
J Supercomput (2014) 69:318–329
DOI 10.1007/s11227-014-1154-5

Comparative evaluation of platforms for parallel Ant
Colony Optimization

Ginés D. Guerrero · José M. Cecilia ·
Antonio Llanes · José M. García ·
Martyn Amos · Manuel Ujaldón

Published online: 18 March 2014
© Springer Science+Business Media New York 2014

Abstract The rapidly growing field of nature-inspired computing concerns the devel-
opment and application of algorithms and methods based on biological or phys-
ical principles. This approach is particularly compelling for practitioners in high-
performance computing, as natural algorithms are often inherently parallel in nature
(for example, they may be based on a “swarm”-like model that uses a population
of agents to optimize a function). Coupled with rising interest in nature-based algo-
rithms is the growth in heterogenous computing; systems that use more than one kind
of processor. We are therefore interested in the performance characteristics of nature-

G. D. Guerrero
National Laboratory for High Performance Computing, University of Chile, Santiago, Chile
e-mail: gguerrero@nlhpc.cl

J. M. Cecilia (B) · A. Llanes
Computer Science Department, Universidad Católica San Antonio de Murcia, Murcia, Spain
e-mail: jmcecilia@ucam.edu

A. Llanes
e-mail: allanes@ucam.edu

J. M. García
Computer Engineering Department, University of Murcia, Murcia, Spain
e-mail: jmgarcia@ditec.um.es

M. Amos
School of Computing, Mathematics and Digital Technology, Manchester Metropolitan University,
Manchester, UK
e-mail: m.amos@mmu.ac.uk

M. Ujaldón
Computer Architecture Department, University of Malaga, Malaga, Spain
e-mail: ujaldon@uma.es

123



Ant Colony Optimization 319

inspired algorithms on a number of different platforms. To this end, we present a new
OpenCL-based implementation of the Ant Colony Optimization algorithm, and use
it as the basis of extensive experimental tests. We benchmark the algorithm against
existing implementations, on a wide variety of hardware platforms, and offer exten-
sive analysis. This work provides rigorous foundations for future investigations of Ant
Colony Optimization on high-performance platforms.

Keywords Heterogeneous computing · Ant Colony Optimization · CUDA ·
OpenCL · APU · GPU

1 Introduction

Algorithms inspired by natural processes are gaining increasing acceptance, and
are now used in a wide variety of application domains [28]. Many nature-inspired
methods (such as the genetic algorithm [16], or particle swarm optimization [20])
are population-based, meaning that they maintain a collection of individual solu-
tions which evolves or is modified as the computation proceeds. This structure nat-
urally lends itself to parallelisation, and many parallel versions of such algorithms
now exist [1].

One nature-based method that is proving to be increasingly popular is Ant Colony
Optimization (ACO) [8,10,13]. This algorithm is based on foraging behaviour
observed in colonies of real ants and has been applied to a wide variety of problems,
including vehicle routing [32], feature selection [6] and autonomous robot navigation
[15]. The method generally uses simulated “ants” (i.e., mobile agents), which first con-
struct tours or paths on a network structure (corresponding to solutions to a problem),
and then deposit “pheromone” (i.e., signalling chemicals) according to the quality of
the solution generated. The algorithm takes advantage of emergent properties of the
multi-agent system, in that positive feedback (facilitated by pheromone deposition)
quickly drives the population to high-quality solutions.

The original ACO method (called the Ant System [11]) was developed by Dorigo
in the 1990s, and this version (or slight variants thereof, such as the MAX-MIN Ant
System (MMAS) [31]) is still in regular use [5,19,21]. Parallel versions of the Ant
System have been developed [7,23,30,33] (see also [26] for a survey), and, in recent
work, we present a graphics processor unit (GPU)-based version of ACO that, for the
first time, parallelizes both main phases of the algorithm (that is, tour construction and
pheromone deposition) [3,4].

The original version of our algorithm was developed for the CUDA (Compute Uni-
fied Device Architecture) platform,1 which offers easy access to the parallel processing
capabilities of GPUs (thus facilitating so-called “GPGPU” or “general purpose GPU”
computation). Although it laid the foundations for general GPU-based computing,
CUDA is proprietary to Nvidia, one of the dominant manufacturers in the GPU mar-
ket. With that in mind, an alternative open-standard was developed, which became
known as OpenCL (Open Computing Language) [29]. This standard provides a com-

1 Full technical details at http://docs.nvidia.com/cuda/index.html.

123

http://docs.nvidia.com/cuda/index.html


320 G. D. Guerrero et al.

mon language, programming interfaces and hardware abstractions over a wide range
of devices (CPUs, GPUs and other accelerators), and has contributed significantly to
the growth of heterogeneous computing [2]. Importantly, OpenCL offers portability
across combinations of operating system, GPU and other processors, which, in turn,
have their own hardware costs and performance characteristics. It is therefore possi-
ble to write a portable, parallel algorithm for a specific problem, which may run on
a hardware/software combination that meets multiple constraints (cost, performance,
and so on).

With that in mind, we present a new OpenCL-based version of our ACO algorithm,
which may run on a variety of platforms (from laptops to high-end servers). Our aim
is to demonstrate how such an implementation may be used as the foundation for
high-performance, portable ACO-based solutions. We benchmark our algorithm on a
range of platforms and give an analysis about its scalability on high-end platforms.

The paper is organized as follows: in Sect. 2 we briefly describe our ACO-based
algorithm and the process of migrating it to OpenCL. We then present the results of
experimental investigations in Sect. 3, offer some analysis in Sect. 4, and then conclude
in Sect. 5 with a brief discussion of our findings.

2 ACO algorithm

Our ACO-based solution to the Travelling Salesman Problem (TSP) is described in
detail in [3,4], so here we simply give a brief overview to highlight specific issues
arising from the migration to OpenCL.

The TSP is a well-known N P-hard optimization problem, and is often used as a
standard benchmark for heuristic algorithms [18]. Indeed, it was the first problem to
be solved using ACO [11], and our own work is a natural development of this. Briefly,
the TSP involves finding the shortest (“cheapest”) round-trip route that visits each of
a number of “cities” exactly once. In what follows, we address the symmetric TSP
on n cities, which may be represented as a complete weighted graph, G, of n nodes,
with each weighted edge, ei, j , representing the inter-city distance di, j = d j,i between
cities i and j . The ACO algorithm for TSP uses a number of simulated “ants” (or
agents), which perform distributed search on a graph. Each ant moves on the graph
until it completes a tour, and then offers this tour as its suggested solution. To achieve
this latter step, each ant deposits “pheromone” on the edges that it visits during its
tour. The quantity of pheromone deposited, if any, is determined by the quality of the
solution relative to those obtained by the other ants. Pheromone levels on each edge
“evaporate” over time (i.e., they are gradually reduced), to prevent the algorithm from
being locked into sub-optimal solutions.

While building a tour, each ant probabilistically chooses the next city to visit based
on two different sources of information: (1) heuristic information, obtained from inter-
city distances, and (2) the pheromone trail, which facilitates indirect communication
between ants via their environment (a process known as stigmergy [9]). The com-
bination of local search and global signalling enables a process of directed positive
feedback, by which the population quickly converges to a high-quality solution to the

123



Ant Colony Optimization 321

problem. The main body of the algorithm, therefore, has two main phases: (1) tour
construction, and (2) pheromone deposition.

During tour construction, a number of ants build tours in parallel. Ants are initially
placed at random, and they then repeatedly apply a probabilistic action choice rule
to decide which city to visit next. Pheromone deposition occurs once all ants have
constructed their tours; first, the pheromone levels on all edges are reduced by a
constant factor (to simulate evaporation), and then pheromone is deposited on edges
that ants have included in their tours (the precise amount for each edge in a particular
tour being inversely proportional to the tour’s length). In this way, edges that are used
by many ants (and which are part of short tours) receive more pheromone, and are
therefore more likely to be selected by ants in subsequent rounds (thus implementing
the positive feedback process that we have already described).

2.1 Original CUDA implementation

We first briefly review the main characteristics of CUDA [24], for the benefit of readers
who are unfamiliar with the programming model. CUDA is based on a hierarchy of
abstraction layers; the thread is the basic execution unit; threads are grouped into
blocks, each of which run on a single multiprocessor, where they can share data
on a small but extremely fast memory. A grid is composed of blocks, which are
equally distributed and scheduled among all multiprocessors. The parallel sections of
an application are executed as kernels in a SIMD (Single Instruction Multiple Data)
fashion, that is, with all threads running the same code. A kernel is therefore executed
by a grid of thread blocks, where threads run simultaneously grouped in batches called
warps, which are the scheduling units.

We now consider the implementation of each phase of the algorithm. The “tra-
ditional” task-based parallelism approach is based on the observation that ants run
in parallel while searching for the best tour [4] (that is, parallelism is expressed at
the level of individual ants). Within the basic model, each ant is associated with an
individual thread, but this approach has three main drawbacks:

1. Low degree of parallelism. Because the number of ants used is generally a (linear)
function of the problem size, the number of threads required is generally too low
to fully exploit the resources of the GPU.

2. Control dependencies. Warp divergences (a situation where threads take different
control-flow paths) can often arise when ants check the so-called tabu list—the
record of cities already visited. Put simply, different threads in a warp may need to
do different things, depending on which cities the different ants have visited, and
this is expensive.

3. Irregular memory access. Because the ACO algorithm is inherently stochastic,
this can produce an unpredictable memory access pattern. This prevents the GPU
from taking advantage of caching schemes and other techniques for reducing mem-
ory access latency.

In previous work, we developed an alternative approach that places more empha-
sis on data parallelism [3]. We now briefly describe this algorithm, to establish the
differences between the CUDA and OpenCL implementations.

123



322 G. D. Guerrero et al.

When an ant makes a decision on which city to visit next, it must calculate heuristic
information, as previously described. The heuristic information available to any one
ant at a given time is the same, regardless of which ant is making the query, so it makes
sense to separate out the computation of heuristic values into a separate heuristic info
kernel, which is then executed prior to tour construction. Transition probabilities are
stored in a two-dimensional choice matrix, which is used to inform “roulette wheel”
(Monte Carlo) selection by each ant.

In the tour construction kernel, each ant is associated with a thread block, such that
each thread represents a city (or cities) that the ant may visit. This avoids the problem
of warp divergences, and enhances data parallelism, as all threads within a block may
co-operate. The degree of parallelism improves by a factor of 1 : w, where w is the
number of CUDA threads per block.

Finally, the pheromone kernel performs evaporation and deposition, as described
earlier. Evaporation is straightforward, as a single thread can independently lower each
entry in the pheromone matrix by a constant factor. Deposition is more problematic,
as each ant generates its own private tour in parallel, and will eventually visit the same
edge as another ant. Therefore, to prevent race conditions, we require the use of CUDA
atomic operations when accessing the pheromone matrix.

The efficiency of a parallel implementation is also affected by the types of operation
on which it relies; in our code, scatter/gather operations [17] predominate (i.e., those
which either write or read a large number of data items). As Table 1 reflects, the vast
majority of operations are of the “gather” type; algorithms of this type are memory-
bounded and amenable to optimization via methods such as coalescing (Nvidia GPUs)
and the use of SSE vector instructions (Intel CPUs). A comparative study [22] of
these optimisations reveals similar impact on performance across platforms, which
suggests that the experimental sections of the current paper will not suffer too much
from platform-specific biases.

2.2 OpenCL migration

In this section, we briefly describe various issues that arose during the migration from
CUDA to OpenCL. The foundations of OpenCL are based on the CUDA threading
model, but with differences in terms of naming schemes and identifiers. We therefore
used source-to-source translation to migrate our CUDA-based kernels to OpenCL.
This mapping requires in-depth knowledge of both application programming interface
(API) models, as it is considerably more complex than simple instruction conversion.
Also, OpenCL is still relatively young compared to CUDA, and does not provide the
same functionality offered by its more mature partner.

The process of setting up a device for kernel execution differs substantially between
CUDA and OpenCL. The APIs for context creation and data copying use different
conventions for mapping the kernel onto the device processing elements, which may
substantially affect the programming effort required to code and debug a parallel
application. CUDA provides several libraries to enhance the functionality of its API.
For example, our ACO algorithm uses the CURAND library [25] to generate pseudo-
random numbers. This library is not directly implemented in OpenCL, where the main

123



Ant Colony Optimization 323

Table 1 Characterization of the stages involved in our ACO implementation on GPUs

Algorithm stage Operator Key features CUDA kernel

Generation of choice_info array Gather Data parallelism fully exploited choice_info

Tour construction Gather Optimized via choice_info array Next_tour

Tabu list update Scatter Optimized via an array in register file Next_tour

Pheromone evaporation Scatter Concurrent updates, no queries Pheromone

Pheromone deposit Gather Single update using atomic operations Pheromone

alternative is an implementation of the RANLUX pseudo-random number generator,
called RANLUXCL.2 Unfortunately, we found this library to be fairly wasteful in
terms of memory, so we decided to implement our own, taking a C counterpart as a
departure point [14].

3 Experimental results

In this section we give the results of extensive comparative evaluations of ACO-based
solutions to the TSP on different CPU, APU and GPU platforms. The underlying
hardware platforms we tested are specified in Table 2.

For validation purposes, we use a baseline comparison with the sequential ANSI C
code provided in [12]. The experimental setup (in terms of hardware/software) is listed
in Table 3. We run our three ACO implementations (ANSI C, CUDA and OpenCL)
on selected benchmark TSP instances from the well-known TSPLIB library [27].
All instances are defined on a complete graph, and distances are given as integers.
Table 4 specifies the instances used; they were selected to ensure a representative
sample, from “small” to “medium” and “large” (for reasons of practicality, we test
only the high-end platforms on pr2392; these results are used for the later scalability
analysis). Importantly, we note that our methods solve all instances to optimality; for
the purposes of this paper, we are less interested in the quality of solutions produced,
so to ensure a fair comparison we use instances that are solvable to optimality by our
implementations as described in [3].

For all runs, we set the ACO parameters according to the values recommended
in [12]; α = 1, β = 2, ρ = 0.5, and m = n, meaning that the number of ants, m,
is equal to the number of cities, n. We run each algorithm for 1,000 iterations, and
average timings over 1,000 runs. CUDA times are obtained with a block size of 128
threads, and OpenCL local size is also set to 128.

Before discussing the results of our experiments, we consider several issues with
respect to performance. First, APUs are much more limited in terms of thermal design
power, as they must also include the CPU. This means that execution units will need
to be removed to keep power consumption down. Second, because the APU is a cost-
effective solution, it does not have its own dedicated global memory, but instead it

2 See https://bitbucket.org/ivarun/ranluxcl/.

123

https://bitbucket.org/ivarun/ranluxcl/


324 G. D. Guerrero et al.

Table 2 Summary of hardware features for the CPUs, APUs and GPUs used during our experimental
survey

CPU GPU GPU

(a) Processors found in high-end servers

Release date Q4 2009 Q4 2009 Q1 2010

Codename Intel Westmere Nvidia Fermi ATI Cypress

Commercial model Xeon E5620 Tesla C2050 FirePro V8800

No. cores @ speed 4 @ 2.4 GHz – –

No. stream processors – 448 @ 1.15 GHz 1,600 @ 925 MHz

L2 cache size 12 MB 768 KB 512 KB

DRAM memory size 16 GB 3 GB 2 GB

DRAM type DDR3 GDDR5 GDDR5

Memory bus width 128 bits 384 bits 256 bits

Memory clock 1,066 MHz 2 × 1.5 GHz 4 × 1.15 GHz

Memory bandwidth 17 GB/s 144 GB/s 147.2 GB/s

CPU on APU GPU on APU

(b) Processors found in desktop PCs

Release date Q1 2010 Q1 2010

Codename AMD Llano ATI Redwood

Commercial model E-350 ATI HD 6310

No. cores @ speed 2 @ 1.6 GHz –

No. stream processors – 80 @ 492 MHz

L2 cache size 2 × 512 KB –

DRAM memory size 4 GB (shared) 4 GB (shared)

DRAM type DDR3 DDR3

Memory bus width 64 bits 64 bits

Memory clock 1,066 MHz 1,066 MHz

Memory bandwidth 8.5 GB/s 8.5 GB/s

CPU on APU GPU on APU GPU

(c) Processors found in laptops

Release date Q2 2011 Q2 2011 Q1 2011

Codename AMD Llano ATI Redwood ATI Redwood

Commercial model A6-3420 Radeon HD 6520 Radeon HD 6650M

No. cores @ speed 4 @ 1.4 GHz – –

No. stream processors – 320 @ 400 MHz 480 @ 600 MHz

L2 cache size 4 MB – –

DRAM memory size 4 GB (shared) 4 GB (shared) 1 GB (exclusive)

DRAM type DDR3 DDR3 DDR3

Memory bus width 64 bits 64 bits 128 bits

Memory clock 1,333 MHz 1,333 MHz 900 MHz

Memory bandwidth 10.6 GB/s 10.6 GB/s 14.4 GB/s

123



Ant Colony Optimization 325

Table 3 Software resources used for each hardware platform in our experimental study

Target hardware Software tools

Intel Xeon CPU gcc compiler, 4.3.4 version with the -O3 flag set

Nvidia Tesla GPU CUDA compilation tools, release 4.0

ATI FirePro GPU Software Suite 8.85.7.2 and OpenCL runtime v831.4

AMD APUs and dedicated GPUs AMD’s APP SDK 2.6, Catalyst driver 11.12, OpenCL runtime
version 793.1

Table 4 TSP instances used in our study

Small dataset Medium/large dataset

Graph name d198 a280 lin318 pcb442 rat783 pr1002 pcb1173 d1291 pr2392

Number of cities 198 280 318 442 783 1,002 1,173 1,291 2,392

Best tour length 15,780 2,579 42,029 50,778 8,806 259,045 56,892 50,801 378,032

relies on an emulated global memory located in system memory. While this is good
for performance when transferring data directly between the CPU and GPU, it means
that it will also suffer in terms of overall bandwidth, as even low-end GPUs have more
memory bandwidth.

We present a summary of our results in Fig. 1. For each row (i.e., each platform,
or hardware/software combination), we show execution times averaged over the small
(top bar) and medium/large (bottom bar) instances. Note that times are measured in
milliseconds (ms), and represent the elapsed time for a single iteration of the platform-
specific algorithm, averaged over 100 runs of 1,000 iterations each (as opposed to the
average run time for the whole algorithm). We focus on the average time for a single
iteration precisely because we are interested in the overall kernel performance on each
platform, so this fine-grained approach gives us the insights that we require.

4 Analysis

We now give an analysis of the performance of each category of hardware platform.

4.1 Desktop PCs

Beginning with the E-350 APU, we see that the CPU does not perform particularly
well. This is expected, based on the architecture’s emphasis on power consumption
over performance for this consumer market. However, when moving to the GPU we
see that, for small problem instances, it actually scales better in terms of overall
computational time than the FirePro V8800 for the same base architecture.

Looking closely at the numbers, the E-350 APU, which is outclassed by factors of
37 and 17 for computational power (execution resources × clock speed) and memory

123



326 G. D. Guerrero et al.

Fig. 1 Summary of experimental results. X axis shows each platform, Y axis (logarithmic plot) shows
execution time (ms) for one iteration. Bars are ordered from the smallest (left) to the largest (right) instances

bandwidth, respectively, manages to only perform at roughly 1/10th the speed. We
attribute this to the APU’s ability to quickly transfer data to and from the CPU to the
GPU. However, as the input size increases this advantage disappears, as raw compu-
tational throughput and bandwidth become more important than latency. Comparing
these results to the Tesla C2050 GPU, the APU is at an even greater disadvantage, due
to its VLIW architecture (compared to the scalar and compute-oriented architecture
of the C2050). This should change, however, with AMD future generations of APUs,
which consider a GPU based on their newly released Graphics Core Next (GCN)
architecture. GCN greatly improves computational throughput, by moving scheduling
from the compiler to the hardware.

4.2 Laptop computers

Moving to the A6-3420M APU, we see very similar results as with the E-350 APU.
Here, our integrated GPU (iGPU) has roughly 3 times the amount of computational
resources, but only 1/4 more bandwidth. This is evident in the scaling of the algorithm,
as we go from 200 ms. with the E-350 APU to 148 ms. with the iGPU, a near exact
scaling of the bandwidth advantage that the iGPU possesses.

As we increase the size of the problem instance, we then see that performance
becomes constrained more by computational resources than by bandwidth. Our sim-
plest comparison is to the A6-3420M’s dedicated GPU (which has 2.25 times the
computational power), where, as the input size increases, the difference between the
two solutions approaches this limitation. This shows that, while the memory system
influences ACO performance, computational resources become the dominating factor
in overall performance. For PCI-express 2.0, the maximum bandwidth (unidirectional)
is 8 GB/s, while using zero copy the APU is able to reach nearly 16 GB/s. If this had
been taken into account, the results for the APU and dedicated GPUs would in fact be
much closer, as this type of workload/data transfer is playing to the APU’s strength.

123



Ant Colony Optimization 327

Table 5 Scalability on high-end-platforms depending on hardware and programming methods

Scalability → Short range Mid range Long range

Language/API HW platform Time(pr2392)/
Time(rat783)

Time(rat783)/
Time(d198)

Time(pr2392)/
Time(d198)

C CPU Xeon 31.24x 82.30x 2,571.46x

CUDA GPU Tesla 24.43x 45.74x 1,117.88x

OpenCL GPU Tesla 24.16x 44.83x 1,083.52x

OpenCL GPU FirePro 22.70x 17.09x 388.12x

FirePro behaves better on larger problem instances, followed by Tesla using OpenCL (with CUDA very
close), and finally Xeon using C

Ending with the dedicated GPU (dGPU), we see a similar speedup increase, just as
we did for the E-350 and A6-3420M APUs. Again, for small input sizes, latency and
bandwidth are much more important than the computational abilities of the device,
as there are fewer threads to interleave to hide memory accesses. This is visible in
the dGPU, which has 7 and 2 times the amount of computational power and memory
bandwidth as the E-350 APU, while performing just over twice as quickly for the d198
dataset.

As we increase the complexity of the workload, we again see that memory band-
width becomes a less important issue, and computational power becomes the main
contributing factor for overall performance. Comparing once again to the Tesla C2050,
the APU solution does not perform as well as we had hoped.

4.3 High-end platforms

High-end processors usually cover large-scale applications, and our performance
analysis emphasises scalability. Table 5 shows the behaviour of the execution time
when the problem size increases. We compare execution times on small, medium and
large instances, and obtain the coefficient or multiplier which separates them. The
larger this coefficient is for a given processor, the poorer the degree of scalability.

Looking at those numbers, we see that when comparing Tesla versus FirePro (GPUs
running the same OpenCL code), Tesla is 1.5x–2x faster, but FirePro scales better.
Also, comparing languages on the same Tesla hardware, CUDA is 1.15x–1.20x faster,
but OpenCL scales slightly better. Finally, comparing GPU results with numbers on
the CPU, the GPU is faster and scales better: The speed-up factor ranges 9x–15x on
four small data sets, 17x–20x on four medium data sets, and finally 21.5x on the large
data set.

5 Conclusions

In this paper we presented a comprehensive performance review of different platforms
for Ant Colony Optimization, an emerging and fast-growing nature-inspired algorithm.

123



328 G. D. Guerrero et al.

We discussed the translation of our previous algorithm from CUDA to OpenCL, and
highlighted certain issues that may be faced by other practitioners in future. We then
performed a performance analysis of three variants of the ACO algorithm, using the
Travelling Salesman Problem as a benchmark, and focussed on issues of scalability.

In general, GPUs are superior to CPUs on the high-end segment: they yield twenty
times faster execution on large problem instances. The GPU–CPU difference is similar
on desktops and laptops, 10–20x in favor of GPUs. At an early stage of its evolution,
the APU offers a low-cost platform, without powerful computational units nor swift
memory data paths. Our results demonstrate that these two issues have a severe impact
on performance.

The growth of heterogeneous systems represents a solid trend in modern systems,
and we believe that future work on Ant Colony Optimization in this domain can benefit
from the promising insights into scalability demonstrated by our experimental study.

Acknowledgments This work is jointly supported by the Fundación Séneca (Agencia Regional de Cien-
cia y Tecnología, Región de Murcia) under grant 15290/PI/2010, by the Spanish MEC and European
Commission FEDER under grant TIN2012-31345, by the UCAM under grant PMAFI/26/12, by the Junta
de Andalucía under Project of Excellence P12-TIC-1741 and by the supercomputing infrastructure of the
NLHPC (ECM-02). We also thank NVIDIA for hardware donation under CUDA Teaching Center 2011-14,
CUDA Research Center 2012-14 and CUDA Fellow 2012-14 Awards.

References

1. Alba E, Luque G, Nesmachnow S (2013) Parallel metaheuristics: recent advances and new trends. Int
Trans Oper Res 20(1):1–48. doi:10.1111/j.1475-3995.2012.00862.x

2. Brodtkorb AR, Dyken C, Hagen TR, Hjelmervik JM, Storaasli OO (2010) State-of-the-art in hetero-
geneous computing. Sci Progr 18(1):1–33

3. Cecilia JM, Garcia JM, Nisbet A, Amos M, Ujaldón M (2013) Enhancing data parallelism for ant
colony optimization on GPUs. J Parallel Distrib Comput 73(1):42–51

4. Cecilia JM, Garcia JM, Ujaldon M, Nisbet A, Amos M (2011) Parallelization strategies for ant colony
optimisation on GPUs. In: Proceedings of the 2011 IEEE international symposium on parallel and
distributed processing. IEEE, pp 339–346

5. Chang RSS, Chang JSS, Lin PSS (2009) An ant algorithm for balanced job scheduling in grids. Future
Gener Comput Syst 25(1):20–27. doi:10.1016/j.future.2008.06.004

6. Chen Y, Miao D, Wang R (2010) A rough set approach to feature selection based on ant colony
optimization. Pattern Recognit Lett 31(3):226–233. doi:10.1016/j.patrec.2009.10.013

7. Delévacq A, Delisle P, Gravel M, Krajecki M (2013) Parallel ant colony optimization on graphics
processing units. J Parallel Distrib Comput 73(1):52–61. doi:10.1016/j.jpdc.2012.01.003

8. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. Comput Intell Mag IEEE 1(4):28–39
9. Dorigo M, Bonabeau E, Theraulaz G (2000) Ant algorithms and stigmergy. Future Gener Comput Syst

16(8):851–871
10. Dorigo M, Di Caro G (1999) Ant colony optimization: a new meta-heuristic. In: Proceedings of the

1999 congress on evolutionary computation (CEC’99). IEEE Press, pp 1470–1477
11. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents.

IEEE Trans Syst Man Cybern B 26(1):29–41
12. Dorigo M, Stutzle T (2004) Ant Colony Optimization. Bradford Company
13. Dorigo M, Stützle T (2010) Ant colony optimization: overview and recent advances. In: Handbook of

metaheuristics. Springer, Berlin, pp 227–263
14. Flannery BP, Press WH, Teukolsky SA, Vetterling W (1992) Numerical recipes in c. Press Syndicate

of the University of Cambridge, New York

123

http://dx.doi.org/10.1111/j.1475-3995.2012.00862.x
http://dx.doi.org/10.1016/j.future.2008.06.004
http://dx.doi.org/10.1016/j.patrec.2009.10.013
http://dx.doi.org/10.1016/j.jpdc.2012.01.003


Ant Colony Optimization 329

15. Garcia MP, Montiel O, Castillo O, Sepúlveda R, Melin P (2009) Path planning for autonomous mobile
robot navigation with ant colony optimization and fuzzy cost function evaluation. Appl Soft Comput
9(3):1102–1110. doi:10.1016/j.asoc.2009.02.014

16. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-
Wesley Professional, Reading

17. He B, Govindaraju NK, Luo Q, Smith B (2007) Efficient gather and scatter operations on graphics
processors. In: Proceedings of the 2007 ACM/IEEE conference on supercomputing. ACM, New York,
pp 46–57

18. Johnson DS, McGeoch LA (1997) The traveling salesman problem: a case study in local optimization.
In: Lenstra J, Aarts E (eds) Local search in combinatorial optimization. Wiley, New York, pp 215–310

19. Ke BR, Chen MC, Lin CL (2009) Block-layout design using max-min ant system for saving energy
on mass rapid transit systems. IEEE Trans Intell Transp Syst 10(2):226–235. doi:10.1109/TITS.2009.
2018324

20. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international
conference on neural networks, vol 4. IEEE, pp 1942–1948

21. Komarudin Wong KY (2010) Applying ant system for solving unequal area facility layout problems.
Eur J Oper Res 202(3):730–746. doi:10.1016/j.ejor.2009.06.016

22. Lee VW, Kim C, Chhugani J, Deisher M, Kim D, Nguyen AD, Satish N, Smelyanskiy M, Chennupaty
S, Hammarlund P (2010) Debunking the 100x gpu vs. cpu myth: an evaluation of throughput computing
on cpu and gpu. In: ACM international symposium on computer architecture. ACM, pp 451–460

23. Manfrin M, Birattari M, Stützle T, Dorigo M (2006) Parallel ant colony optimization for the traveling
salesman problem. In: Ant colony optimization and swarm intelligence. Springer, Berlin, pp 224–234

24. Nickolls J, Buck I, Garland M, Skadron K (2008) Scalable parallel programming with cuda. Queue
6(2):40–53

25. Nvidia (2011) CUDA Toolkit 4.0 CURAND Guide. http://developer.download.nvidia.com/compute/
DevZone/docs/html/CUDALibraries/doc/CURAND_Library.pdf

26. Pedemonte M, Nesmachnow S, Cancela H (2011) A survey on parallel ant colony optimization. Appl
Soft Comput 11(8):5181–5197. doi:10.1016/j.asoc.2011.05.042

27. Reinelt G (1991) TSPLIB—a traveling salesman problem library. ORSA J Comput 3(4):376–384.
Library available at http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

28. Rozenberg G, Bäck T, Kok JN (2011) Handbook of natural computing. Springer, Berlin
29. Stone JE, Gohara D, Shi G (2010) OpenCL: a parallel programming standard for heterogeneous

computing systems. Comput Sci Eng 12(3):66–72. doi:10.1109/MCSE.2010.69
30. Stützle T (1998) Parallelization strategies for ant colony optimization. In: Parallel Problem Solving

from Nature (PPSN V). Springer, Berlin, pp 722–731
31. Stutzle T, Hoos HH (2000) MAX-MIN ant system. Future Gener Comput Syst 16(8):889–914
32. Yu B, Yang ZZ, Yao B (2009) An improved ant colony optimization for vehicle routing problem. Eur

J Oper Res 196(1):171–176. doi:10.1016/j.ejor.2008.02.028
33. Zhu W, Curry J (2009) Parallel ant colony for nonlinear function optimization with graphics hardware

acceleration. In: IEEE international conference on systems, man and cybernetics, 2009, SMC 2009.
IEEE, pp 1803–1808

123

http://dx.doi.org/10.1016/j.asoc.2009.02.014
http://dx.doi.org/10.1109/TITS.2009.2018324
http://dx.doi.org/10.1109/TITS.2009.2018324
http://dx.doi.org/10.1016/j.ejor.2009.06.016
http://developer.download.nvidia.com/compute/DevZone/docs/html/CUDALibraries/doc/CURAND_Library.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/CUDALibraries/doc/CURAND_Library.pdf
http://dx.doi.org/10.1016/j.asoc.2011.05.042
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://dx.doi.org/10.1109/MCSE.2010.69
http://dx.doi.org/10.1016/j.ejor.2008.02.028

	Comparative evaluation of platforms for parallel Ant Colony Optimization
	Abstract
	1 Introduction
	2 ACO algorithm
	2.1 Original CUDA implementation
	2.2 OpenCL migration

	3 Experimental results
	4 Analysis
	4.1 Desktop PCs
	4.2 Laptop computers
	4.3 High-end platforms

	5 Conclusions
	Acknowledgments
	References


