
adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A GPU based Conformational Entropy Calculation
Method

Qian Zhang1, José M. García2, Junmei Wang3, Tingjun Hou1* and Horacio Pérez-Sánchez2*

1Institute of Funcional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for
Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123,

China
s20080512@gmail.com, tingjunhou@hotmail.com

2Computer Engineering Department, School of Computer Science, 30100 University of
Murcia, Spain

jmgarcia@ditec.um.es, horacio@ditec.um.es
3Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323

Harry Hines Blvd., Dallas, TX 73590, USA
junmwang@yahoo.com

Abstract. Conformational entropy calculation, using normal mode analysis
(NMA), is a time-consuming step in Molecular Mechanics/Poisson Boltzmann
Surface Area (MM/PBSA) and Molecular Mechanics/generalized Born Surface
Area (MM/GBSA) calculations. Here, a solvent accessible surface area
(SASA)-based model was employed to compute the conformational entropy
instead of NMA. A new fast GPU-based method called MURCIA (Molecular
Unburied Rapid Calculation of Individual Areas) was used to accelerate the
calculation of SASA for each atom. MURCIA employs two different kernels to
determine each atom’s neighbours. First one (K1) uses just brute force for the
calculation of atomic neighbours, while the second one (K2) uses an advanced
algorithm involving hardware interpolations via GPU texture memory unit for
such purpose. These two kernels have their own advantages depending on the
protein size. The algorithm is extensively evaluated in three protein datasets,
and achieves good results for all of them. Finally, further improvements of the
algorithm are discussed.

1 Introduction

Free energy calculation is one of the central interests in computational chemistry
and computational biology. Many approaches have been developed for the prediction
of binding free energies, such as thermodynamic integration (TI), free energy
perturbation (FEP), MM/PBSA, MM/GBSA, etc.[1-5]. Among these approaches,
MM/PBSA and MM/GBSA are becoming more and more popular due to its high
efficiency. In its formulation, free energy consists of three parts

 TSGHG solvgas −+= (1)

Recently, we proposed a solvent accessible surface area (SASA)-based approach to
calculate entropy (term S in Eq. 1) [6]. The new approach can yield similar prediction
accuracy to normal mode analysis (NMA), but it is much more computationally
efficient than NMA. The most computationally intensive part of the method is to
calculate SASA for each atom.

The former method employed the Shrake-Rupley algorithm [7] to generate a mesh
of points equidistant from each atom, and then calculate the SASA of each atom by
computing the distances between each atom’s surface points and its neighbouring
atoms. Here, in order accelerate the calculations of SASA, the Shrake-Rupley
algorithm was replaced by a GPU (Graphics Processing Unit)-based method called
MURCIA (Molecular Unburied Rapid Calculation of Individual Areas) [8].

There are many molecular simulation packages that have been developed on GPUs.
For example, AMBER includes full GPU support for Molecular Dynamics
simulations in PMEMD [9], and VMD, a molecular visualization program, employs
GPUs for displaying and animating large biomolecular systems using 3-D graphics
and built-in scripting [10].

Fig. 1. Flow chart for entropy calculation using MURCIA

The flow chart of this algorithm for entropy calculations is shown in Figure 1.
The key point of this method is to calculate the neighbour atoms and calculate the
SAS of each atom. Once the SAS of each atom has been figured out, the following
formula is used to get the entropy of this protein.

 ∑
=

+=
N

i
iii kBSASSASwS

1

)((2)

 iprobii SASrrBSAS −+= 2)(4π (3)

Where wi has already been generated in our previous work [6], rprob is 0.8Å, and k is
set to 0.461, which was found to be the most suitable one.

2 Materials and Methods

This section describes how the calculation of entropy is carried out starting from the
radii and positions of protein atoms. First, SAS calculation using an improved version
of MURCIA[8] is described and then conformational entropy is calculated.

2.1 Copy memory from host to device

Since we use GPU for the SASA calculations, one important step is to copy protein
data from host memory to device memory on GPU. In CUDA, we should perform
memory allocation, and when calculations are finished, free this memory. In the
MURCIA method protein data is read and stored on CPU, and then the size of
required GPU memory is calculated and reserved. Finally, it memory is copied from
host to device.

2.2 Neighbour calculation

Neighbour calculation is neccessary for computing SASA, since it can accelerate
the conduction of calculation. There are two different kernels that we used for the
following parts, k1 and k2.

In k1, each block performs calculations for an atom i. In one block, there are 128
threads by default. For atom i, 128 threads are used to calculate distances between
other atoms. If the distance is smaller than the cutoff radius, we will consider the
atom as a neighbour. If the number of atoms is small than the max blocks size, the
block size will equal to the atoms’ number, if not, it will be set as the max block size.

For k2, we will first divide the whole system into several cubic grids, each grid’s
edge is 2rmax. And then each atom is set a hash value, atoms which have the same
hash value are regarded as in the same cell. Atoms in the surrounding and native cells
are regarded as neighbours.

2.3 Sphere points creation

A regular spherical grid of points is placed over the surface of each atom. This idea
can simplify the calculation of SAS by just computing the portion of sphere points
which fit the condition we set with its neighbour atoms.

There are two ways we can use to set for the sphere points. One is to import a
sphere points file which contains predefined grid coordinates, and only 72 and 500
point models are available. The other is to use the grid coordinates that we defined in
the grids.h file. The number of points ranges from 12 to 1000.

2.4 Compute SAS

After all the preparations have been done, this part is quite easy for calculations.
Same as the generation of sphere points, in this part for k1, each thread is used to

qualify whether this point is in the solvent accessible surface of the corresponding
atom by computing the distance between this point and the atom’s neighbours. If the
distance is smaller than the value we set, the out points’ number d_nonburied
increases one. After this calculation is finished, we will get the iSAS for atom i.

 sphereNnonburieddSASi _/_= (4)
Where N_sphere represents the number of each atom's sphere points.
For k2, there is a little difference with respect to k1. The whole system is divided

into many cells, and in each cell, there are several atoms. For each sphere point of one
atom, the distance is calculated between this point and other atoms which are in the
same cell or its neighbour cells. If the distance is not larger than the cutoff, the out
point’s number increases one, and the following is just the same as k1.

2.5 Conformational entropy

 After the calculation of SAS is carried out for each atom, it will be an easy step
to calculate the conformational entropy by using formulas 2 and 3. These two
formulas are explained and tested in our previous study [6]. Here we used a GPU-
based algorithm to accelerate the process of entropy calculation, and we obtained
significant improvement in processing speed.

3 Results and Discussions

We used three data sets to test our method. Data Set I contains 12 protein decoys
generated by the Rosetta software package (http://www.rosettacommons.org) , Data
Set II include relatively larger proteins randomly chosen by us from RCSB protein
data bank [11]. Data Set III contains the pdb files downloaded from RCSB whose
chains’ number ranges from 15 to 25.

The first data set was used in our previous study to evaluate the algorithm of
entropy calculations. The performance of the CPU-based Shrake-Rupley method and
the GPU-based MURCIA method for calculating SASA was compared by averaging
the results from 5 independent calculations. These results are shown in Figure 2. We
can find that when the number of atoms increases, the time ratio between CPU and
GPU becomes larger.

Fig. 2. Running time ratio between CPU and GPU for small proteins.

The conformational entropies for the proteins in test set I were predicted based on

the SASAs calculated by the CPU-based Shrake-Rupley method and those calculated
by the GPU-based MURCIA method. We found that the conformation entropies
predicted by the CPU-based and GPU-based methods are almost the same with r2 of
1. Therefore, the new method based on MURCIA just performs as well as the
previous one in predicting the conformational entropies for test set I.

We should mention that for small proteins, the performance of the GPU-based
method is not optimal, because GPU can generate a lot of threads at the same time
and each atom can calculate their surrounding atoms and SASA in one thread. So
when a protein only has limited number of atoms, the calculations of the GPU-based
method cannot be substantially accelerated compared with those of the CPU-based
method.

For the second data set, running time obtained is linear with r2 of 0.9342 (data not
shown). The running time ratio between CPU and GPU versus the number of atoms is
shown in Figure 3. As we can see, the ratio arises as a quadratic form, which means
our method will get faster than the previous one when protein size increases.

Fig. 3. Running time ratio between CPU and GPU for proteins in the 104 size range

All the above GPU-based results were generated by k2, which computes the

neighbour atoms in a very efficient way. We also used the same data set to test k1,
and the results can illustrated in Figure 4. When the number of atoms is less than 500,
the k1 kernel is faster than the k2 kernel, but once the number exceeds 500, k2
outperforms k1 in terms of processing speed.

The proteins in the third data set are larger than those in the second data set. This
set was used to characterize the difference of the computing ability between k2 and k1
when the number of atoms exceeds 10,000 or even 50,000. Results are illustrated in
Figure 4, and we can see from the figure that, when k1 was used to generate the
neighbour atoms, our new method based on MURCIA can be regarded as quadratic,
and if k2 was used, the MURCIA-based method is just linear with r2 of 0.99.

Fig. 4. Running time (seconds) in SAS calculation for k1 and k2 kernels in the 105 protein size

range.

According to data sets II and III, we can conclude that when the atom number is

smaller than 500, using k1 to get each atom’s neighbours is a good choice. Once the
number goes over 500, k2 will be faster than k1. And this difference will become
larger when protein size increases due to the different behaviour, quadratic vs. linear.

4 Conclusions

 We have developed a GPU-based method for the calculation of the conformational
entropy of molecules. This method can speed up the computing time in a very
impressive way. We have tested this method using three data sets. The first set proved
that the calculated entropies predicted by the new method are almost the same to
those predicted by the method reported in our previous study. Tests for the second
data set suggest that this method is much faster than the previous one. The third data
set was used to manifest the difference between k1 and k2. k1 is quadric and k2 is
linear, and therefore k2 will be faster than k1 when the number of atom exceeds 500.

It will be a very efficient way to use our method to compute the conformational
entropy of biomolecules, especially for large structures, and we hope it will be helpful
in calculating binding free energies and some other applications of Computer Aided
Drug Design (CADD) in the future.

Acknowledgments. This research was supported by the National Science Foundation
of China under grants 20973121 and 21173156, the Fundación Séneca (Agencia

Regional de Ciencia y Tecnología, Región de Murcia) under grant 15290/PI/2010, by
the Spanish MEC and European Commission FEDER under grants CSD2006-00046
and TIN2009-14475-C04 and a postdoctoral contract from the University of Murcia
(30th December 2010 resolution).

5 References

1. Aaqvist, J., Ion-water interaction potentials derived from free energy
perturbation simulations. Journal of Physical Chemistry, 1990. 94(21): p.
8021-8024.

2. Eldridge, M.D., et al., Empirical scoring functions: I. The development of a
fast empirical scoring function to estimate the binding affinity of ligands in
receptor complexes. Journal of computer-aided molecular design, 1997.
11(5): p. 425-445.

3. Head, R.D., et al., VALIDATE: A new method for the receptor-based
prediction of binding affinities of novel ligands. Journal of the American
Chemical Society, 1996. 118(16): p. 3959-3969.

4. Srinivasan, J., et al., Continuum solvent studies of the stability of DNA, RNA,
and phosphoramidate-DNA helices. Journal of the American Chemical
Society, 1998. 120(37): p. 9401-9409.

5. Straatsma, T. and H. Berendsen, Free energy of ionic hydration: Analysis of
a thermodynamic integration technique to evaluate free energy differences
by molecular dynamics simulations. The Journal of chemical physics, 1988.
89: p. 5876.

6. Wang, J. and T. Hou, Develop and Test a Solvent Accessible Surface Area-
Based Model in Conformational Entropy Calculations. Journal of chemical
information and modeling, 2012. 52(5): p. 1199-1212.

7. Shrake, A. and J. Rupley, Environment and exposure to solvent of protein
atoms. Lysozyme and insulin. Journal of molecular biology, 1973. 79(2): p.
351-364.

8. E. J. Cepas Quiñonero, H.P.-S., J.M. Cecilia, J.M. García, MURCIA: Fast
parallel solvent accessible surface area calculation on GPUs and
application to drug discovery and molecular visualization. NETTAB 2011
workshop focused on Clinical Bioinformatics, 2011: p. 52-55.

9. Götz, A.W., et al., Routine microsecond molecular dynamics simulations
with amber on gpus. 1. generalized born. Journal of Chemical Theory and
Computation, 2012. 8(5): p. 1542.

10. Humphrey, W., Dalke, A. and Schulten, K., VMD - Visual Molecular
Dynamics. J. Molec. Graphics, 1996. 14: p. 33-38.

11. Berman, H.M., et al., The protein data bank. Nucleic acids research, 2000.
28(1): p. 235-242.

