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Abstract. Conformational entropy calculation, using normal mode analysis 
(NMA), is a time-consuming step in Molecular Mechanics/Poisson Boltzmann 
Surface Area (MM/PBSA) and Molecular Mechanics/generalized Born Surface 
Area (MM/GBSA) calculations. Here, a solvent accessible surface area 
(SASA)-based model was employed to compute the conformational entropy 
instead of NMA. A new fast GPU-based method called MURCIA (Molecular 
Unburied Rapid Calculation of Individual Areas) was used to accelerate the 
calculation of SASA for each atom. MURCIA employs two different kernels to 
determine each atom’s neighbours. First one (K1) uses just brute force for the 
calculation of atomic neighbours, while the second one (K2) uses an advanced 
algorithm involving hardware interpolations via GPU texture memory unit for 
such purpose. These two kernels have their own advantages depending on the 
protein size. The algorithm is extensively evaluated in three protein datasets, 
and achieves good results for all of them. Finally, further improvements of the 
algorithm are discussed. 

1 Introduction 

Free energy calculation is one of the central interests in computational chemistry 
and computational biology. Many approaches have been developed for the prediction 
of binding free energies, such as thermodynamic integration (TI), free energy 
perturbation (FEP), MM/PBSA, MM/GBSA, etc.[1-5]. Among these approaches, 
MM/PBSA and MM/GBSA are becoming more and more popular due to its high 
efficiency. In its formulation, free energy consists of three parts 
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Recently, we proposed a solvent accessible surface area (SASA)-based approach to 
calculate entropy (term S in Eq. 1) [6]. The new approach can yield similar prediction 
accuracy to normal mode analysis (NMA), but it is much more computationally 
efficient than NMA. The most computationally intensive part of the method is to 
calculate SASA for each atom. 

The former method employed the Shrake-Rupley algorithm [7] to generate a mesh 
of points equidistant from each atom, and then calculate the SASA of each atom by 
computing the distances between each atom’s surface points and its neighbouring 
atoms. Here, in order accelerate the calculations of SASA, the Shrake-Rupley 
algorithm was replaced by a GPU (Graphics Processing Unit)-based method called 
MURCIA (Molecular Unburied Rapid Calculation of Individual Areas) [8].   

There are many molecular simulation packages that have been developed on GPUs. 
For example, AMBER includes full GPU support for Molecular Dynamics 
simulations in PMEMD [9], and VMD, a molecular visualization program, employs 
GPUs for displaying and animating large biomolecular systems using 3-D graphics 
and built-in scripting [10]. 

 

Fig. 1. Flow chart for entropy calculation using MURCIA 

The flow chart of this algorithm for entropy calculations is shown in Figure 1. 
The key point of this method is to calculate the neighbour atoms and calculate the 
SAS of each atom. Once the SAS of each atom has been figured out, the following 
formula is used to get the entropy of this protein. 
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Where wi has already been generated in our previous work [6], rprob is 0.8Å, and k is 
set to 0.461, which was found to be the most suitable one.  
 

2 Materials and Methods 

This section describes how the calculation of entropy is carried out starting from the 
radii and positions of protein atoms. First, SAS calculation using an improved version 
of MURCIA[8] is described and then conformational entropy is calculated. 

 
2.1 Copy memory from host to device 

Since we use GPU for the SASA calculations, one important step is to copy protein 
data from host memory to device memory on GPU. In CUDA, we should perform 
memory allocation, and when calculations are finished, free this memory. In the 
MURCIA method protein data is read and stored on CPU, and then the size of 
required GPU memory is calculated and reserved. Finally, it memory is copied from 
host to device. 

2.2 Neighbour calculation 

Neighbour calculation is neccessary for computing SASA, since it can accelerate 
the conduction of calculation. There are two different kernels that we used for the 
following parts, k1 and k2.  

In k1, each block performs calculations for an atom i. In one block, there are 128 
threads by default. For atom i, 128 threads are used to calculate distances between 
other atoms. If the distance is smaller than the cutoff radius,  we will consider the 
atom as a neighbour. If the number of atoms is small than the max blocks size, the 
block size will equal to the atoms’ number, if not, it will be set as the max block size. 

For k2, we will first divide the whole system into several cubic grids, each grid’s 
edge is 2rmax. And then each atom is set a hash value, atoms which have the same 
hash value are regarded as in the same cell. Atoms in the surrounding and native cells 
are regarded as neighbours. 

2.3 Sphere points creation 

A regular spherical grid of points is placed over the surface of each atom. This idea 
can simplify the calculation of SAS by just computing the portion of sphere points 
which fit the condition we set with its neighbour atoms. 



There are two ways we can use to set for the sphere points. One is to import a 
sphere points file which contains predefined grid coordinates, and only 72 and 500 
point models are available. The other is to use the grid coordinates that we defined in 
the grids.h file. The number of points ranges from 12 to 1000. 

2.4 Compute SAS 

After all the preparations have been done, this part is quite easy for calculations. 
Same as the generation of sphere points, in this part for k1, each thread is used to 

qualify whether this point is in the solvent accessible surface of the corresponding 
atom by computing the distance between this point and the atom’s neighbours. If the 
distance is smaller than the value we set, the out points’ number d_nonburied 
increases one. After this calculation is finished, we will get the iSAS  for atom i. 

             sphereNnonburieddSASi _/_=          (4) 
Where N_sphere represents the number of each atom's sphere points. 
For k2, there is a little difference with respect to k1. The whole system is divided 

into many cells, and in each cell, there are several atoms. For each sphere point of one 
atom, the distance is calculated between this point and other atoms which are in the 
same cell or its neighbour cells. If the distance is not larger than the cutoff, the out 
point’s number increases one, and the following is just the same as k1. 

2.5 Conformational entropy 

    After the calculation of SAS is carried out for each atom, it will be an easy step 
to calculate the conformational entropy by using formulas 2 and 3. These two 
formulas are explained and tested in our previous study [6]. Here we used a GPU-
based algorithm to accelerate the process of entropy calculation, and we obtained 
significant improvement in processing speed. 

3 Results and Discussions 

We used three data sets to test our method. Data Set I contains 12 protein decoys 
generated by the Rosetta software package (http://www.rosettacommons.org) , Data 
Set II include relatively larger proteins randomly chosen by us from RCSB protein 
data bank [11]. Data Set III contains the pdb files downloaded from RCSB whose 
chains’ number ranges from 15 to 25.  

The first data set was used in our previous study to evaluate the algorithm of 
entropy calculations. The performance of the CPU-based Shrake-Rupley method and 
the GPU-based MURCIA method for calculating SASA was compared by averaging 
the results from 5 independent calculations. These results are shown in Figure 2. We 
can find that when the number of atoms increases, the time ratio between CPU and 
GPU becomes larger.  



 

Fig. 2. Running time ratio between CPU and GPU for small proteins. 

 
The conformational entropies for the proteins in test set I were predicted based on 

the SASAs calculated by the CPU-based Shrake-Rupley method and those calculated 
by the GPU-based MURCIA method. We found that the conformation entropies 
predicted by the CPU-based and GPU-based methods are almost the same with r2 of 
1. Therefore, the new method based on MURCIA just performs as well as the 
previous one in predicting the conformational entropies for test set I. 

We should mention that for small proteins, the performance of the GPU-based 
method is not optimal, because GPU can generate a lot of threads at the same time 
and each atom can calculate their surrounding atoms and SASA in one thread. So 
when a protein only has limited number of atoms, the calculations of the GPU-based 
method cannot be substantially accelerated compared with those of the CPU-based 
method.  

For the second data set, running time obtained is linear with r2 of 0.9342 (data not 
shown). The running time ratio between CPU and GPU versus the number of atoms is 
shown in Figure 3. As we can see, the ratio arises as a quadratic form, which means 
our method will get faster than the previous one when protein size increases. 



 

Fig. 3. Running time ratio between CPU and GPU for proteins in the 104 size range 

 
All the above GPU-based results were generated by k2, which computes the 

neighbour atoms in a very efficient way. We also used the same data set to test k1, 
and the results can illustrated in Figure 4. When the number of atoms is less than 500, 
the k1 kernel is faster than the k2 kernel, but once the number exceeds 500, k2 
outperforms k1 in terms of processing speed. 

The proteins in the third data set are larger than those in the second data set. This 
set was used to characterize the difference of the computing ability between k2 and k1 
when the number of atoms exceeds 10,000 or even 50,000. Results are illustrated in 
Figure 4, and we can see from the figure that, when k1 was used to generate the 
neighbour atoms, our new method based on MURCIA can be regarded as quadratic, 
and if k2 was used, the MURCIA-based method is just linear with r2 of 0.99. 



 
Fig. 4. Running time (seconds) in SAS calculation for k1 and k2 kernels in the 105 protein size 

range. 

 
According to data sets II and III, we can conclude that when the atom number is 

smaller than 500, using k1 to get each atom’s neighbours is a good choice. Once the 
number goes over 500, k2 will be faster than k1. And this difference will become 
larger when protein size increases due to the different behaviour, quadratic vs. linear. 
 

4 Conclusions 

  We have developed a GPU-based method for the calculation of the conformational 
entropy of molecules. This method can speed up the computing time in a very 
impressive way. We have tested this method using three data sets. The first set proved 
that the calculated entropies predicted by the new method are almost the same to 
those predicted by the method reported in our previous study. Tests for the second 
data set suggest that this method is much faster than the previous one. The third data 
set was used to manifest the difference between k1 and k2. k1 is quadric and k2 is 
linear, and therefore k2 will be faster than k1 when the number of atom exceeds 500.  

It will be a very efficient way to use our method to compute the conformational 
entropy of biomolecules, especially for large structures, and we hope it will be helpful 
in calculating binding free energies and some other applications of Computer Aided 
Drug Design (CADD) in the future. 
 
 
Acknowledgments. This research was supported by the National Science Foundation 
of China under grants 20973121 and 21173156, the Fundación Séneca (Agencia 



Regional de Ciencia y Tecnología, Región de Murcia) under grant 15290/PI/2010, by 
the Spanish MEC and European Commission FEDER under grants CSD2006-00046 
and TIN2009-14475-C04 and a postdoctoral contract from the University of Murcia 
(30th December 2010 resolution). 

5 References 

1. Aaqvist, J., Ion-water interaction potentials derived from free energy 
perturbation simulations. Journal of Physical Chemistry, 1990. 94(21): p. 
8021-8024. 

2. Eldridge, M.D., et al., Empirical scoring functions: I. The development of a 
fast empirical scoring function to estimate the binding affinity of ligands in 
receptor complexes. Journal of computer-aided molecular design, 1997. 
11(5): p. 425-445. 

3. Head, R.D., et al., VALIDATE: A new method for the receptor-based 
prediction of binding affinities of novel ligands. Journal of the American 
Chemical Society, 1996. 118(16): p. 3959-3969. 

4. Srinivasan, J., et al., Continuum solvent studies of the stability of DNA, RNA, 
and phosphoramidate-DNA helices. Journal of the American Chemical 
Society, 1998. 120(37): p. 9401-9409. 

5. Straatsma, T. and H. Berendsen, Free energy of ionic hydration: Analysis of 
a thermodynamic integration technique to evaluate free energy differences 
by molecular dynamics simulations. The Journal of chemical physics, 1988. 
89: p. 5876. 

6. Wang, J. and T. Hou, Develop and Test a Solvent Accessible Surface Area-
Based Model in Conformational Entropy Calculations. Journal of chemical 
information and modeling, 2012. 52(5): p. 1199-1212. 

7. Shrake, A. and J. Rupley, Environment and exposure to solvent of protein 
atoms. Lysozyme and insulin. Journal of molecular biology, 1973. 79(2): p. 
351-364. 

8. E. J. Cepas Quiñonero, H.P.-S., J.M. Cecilia, J.M. García, MURCIA: Fast 
parallel solvent accessible surface area calculation on GPUs and 
application to drug discovery and molecular visualization. NETTAB 2011 
workshop focused on Clinical Bioinformatics, 2011: p. 52-55. 

9. Götz, A.W., et al., Routine microsecond molecular dynamics simulations 
with amber on gpus. 1. generalized born. Journal of Chemical Theory and 
Computation, 2012. 8(5): p. 1542. 

10. Humphrey, W., Dalke, A. and Schulten, K., VMD - Visual Molecular 
Dynamics. J. Molec. Graphics, 1996. 14: p. 33-38. 

11. Berman, H.M., et al., The protein data bank. Nucleic acids research, 2000. 
28(1): p. 235-242. 

 


