
The Parallel EM Algorithm and its Applications in
Computer Vision*

P.E. López-de-Teruel, J.M. García and M. Acacio
Dpto. de Ingeniería y Tecnología de Computadores

University of Murcia
Campus de Espinardo, s/n 30080 Murcia (Spain)

{pedroe,jmgarcia,meacacio}@ditec.um.es

* This work has been supported by the Spanish CICYT under grants TIC97-0897-C04-03 and TIC98-0559.

Abstract In this paper we propose several applica-
tions of the EM algorithm –a well-known algorithm
for parameter estimation in generic statistical prob-
lems– in the different levels of a computer vision
system, and discuss its relatively straightforward
and efficient implementation in parallel distributed
memory environments, under the message passing
paradigm. We show, at least, an algorithm for each
level of a generic computer vision system (low, me-
dium and high level vision) with the common basis of
the EM algorithm applied in parameter estimation
for mixture statistical models. We present an effi-
cient implementation in parallel for all of them un-
der a common scheme. Also, we show an evaluation
of a medium-level vision EM application in a cluster
of PCs. The results we have obtained in terms of
both speedup and execution time are very good.
Moreover, the paper gives us the guidelines for ex-
tending the method for related problems, and, in
general, for many applications with mixture pa-
rameter estimation with EM as its main task.

Keywords: Parallel EM Algorithm, Computer Vi-
sion, Message Passing Paradigm, Clusters of PCs.

1 Introduction
Computer vision has become a very active re-
search area in the last years, due to its wide
range of applicability in several fields of sci-
ence and engineering [3]. A widely accepted
fact in the field is that most of the computa-
tional tasks involved in artificial vision systems
are very intensive computationally, but, at the
same time, it is also well known that their re-

petitive nature through all the image data make
them also easily parallelizable.

The EM algorithm, on the other hand, is a
technique for parameter estimation of generic
statistical distributions in presence of incom-
plete data. However, since several years ago,
the EM algorithm has been used in computer
vision systems for several different tasks, such
as image motion, segmentation or visual learn-
ing. But application of the EM uses to be com-
putationally very intensive. Thus, with the arri-
val of cost-effective parallel systems, it is inter-
esting to investigate its parallelization in such
computer vision systems.

Lately, clusters of workstations [1] are be-
ing used as a good alternative to traditional par-
allel machines (usually much more expensive).
The performance of such clusters can be very
satisfactory, if the communication shared me-
dium does not suppose a severe bottleneck
[1,12]. Besides the low cost, one of the main
advantages of NOWs (Network of Worksta-
tions) is its extensibility with dedicated hard-
ware for specific applications, such as data ac-
quisition cards for vision, control, and so on.
The reason is that its availability in the market
is only limited by the availability for each indi-
vidual computer in the cluster (for example,
PCs with standard PCI and ISA slots, whose
range of possibilities is very wide). This suggest
the possibility of using this kind of parallel ma-
chines in computer vision, with a standard PC
visual data acquisition card, in order to obtain
good speedup results.

In this paper, we propose a generic parallel
implementation of the EM algorithm. We also
justify that this kind of distributed parallel ma-
chines (NOWs) are very adequate to implement
different variations of this parallel EM algo-
rithm applied in the specific field of computer
vision, at a much lower cost than traditional
MPPs. To do that, we discuss some experimen-
tal results in a cluster of workstations with Fast
Ethernet as its shared medium.

The organization of the paper is as follows:
Section 2 briefly summarizes the foundations of
the EM algorithm, and gives a generic scheme
of an efficient implementation for a parallel
machine. Section 3 describes several applica-
tions in the three different levels of computer
vision (low, medium and high level vision).
Section 4 shows some performance results in a
cluster of workstations. Finally, in section 5
some conclusions and future work are exposed.

2 The EM algorithm and its par-
allel implementation

EM is a technique for estimation of the pa-
rameters of generic statistical distributions in
presence of incomplete data; that is, when esti-
mation of the parameters must be done taking as
input multidimensional samples (i.e., vectorial
data) where some of the components are miss-
ing [4,10]. The main goal of EM is to obtain the
estimated parameters that give maximum likeli-
hood to the input (incomplete) data. The basic
idea underlying the EM algorithm is to iterate
through a series of expectation (E) and maximi-
zation (M) steps in which the solution to the
statistical problem (i.e., the estimation of the
parameters of the model) is progressively re-
fined until convergence.

Mixtures are perhaps the statistical models
where the technique is most straightforwardly
applied, and where very good results can be
obtained at reasonable computational costs.
Mixture models [13] are statistical distributions
composed by a weighted sum of elemental den-
sities of any kind, called the components of the
mixture, and that use to be, but are not limited
to, typical distributions such as gaussians, uni-
forms, and so on. On them, the unknown data
on each input vector is assumed to be the index
of the individual component to which the ex-
ample belongs.

Roughly speaking, we could summarize the
operation of EM in mixture parameter estima-
tion as follows: In the E-Step, the probabilities
of each point in the sample of belonging to each
component of the mixture are computed. This is
the expectation of the unknown data. And, in
the M-Step, a new set of parameters for the in-
dividual components (for example, mean vector
and covariance matrix, for the specific case of
gaussian components) are calculated, using the
previously computed probabilities as weights in
the calculation. This way, we set the number of
components, randomly initialize their associated
parameters, and begin the iterative E and M
steps loop until convergence to a stable solu-
tion. The algorithm experimentally shows very
good adaptability and convergence properties,
even with poor initial configuration of the pa-
rameters.

Obviously, the implementation slightly
varies depending on the characteristics of the
specific application: The type and dimension of
the input samples, the chosen elemental model
for the individual components of the mixture,
and so on. But the fact that it involves the cal-
culation of a big table of data (with a size of
M×N, being M and N the number of compo-
nents and input samples, respectively), with
several data in each cell (weights, parame-
ters,…), is common to multiple applications of
the technique. In this way, it can be efficiently
parallelized following a scheme that is common
to many parallel programs [8], and that is out-
lined in figure 1.

In it, we can observe how the distributed
processes are strongly uncoupled, in the sense
that the communications needed among them
are very few in relation to the computations
involved, and, besides, they are very synchro-
nized, that is, they occur at even times for all
the processes. This way, each process does not
need to be idle waiting for the rest of processes,
and, at the same time, the computational load is
well balanced.

Figure 2 shows graphically how we take
advantage of this symmetry in the computation
and communication scheme, in order to achieve
the maximum possible speedup. Observe that
the data parallelism is exploited twofold:

• First, a distribution of the processing by col-
umns (i.e. samples) is done, in the expectation
step. This distribution avoids the need of

communications in the Q matrix computation
and in its posterior normalization. Also, the
intermediate parameters for the subcompo-
nents parameters can be still computed with
this data distribution, without communica-
tions.

• Second, in the M-step, after distributing the
previous results among all the processes, a
new data partition is done, by rows (i.e. com-
ponents), to compute the final parameters of
the mixture components.

In this way, as we said before, the compu-
tational load is balanced as much as possible,
and the speedup is expected to be maximized.
In the results section we will give some experi-
mental results to confirm these speedup predic-
tions.

3 Computer vision applications of
the EM algorithm

In this section we will describe three direct ap-
plications of the EM algorithm for mixture pa-
rameter estimation in the three levels (low, me-
dium and high level vision) of a computer vi-
sion system. The technical details of each im-
plementation are obviously different, because of
the different objectives of each level, but all of
them have the same underlying parallel imple-
mentation of the EM. The use of this algorithm
in computer vision systems is not new; other
researchers have applied it in several problems
related to this field. See, for example, [5] (EM
applied to image motion) and [11] (EM applied
to visual learning).

Input: Array of N input samples.
Output: Table of k parameters of each of the M components of the
mixture.
Initialization

Generate an initial random set of parameters for the mixture.
 Repeat
 E-step:

Compute the qe,i values, for e=1..M, i=1..N, probabilities
of each input sample i of having been generated by the
mixture component e, using the current values of the pa-
rameters. Distribute the computing between processors by
columns (samples), as, in each step, a column normaliza-
tion has to be performed (this avoids the needing for
communications in this step).

 M-step:
Recompute the parameters of each component of the
mixture using the previously calculated values of qe,i as
weights, and the standard estimation method for the ele-
mental kind of component. Distribute the computing by
rows (components). This demands a communication be-
tween processors, as the qe,i must be broadcasted and dis-
tributed among them for this recomputation to be per-
formed. Anyway, in many cases the communication size
can be dramatically reduced if some intermediate parame-
ters are precomputed locally, that are subsequently used
for the computing of the final values. This can be done in
many kind of elemental components, and indeed in the
most usually applied in practice (gaussians, uniforms,
etc.).

 Until solution does not significantly change.

Figure 1. Generic parallel implementation of the EM algorithm for mixtures
(message passing paradigm).

3.1 Low Level Vision
The main aim at this level is to detect and iso-
late regions in the input image that presumably
belong to different objects, mainly due to light
intensity changes. This process is usually
known as segmentation, and many techniques
exist to try to solve it [3,6]. In our EM environ-
ment, we construct a mixture of gaussians to
probabilistically model the distribution of the
gray intensity (or red, green, and blue, if we use
color images) values of the pixels in the image,
together with its X and Y positions (see [9] for
details). When the (initially randomly chosen)
set of parameters of the mixture converges, each
component is expected to be collecting all those
pixels that belong to the same object (especially
those components with final greatest a posteri-
ori probability), and can be used as rough low
level object detector. Observe that, here, the
components of the mixture could be, for exam-
ple, multivariate gaussians (with three dimen-
sions for B/W images, or five for color images),
whose individual parameters are the mean vec-
tor and the covariance matrix, while the input

samples are the (R,G,B,X,Y) vectors, directly
obtained from the array of image pixels.

An example of application of this technique
is shown in figure 3 (middle). In it, we can see
how a good bilevel thresholding is performed,
by simply using the EM algorithm with two
components, one for catching the objects and
the other for the background. The system was
also able to dynamically adapt to changing
lighting conditions, with a small computational
effort, exploiting its inherently adaptive nature.
Another advantage is that, since the number of
random sample points in the input image can be
chosen arbitrarily, we also have a chance to
accelerate the segmentation in critical situations
by simply reducing that number of points, at the
cost of a probably coarser output.

The EM parallelization formerly exposed
can be straightforwardly applied here, including
the intermediate parameter computing facility
(perfectly applicable with multivariate gaus-
sians). The final obtained speedup uses to be
very high, approaching more and more to the
ideal value as the image size grows.

QNxM matrix computation:
Distribution by columns (samples)

P
r
o
c
e
s
s

P
r
o
c
e
s
s

P
r
o
c
e
s
s

Subcomponents parameter
distribution (all-gather operation)

Components parameter computation:
Distribution by rows (components)

Final parameter distribution
(all-gather operation)

N Input samples (multidimensional)

M Mixture components
parameters

(initially random)

Next iteration

E-Step

M-Step

Precompute Intermediate Parameters
(Subcomponent reduction)

Figure 2. Generic parallel implementation of the EM algorithm for mixtures
(graphical representation).

3.2 Medium Level Vision
At this level, some kind of elemental structure
needs to be found in the previously segmented
image. Identifying and locating segments in a
scene is, for example, a useful intermediate step
for many computer vision applications, where
further high level processing is needed, such as
3D interpretation or shape recognition under
difficult conditions (overlapping objects, noise,
and so on).

Here, our contribution is to implement a
parallel version of the EM algorithm with a new
kind of elemental density of the mixture espe-
cially designed to model the shape of a straight
line in edge binary images (obtained in the low
level process). Then, the parallel main loop of E
and M steps is executed on the sample of edge
points –(x,y) position vectors–, and a good es-
timation of the position, size and orientation of
the set of segments that best describe the scene
is obtained as output (see [9] for implementa-
tion details). Again, parallelization is straight-
forward, and, the speedup for common problem
sizes, as will be shown in the results section,
very satisfactory.

An example of application is also shown in
the aforementioned figure 3 (right). Here, the
previously segmented image is used as the input
edge image in this new EM version for segment
detection and tracking. Observe the accurate
parametrization of the output image, in which
the amount of information has been reduced
significatively, by extracting the structure of the
input image in terms of straight segments. This
description is potentially very useful for a pos-
terior higher level interpretation.

3.3 High Level Vision
Here, the main aim is to describe graph models
of more or less complicated objects to detect in
the scene, and then to locate corresponding data
graphs in the input image (previously preproc-
essed in order to extract features such as lines,
corners, and so on). The solution must unify the
task of estimating the transformation geometry
–that copes with scale, rotation and translation
of 3D objects in the scene–, and the point corre-
spondence matches between graphs, also un-
known a priori. Here, we use a variation of the
EM proposed in [2], whose main idea is to
manage a soft-assign matrix S that probabilisti-
cally describes an assignation between the
graph and the data nodes, and that iteratively
converges to a pure assignation matrix as the
method operates. With an initial assignation of
the sij elements of the S matrix, the algorithm
finds the transformation matrix φ that, in a
probabilistic sense, and given the current soft
assignation matrix S, best describes the geomet-
ric transformation of the model graph to match
the data graph (M-Step). Then, and using this
newly obtained φ matrix, it is used to compute
the new sij (E-Step), and the whole procedure is
repeated until convergence.

3.4 General issues
In all the three vision levels, the good property
of the EM to adapt to smoothly changing input
data (as objects in scene slowly move) is opti-
mally exploited, by simply letting the main EM
loop to iterate updating the current solution, and
fitting to the new data. Also, the algorithm
shows its ability for detecting and tracking more
or less complex structures in the input, espe-
cially at the medium and high levels, and all of

0 50 100 150 200 250
0

50

100

150

200

0 50 100 150 200 250
0

50

100

150

200

0 50 100 150 200 250
0

50

100

150

200

Figure 3. The EM algorithm in low and medium level vision. Original image (left), thresholded image –low
level process– (middle), and segments found in the image –medium level process– (right).

it with a high potential degree of implicit paral-
lelism.

4 Experimental Results
In this section we show some experimental re-
sults that give us an idea of the overall speed up
that can be obtained with our proposed parallel
computer vision system with clusters of PCs
and the general parallel EM scheme as the un-
derlying algorithm. To show the performance
evaluation, we choose, for example, the me-
dium level vision EM adapted algorithm, to
detect and track segments in a binary edge im-
age. Figure 4 pictures the reduction in the
global execution time, for several problem
sizes, in our cluster of PCs. This cluster is con-
stituted by 7 Intel Pentium 200 MHz processors,
with 64 MB of RAM and 256 KB of cache each
one, with a Fast Ethernet 3Com (100 Mbps) as
the communication network, and with MPICH
1.0.13 for Linux as the communication library.
MPICH is a particular implementation of the
standard MPI (Message Passing Interface) li-
brary [7]. The performance of MPI in this clus-
ter of workstations was extensively analyzed in
[12], and its adequacy for executing our parallel
EM algorithms for computer vision is com-
pletely justified by the obtained results.

As it can be observed in the figure, the
overall reduction in the execution time obtained
is more than acceptable as we increment the
number of processors, mainly due to the reduc-
tions in the size of communication using the

remarkable property of intermediate parameter
calculation in the M-Step, commented in sec-
tion 2. As an immediate consequence, the
global processing time for each frame gets more
and more reduced as we increment the number
of processors. This fact makes the technique
very adequate to be implemented in real time
systems, where small response times may be
crucial.

5 Conclusions and future work
Parallel computing on clusters of PCs has very
high potential, since it takes advantage of ex-
isting hardware and software. Performance tests
of the implementations show that they can be
comparable to many existing parallel machines
for some application problems. So, clusters of
workstations can be considered as a good alter-
native to parallel computers.

Computer vision, on the other hand, is an
interesting field in which it seems very adequate
to take advantage of parallelism. The algorithms
and techniques used in this kind of systems use
to be very data intensive in both data storage
and processing time, while the computations are
often very uncoupled. This fact makes clusters
of PCs ideal to implement this kind of systems.

In this paper, we propose a programming
skeleton for the parallel EM algorithm applied
to generic mixtures, and its application in sev-
eral levels of a parallel machine vision system.
Nevertheless, this scheme has a wide range of
applicability not only in machine vision, but

1 2 3 4 5 6 7
Number of Processors

0

20

40

60

80

100

n
o
i
t
u
c
e
x
E

s
e
m
i
T

n
i

s
d
n
o
c
e
S

2000x100

2000x50

1000x100

1000x50

500x100

500x50

1 2 3 4 5 6 7
Number of Processors

1

2

3

4

5

6

7

pu
d
ee

pS

Figure 4. Execution time vs Number of processors, and corresponding Speed-up vs Number of proces-
sors graphics for the EM version of the line detection algorithm described in section 3.2, for 2 different

problem sizes N×M (N=number of input edge points; M=number of segments to detect (components)). The
execution times correspond to 100 iterations of E and M steps.

also in many other data intensive applications in
which its inherent parallelism can be efficiently
exploited (generic statistic inference, machine
learning, statistical treatment of uncertainty, and
so on). Also, this paper illustrates how parallel
programming with MPI in clusters of worksta-
tions can reach very good cost/benefit ratios,
even in environments with low response time
required such as real-time computer vision. Fi-
nally, and as a future work, we would like to
integrate and evaluate the various levels of the
vision system in a complete real application,
such as visual navigation and 3D object recog-
nition, in order to show the high potential of this
versatile and powerful statistical method, when
it is efficiently parallelized.

References
[1] T. E. Anderson, D. E. Culler and D. A.

Patterson. A Case for NOW. IEEE Micro,
vol. 15, nº 1, pp. 54-64, 1995.

[2] A.D.J. Cross and E.R. Hancock. Graph
Matching With a Dual-Step EM Algorithm.
IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 20, nº 11, pp.
1236-1253, 1998.

[3] E. Davies. Machine Vision: Theory, Algo-
rithms and Practicalities. Academic Press,
1996.

[4] A.P. Dempster, N.M. Laird, and D.B. Ru-
bin, Maximum Likelihood Estimation from
Incomplete Data via the EM Algorithm.
Journal of the Royal Statistical Society, Se-
ries B, vol. 39, pp. 1-38, 1977.

[5] C.M. Fan, N.M. Namazi, and P.B. Pe-
nafiel. A New Image Motion Estimation
Algorithm Based on the EM Technique.
IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 18, pp. 348-352,
1996.

[6] R.C. Gonzalez and R.E. Woods. Digital
Image Processing. Addison-Wesley Pub-
lishing Company, 1993.

[7] W. Gropp, E. Lusk, and A. Skjellum. Us-
ing MPI: Portable Parallel Programming
with the Message Passing Interface. MIT
Press, 1994.

[8] B. Lester. The art of parallel program-
ming. Prentice Hall, 1993.

[9] P.E. López-de-Teruel and A. Ruiz. On Line
Probabilistic Learning Techniques for Real
Time Computer Vision. Proceedings of the
Learning’98, Getafe (Madrid), Spain,
1998.

[10] G.J. McLaghlan and T. Kishnan. The EM
Algorithm and Extensions. John Wiley,
1997.

[11] B. Moghaddam, and A. Pentland, Prob-
abilistic visual learning for object repre-
sentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 19,
pp. 696-710, 1997.

[12] J. Piernas, A. Flores, and J.M. García.
Analyzing the Performance of MPI in a
Cluster of Workstations Based on Fast
Ethernet. 4th European PVM/MPI Users’
Group Meeting, LNCS, Springer-Verlag,
Vol. 1332, pp. 17-24, 1997.

[13] R.A. Redner and H.F. Walkner. Mixture
Densities, Maximum Likelihood Estimation
and the EM algorithm. Society for Indus-
trial and Applied Mathematics (SIAM)
Review, vol. 26, pp. 195-239, 1984.

Conference: PDPTA’99.

Paper identification number:
321P (Regular Research Article).

