
directory affinity implemented by DualFS is a simple
allocation policy which tries to place a subdirectory in the
same group as its parent, which improves spatial locality.
Other more complex policies, such as the allocator designed
by Orlov [35], pursue a similar aim by favoring the
placement of directories close to their parent.

8 METHODOLOGY FOR EXPERIMENTS

This section describes the evaluation process of DualFS. We
have used both microbenchmarks and macrobenchmarks
for different configurations, using the Linux kernel 2.4.19.
We have compared DualFS against Ext2 [14], the default file
system in Linux, and four journaling file systems: Ext3 [16],
XFS [6], [36], JFS [3], and ReiserFS [20]. Ext2 is not a
journaling file system, but it has been included because it is
a widely used and well-understood file system.

Bryant et al. [37] compared the above five file systems by
using several benchmarks on three different systems,
ranging in size from a single-user workstation to a
28-processor ccNUMA machine. However, there are some
important differences between their work and ours. First,
we evaluate a next-generation journaling file system
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(DualFS). Second, we report results for some industry-

standard benchmarks (SPECweb99 and TPC-C). Third, we

use microbenchmarks which are able to clearly expose

performance differences between file systems (in their

single-user workstation system, for example, only one

benchmark was able to show performance differences).

And finally, we also report I/O time at disk level (this

measurement is important because it reflects the behavior of

every file system as seen by the disk drive).

8.1 Microbenchmarks

We have designed seven microbenchmarks intended to

discover the strengths and weaknesses of every file system:

. read-meta (r-m): Find files larger than 2 KB in a
directory tree.

. read-data-meta (r-dm): Read all of the regular files in a
directory tree.

. write-meta (w-m): Untar an archive which contains a
directory tree with empty files.

. write-data-meta (w-dm): The same as w-m, but with
nonempty files.

. read-write-meta (rw-m): Copy a directory tree with
empty files.

. read-write-data-meta (rw-dm): The same as rw-m, but
with nonempty files.

. delete (del): Delete a directory tree.

In all cases, the directory tree has four subdirectories,

each one with a copy of a clean Linux 2.4.19 source tree. In

the “write-meta” and “read-write-meta” benchmarks, we

have truncated to zero all regular files in the directory tree.

In the “write-meta” and “write-data-meta” tests, the

untarred archive is in a file system which is not being

analyzed. All tests have been run five times for one and four

processes. When there are four processes, each works on

one of the four copies of the Linux source tree.

8.2 Macrobenchmarks

Next, we list the benchmarks we have performed to study

the viability of our proposal. Note that we have chosen

environments that are currently representative:

. Kernel Compilation for 1 Process (KC-1P): Resolve
dependencies (make dep) and compile the Linux
kernel 2.4.19, given a common configuration. Kernel
and modules compilation phases are made for one
process (make bzImage and make modules).

. Kernel Compilation for 4 Processes (KC-4P): The same
as before, but just for four processes (make -j4
bzImage, and make -j4 modules).

. SPECweb99 (SW99): The SPECweb99 benchmark
[38]. We have used two machines: a server, with
the file system to be analyzed, and a client.

. PostMark (PM): The PostMark benchmark, which
models the workload seen by ISPs under heavy load
[39]. We have run our experiments using version 1.5
of the benchmark. In our case, the benchmark
initially creates 150,000 files with a size range of
512 bytes to 16 KB, spread across 150 subdirectories.
Then, it performs 20,000 transactions with no bias

toward any particular transaction type and with a
transaction block of 512 bytes.

. TPCC-UVA (TPC-C): An implementation of the
TPC-C benchmark. Due to system limitations, we
have only used three warehouses. The benchmark is
run with an initial 30 minutes warm-up stage and a
subsequent measure time of 2 hours.

8.3 Tested Configurations

All benchmarks have been run for the six file systems
shown below. Mount options have been selected following

recommendations by Bryant et al. [37]:

. Ext2, without any special mount option.

. Ext3, with “data=ordered” mount option.

. XFS, with “logbufs=8,osyncisdsync” mount
options.

. JFS, without any special mount option.

. ReiserFS, with “notail“ mount option.

. DualFS, with metadata prefetching, online metadata
relocation, and directory affinity.

The versions of Ext2, Ext3, and ReiserFS are those found
in a standard Linux kernel 2.4.19. The XFS version is 1.1 and

the JFS version is 1.1.1.
All file systems are on one IDE disk and use a logical

block size of 4 KB. DualFS uses two adjacent partitions,
whereas the other file systems only use one disk partition.

The DualFS metadata device is always on the outer
partition since this partition is faster than the inner one
and its size is 10 percent of the total disk space. The inner
partition is the data device. DualFS also has a prefetching

size of 16 blocks and a directory affinity of 10 percent.

8.4 System under Test

All tests have been done on the same machine, whose
configuration is shown in Table 3. In order to trace disk I/O

activity, we have instrumented the operating system to
record when a request starts and finishes.

9 EXPERIMENTAL RESULTS

In order to better understand the different file systems, we

show two performance results for each file system in every
benchmark:

. Disk I/O time: The total time taken for all disk I/O
operations.

. Performance: The performance achieved by the file
system in the benchmark.
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The performance result is the application time except for the

SPECweb99 and TPC-C benchmarks. Since these macro-

benchmarks take a fixed time specified by the benchmark

itself, we will use the benchmark metrics (number of

simultaneous connections for SPECweb99 and tpmC for

TPC-C) as throughput measurements.
We could give the application time only, but, given that

some macrobenchmarks (e.g., compilation) are CPU-bound

in our system, we find I/O time more useful in those cases.

The total I/O time can give us an idea of to what extent the

storage system can be loaded. A file system that loads a disk

less than others makes it possible to increase the number of

applications which perform disk operations concurrently.
The figures listed below show the confidence intervals

for the mean as error bars for a 95 percent confidence level.

The number inside each bar is the height of the bar, which is

a value normalized with respect to Ext2. For Ext2, the height

is always 1, so we have written the absolute value for Ext2

inside each Ext2 bar, which is useful for comparison

purposes between figures.
Finally, it is important to note that all benchmarks have

been run with a cold file system cache (the computer is

restarted after every test run).

9.1 Microbenchmarks

Fig. 5 shows the microbenchmarks’ results. A quick review
shows that DualFS has the best disk I/O and application
times in general, in both write and read operations, and that
JFS has the worst performance. Only ReiserFS is clearly
better than DualFS in the write-data-meta benchmark and it
is even better when there are four processes. However,
ReiserFS performance is very poor in the read-data-meta
case. This is a serious problem for ReiserFS given that reads
are a more frequent operation than writes [25], [29]. In order
to understand these results, we must explain some ReiserFS
features.

ReiserFS does not use the block group or cylinder group
concepts like the other file systems analyzed. Instead,
ReiserFS uses an allocation algorithm which allocates blocks
almost sequentially when the file system is empty. This
allocation starts at the beginning of the file system, after the
last block of the metadata log. Since many blocks are
allocated sequentially, they are also written sequentially.
The other file systems, however, have data blocks spread
across different groups which take up the entire file system,
so writes are not as efficient as in ReiserFS. This explains the
good performance of ReiserFS in the write-data-meta test.

The above also explains why ReiserFS is not so bad in the
read-data-meta test when there are four processes. Since the
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directory tree read by the processes is small and it is created
in an empty file system, all its blocks are together at the
beginning of the file system. This makes processes’ read
requests cause small seeks when processes read the
directory tree. The same does not occur in the other file
systems, where the four processes cause long seeks because
they read blocks which are in different groups spread
across the entire disk.

Another interesting point in the write-data-meta bench-
mark is the performance of ReiserFS and DualFS with
respect to Ext2. Although the disk I/O times of both file
systems are much better than that of Ext2, the application
times are not so good. This indicates that Ext2 achieves a
better overlap between I/O and CPU operations because it
neither has a journal nor forces a metadata write order.

The good performance of DualFS is specially remarkable
in the read-data-meta benchmark, where DualFS is up to
35 percent faster than ReiserFS. When compared with
previous versions of DualFS [40], we can see that this
performance is mainly provided by the metadata prefetch-
ing and directory affinity mechanisms, which, respectively,
reduce the number of long seeks between data and
metadata partitions and between data-block groups within
the data partition.

In all the metadata-only benchmarks but write-meta, the
distinguished winners (regarding the application time) are
ReiserFS and DualFS. And, they are the absolute winners,
taking into account the disk I/O time. Also note that DualFS
is the best when the number of processes is four.

The problem of the write-meta benchmark is that it is
CPU-bound because all modified metadata blocks fit in
main memory. In this benchmark, Ext2 is very efficient,
whereas the journaling file systems are big consumers of
CPU time in general. Even then, DualFS is the best of the
five. Regarding the disk I/O time, ReiserFS and DualFS are
the best, as expected, because they write metadata blocks to
disk sequentially.

In the read-meta case, ReiserFS and DualFS have the best
performance because they read metadata blocks which are
very close. Ext2, Ext3, XFS, and JFS, however, have
metadata blocks spread across the storage device, which
causes long disk-head movements. Note that the DualFS
performance is even better when there are four processes.

This increase in DualFS performance when the number
of processes goes from one to four is due to the metadata
prefetching. Indeed, prefetching makes DualFS scalable
with the number of processes. Table 4 shows the I/O time
(in seconds) for the six file systems studied and for one and

four processes (the value in parentheses is the confidence
interval given as percentage of the mean). Whereas Ext2,
Ext3, XFS, JFS, and ReiserFS significantly increase the total
I/O time when the number of processes goes from one to
four, DualFS increases the I/O time slightly.

For one process, the high metadata locality in the DualFS
log and the implicit prefetching performed by the disk drive
(through the read-ahead mechanism) make the difference
between DualFS and the other file systems. ReiserFS also
takes advantage of the same disk read-ahead mechanism.

However, the implicit prefetching performed by the disk
drive is less effective if the number of processes is two or
greater. When there are four processes, the disk heads
constantly go from track to track because each process
works with a different area of the metadata device. When
the disk drive reads a new track, the previous read track is
evicted from the built-in disk cache and its metadata blocks
are discarded before being requested by the process which
caused the read of the track.

The explicit prefetching performed by DualFS solves the
above problem by copying metadata blocks from the built-
in disk cache to the buffer cache in main memory before
being evicted. Metadata blocks can stay in the buffer cache
for a long time, whereas metadata blocks in the built-in
cache will be evicted soon, when the disk drive reads
another track.

Another remarkable point in the read-meta benchmark is
the XFS performance. Although XFS has metadata blocks
spread across the storage device like Ext2 and Ext3, its
performance is much better. We have analyzed XFS disk
I/O traces and we have found out that XFS does not update
the “atime” of directories by default. The absence of
metadata writes in XFS reduces the total I/O time because
there are fewer disk operations and because the average
time of the read requests is smaller. JFS does not update the
“atime” of directories either, but that does not appear to
reduce its I/O time significantly.

In the last benchmark, del, the XFS behavior is odd again.
For one process, it has a very bad performance. However,
the performance improves when there are four processes.
The other file systems have the behavior we expect.

Finally, note the great performance of DualFS in the read-
data-meta and read-meta benchmarks despite the online
metadata relocation.

9.2 Macrobenchmarks

The results of macrobenchmarks are shown in Fig. 6. Since
benchmark metrics are different, we have shown the
relative application performance with respect to Ext2 for
every file system.

As we can see, the only I/O-bound benchmark is
PostMark (that is, benchmark results agree with I/O time
results). The other four benchmarks are CPU-bound in our
system and all file systems consequently have a similar
performance. Nevertheless, DualFS is usually a little better
than the other file systems.

The reason to include the CPU-bound benchmarks is that
they are very common for system evaluations. Moreover,
the I/O time can be important in a more powerful system
running one of those benchmarks. Hence, it is at least
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interesting to analyze the I/O time taken by each file system
in the four CPU-bound benchmarks.

From the disk I/O time point of view, DualFS has the
best throughput. Only XFS is better than DualFS in the
SPECweb99 and TPC-C benchmarks. However, we must,
respectively, take into account that XFS neither updates the
access time of directory i-nodes nor meets the TPC-C
benchmark requirements (specifically, it does not meet the
response time constraints for new-order and order-status
transactions).

In order to explain this superiority of DualFS over the
other file systems, we have analyzed the disk I/O traces
obtained and we have found that performance differences
between file systems are mainly due to writes (see Fig. 7).
There are a lot of write operations in these tests and DualFS
is the file system which better carries them out. For JFS,
however, these performance differences are also due to
reads, which take longer than in the other file systems.

Internet System Providers should pay special attention to
the results achieved by DualFS in the PostMark benchmark.
In this test, DualFS achieves 60 percent more transactions per
second than Ext2 and Ext3, twice as many transactions per
second as ReiserFS, almost three times as many transactions
per second as XFS, and four times as many transactions per

second as JFS. Although there are specific file systems for

Internet workloads [41], note that these results are achieved

by a general-purpose file system, DualFS.

9.3 Lessons Learned

After comparing DualFS with other file systems, there are

some lessons that can be learned. The first one is that the

separation between data and metadata, along with suitable

storage structures for each one, facilitates the implementa-

tion of more efficient file systems, as the above experimental

results show.
The second lesson is that the group structure used by

Ext2, Ext3, XFS, and JFS can greatly downgrade file system

performance when there are several processes performing

metadata operations. The reason is that there are a lot of

long seeks caused by the reading and writing of small

elements, such as metadata. In order to solve this problem,

it is preferable to place metadata apart in a small device

with a proper structure which optimizes writes, the most

frequent operation on metadata. The DualFS’s metadata

device meets these requirements.
Finally, the last lesson learned is that it is important to

move from the built-in disk cache to the main memory

everything which might be needed soon after, especially

when there are a lot of processes. Since the built-in disk

cache is relatively small, blocks read from disk are soon

evicted and must be read again if they are needed later. The

usefulness of this block movement can be guaranteed with a

high temporal locality in disk. The prefetching and online

relocation mechanisms implemented by DualFS achieve this

goal for metadata. The other file systems do not have

anything similar and their performances fall down in

metadata benchmarks when the number of processes rises.

10 CONCLUSIONS

Improving file system performance is important for a wide

variety of systems, from general purpose systems to more

specialized high-performance systems. Many high-perfor-

mance systems, for example, rely on off-the-shelf file
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systems to store final and partial results and to resume

failed computation.
In this paper, we have described DualFS, which proves,

for the first time, that a new journaling file-system design

based on data and metadata separation and special

metadata management is not only possible but also

desirable. DualFS design is focused on metadata manage-

ment. Our new file system organizes metadata as a log-

structured file system, while data blocks are organized in

groups, much as in other file systems.
The new journaling file system has turned out to be very

efficient. Through an extensive set of micro and macro-

benchmarks, we have evaluated six different journaling

and nonjournaling file systems (Ext2, Ext3, XFS, JFS,

ReiserFS, and DualFS) and the experimental results

obtained have shown that DualFS is the best journaling

file system in general.
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