
J Supercomput (2014) 69:248–272
DOI 10.1007/s11227-014-1150-9

Evaluating the SAT problem on P systems for different
high-performance architectures

José M. Cecilia · José M. García ·
Ginés D. Guerrero · Manuel Ujaldón

Published online: 19 March 2014
© Springer Science+Business Media New York 2014

Abstract Membrane computing is an emergent research area studying the behav-
ior of living cells to define bio-inspired computing devices, also called P systems.
Such devices provide polynomial time solutions to NP-complete problems by trading
time for space. The efficient simulation of P systems poses three major challenging
issues: an intrinsic massive parallelism of P systems, an exponential computational
workspace, and a non-intensive floating point nature. This paper analyzes the sim-
ulation of a family of recognizer P systems with active membranes that solves the
satisfiability problem in linear time on three different architectures: a shared memory
multiprocessor, a distributed memory system, and a manycore graphics processing unit
(GPU). For an efficient handling of the exponential workspace created by the P sys-
tems computation, we enable different data policies on those architectures to increase
memory bandwidth and exploit data locality through tiling. Parallelism inherent to the
target P system is also managed on each architecture to demonstrate that GPUs offer
a valid alternative for high-performance computing at a considerably lower cost. Our
results lead to execution time improvements exceeding 310× and 78×, respectively,
for a much cheaper high-performance alternative.

J. M. Cecilia
Computer Science Department, Universidad Católica San Antonio (UCAM), 30107 Murcia, Spain
e-mail: jmcecilia@ucam.edu

J. M. García
Computer Engineering Department, University of Murcia, 30100 Murcia, Spain
e-mail: jmgarcia@ditec.um.es

G. D. Guerrero
National Lab for High Performance Computing (NLHPC), Center for Mathematical Modeling (CMM),
School of Engineering and Sciences, University of Chile, Santiago, Chile
e-mail: gguerrero@nlhpc.cl

M. Ujaldón (B)
Computer Architecture Department, University of Malaga, 29071 Malaga, Spain
e-mail: ujaldon@uma.es

123



Evaluating the SAT problem on P systems 249

Keywords Manycore · GPUs · P systems · SAT problem · High-performance
computing

1 Introduction

Parallel computing architectures have brought dramatic changes to mainstream com-
puting [4]. This trend is accelerating as the end of the development of hardware fol-
lowing Moore’s law looms on the horizon. The number of transistors per die no longer
relies on a single chip design, but partitioned among a bunch of simpler cores [6].
Multicore CPUs hold a dozen cores, and manycore GPUs gather a myriad of stream
processors. These components are combined to build heterogeneous parallel comput-
ers offering a wide spectrum of high-speed processing functions [13] and evaluation
methods [24].

A major hurdle for exploiting this raw power is the PCI express bus for communi-
cation between the CPU and GPU, as they do not share memory space, and also their
different parallel programming approaches and paradigms. These problems amplify
when we move to heterogeneous clusters [14]. This article explores this complex situ-
ation for a challenging application which requires (1) a dynamic handling of memory
space and (2) an exponential workspace growing as our code increases the number of
variables involved to run the simulation.

Our work characterizes membrane computing, an emergent research area which
studies the behavior of living cells to define bio-inspired computing devices, also
called P systems. These devices provide polynomial time solutions to NP-complete
problems by trading time for space. This is inspired by the capability of cells to produce
an exponential number of new membranes in polynomial time, through mitosis and
autopeosis processes.

Currently, we lack a feasible biological implementation, either in vivo or in vitro,
of P systems. The only way to analyze and execute these devices is on silicon-based
architectures which are limited by the physical laws. Although some simulators and
software applications have been derived [11,12], most of these simulators were devel-
oped for sequential architectures using languages such as Java, CLIPS, Prolog or C,
where performance is not seen as a critical goal. Trying to exploit as much as pos-
sible the parallelism inherent to P system definition, Alonso et al. [3] proposed a
circuit implementation for the class of transition P systems. Nguyen et al. [17] pro-
posed an implementation of transition P systems in FPGAs, providing several levels
of parallelism, one at the rule level and the other at the region level, releasing a soft-
ware framework for membrane computing called Reconfig-P. Finally, we developed a
generic simulator on GPUs for a family of recognizer P system with active membranes
in [8], showing that the double level of parallelism exposed by GPUs represents a valid
alternative to simulate P systems.

We implemented a specific simulator for the family of P systems for solving theSAT
problem in a single GPU in [7], where an analysis to carry out the theoretical simulation
of P systems on GPUs was depicted, and some heuristics to accelerate its computation
were provided. This work was recently enhanced in [9] with a performance analysis
on several GPU multiprocessors.

123



250 J. M. Cecilia et al.

In this article, we have developed new implementations for shared memory and
distributed memory architectures based on current CPUs. We have also developed a
new hybrid implementation exploiting the shared memory model at the node level and
the message passing model for the communications among nodes. The singularities of
P systems for an efficient handling of the workspace lead to different data policies on
each of those architectures to increase memory bandwidth and data locality. We have
compared all those alternatives against our GPU implementation, analyzing the pros
and cons on each hardware platform to put into perspective GPU numbers and empha-
size its excellent ratio performance/cost. Overall, GPUs defeat these implementations
with gains of factors exceeding 310× and 78× compared to shared and distributed
memory architectures, respectively, to represent a much cheaper high-performance
alternative.

Section 2 of this article introduces membrane computing and describes the behavior
of this biologically inspired way of computation, focusing on computational devices
called P systems to solve the satisfiability (SAT) problem. Section 3 describes the
parallelism which can be extracted from a P system simulation with active membranes,
and once this is learnt, we demonstrate in Sect. 4 how GPUs can accommodate two
levels of parallelism in the computational model versus a single level on shared and
distributed memory systems. Section 5 analyzes different data policies to increase the
memory bandwidth and also to take advantage of the data locality on each architecture
via a blocking/tiling algorithm. Finally, Sect. 6 highlights the main ideas presented
and provides some directions for future work.

2 Background and related work

2.1 Membrane computing and P systems

Membrane computing [20] is a bio-inspired computing paradigm that has attracted
many researchers within natural computing. The model assumes that processes taking
place in the compartmental structure of a living cell can be interpreted as computations.
Devices of this model are called P systems, which consist of a cell-like membrane
structure, where compartments allocate sets of objects (or multisets) with multiplicities
associated with the elements.

Syntactic elements of P systems are the following (see Fig. 1): first, a membrane
structure consisting of a hierarchical arrangement of membranes embedded in a skin,
the frontier between the internal region of the P system and the environment; second,
delimiting regions or compartments where multisets (corresponding to chemical sub-
stances) and sets of evolution rules (corresponding to reaction rules) are placed. Every
membrane has a label and eventually a charge or polarization that can be modified
during the computation. From a computational perspective, P systems include two
valuable features: inherent parallelism and non-determinism.

A P system computation is a sequence of instantaneous transitions between con-
figurations. The computation begins with an initial configuration, where input data
of a given problem are encoded. The transition from one configuration to the next is
performed by applying rules to the objects within the regions. This process iterates
until no more rules can be applied to the existing objects and membranes. This way,

123



Evaluating the SAT problem on P systems 251

Fig. 1 The structure of a P system

P systems exhibit two levels of parallelism: one for each region (rules are applied in
parallel), and another one for the system (all regions evolve concurrently). The objects
inside the membranes evolve according to the given rules in a parallel, synchronous
and non-deterministic way.

Parallelism and non-determinism can be exploited to solve NP-complete problems
in polynomial time, reducing this from an exponential time, but at the expense of using
an exponential workspace of membranes and objects which is created in polynomial
(often linear) time.

The lack of either in vivo or in vitro implementations of P systems has encouraged
researchers to focus on simulators developed in silicon. Those were originally targeted
to sequential platforms [11,12], to later address parallelism in different platforms.

2.2 The satisfiability (SAT) problem

Propositional satisfiability problem (SAT) was the first known NP-complete algorithm
[10]. In computational logic, SAT is a decision problem aimed to determine, for a
formula of the propositional calculus in conjunctive normal form (CNF), if there is
an assignment of truth values to its variables which that formula evaluates to be true.
This is of paramount importance in many computer science areas, including theory,
algorithmic, artificial intelligence, hardware design, electronic design automation and
verification.

We assume a formula to be in CNF when it is a conjunction of clauses, where
each clause is a disjunction of literals. A literal is either a variable or its negation (the
negation of an expression can be reduced to negated variables by De Morgan’s laws).
For example, a1 is a positive literal and ¬a2 is a negative literal.

Considering a CNF formula ϕ with n variables (x1...xn) and m clauses (C1...Cm),
the time spent by all known deterministic algorithms to solve the SAT problem is
exponential depending on the size of the input (max{m, n}) in the worst case. Several
works have been done in the SAT problem resolution [5,16]. However, with the help
of membrane systems, we are able to find the solution at linear time, but at the expense
of creating an exponential workspace.

123



252 J. M. Cecilia et al.

The P system simulation algorithm to solve the SAT problem is based on the P
system computation described in [21], which can be summarized as the following list
of stages:

1. Generation. Membranes are organized into a rooted tree with a single branch.
The root node is the skin membrane, and the second node is called internal mem-
brane. Truth assignments to the variables are generated by using division rules
and encoded in the internal membranes through an ordered execution for the set
of P system rules already described in [21]. This way, 2n internal membranes
are created, each containing a truth assignment to the variables of the formula,
exhaustively searching the entire configuration space of the problem.

2. Synchronization. The objects encoding a true clause (a partial solution to the CNF
formula) are unified in the membrane.

3. Check out. The goal here is to determine how many (and which) clauses are true
in every internal membrane by the assignment that it represents.

4. Output. Internal membranes encoding a solution send an object to the skin. If the
skin has/does not have such object from some membrane, the object Y es/No is
sent to the environment.

A detailed discussion of P system computation to solve the SAT problem is beyond
the scope of this paper. We refer the reader to [8,21] for a comprehensive overview.

Algorithm 1 summarizes the sequential code based on the last description. Gen-
eration and Synchronization stages create an exponential workspace of membranes
in a synchronous way, also unifying the objects that codify a partial solution. These
two stages execute in the same function, which is referred to as Generation from now
on. At each iteration of Generation, each membrane runs in parallel, with a global
synchronization required between iterations.

Check out and Output stages are performed once the workspace is created. First,
they determine the clauses that are true in every internal membrane and then check
whether there is a solution for the SAT problem. Hereafter, we combine these two
stages into a joint CheckOut function.

Algorithm 1 The sequential pseudocode of the P system simulation algorithm for the
SAT problem with n variables.
Require: n ≥ 0

{Start Generation and Synchronization stages}
repeat

Generation
until n
{Start Check out and Output stages}
CheckOut

3 The parallel version for the P system solving the SAT problem

The P system for the SAT problem gathers all computational features of the recognizer
P systems with active membranes [19]. Among them, we highlight the theoretical

123



Evaluating the SAT problem on P systems 253

Fig. 2 Sequential and parallel membranes generation on four compute elements (CE). Parallel Preprocess-
ing (PP) is required to set up the parallel execution

double level of parallelism and non-determinism that makes P systems a computational
tool to solve NP-complete problems in polynomial time.

The first level of parallelism for the SAT P system is found among membranes, that
is, by executing each membrane in parallel along the computation. The second level of
parallelism is found within each membrane. That way, the first level is coarse grained
and can be characterized by an intertask parallelism and exploited by the number of
processors available in the parallel system, whereas the second level of parallelism is
fine grained and intra-task is exploited by the number of cores within each processor,
on multi- or manycore architectures.

Figure 2 illustrates parallelism among membranes, with the execution of the Gener-
ation function for the SAT P system in a sequential and parallel architecture composed
of four compute elements (CE). In a parallel architecture, a set of membranes is ini-
tially created by the master process, whose size is equal to the number of CEs available
during the execution. Then, a membrane is sent to each CE by the master processor in
a step called Parallel Preprocessing (PP), developed just before the Generation starts
the computation on each CE. Here, a CE represents a processor (die) on each hardware
platform, which can later be eventually decomposed into multi- or manycores when
exploiting intra-task parallelism.

Figure 2 also shows that each membrane is always generated by the same membrane
and in the same computational step regardless of the target architecture. For instance,
membrane two is always generated by membrane one in the first computational step,
membrane three is always generated by membrane one in the second step, and so on.

123



254 J. M. Cecilia et al.

Fig. 3 Sequential and parallel execution when creating the exponential workload

Finally, each node sends the partial response back to the master to produce the final
result of the P system.

The second level of P system parallelism (internal to membranes) is shown in
Fig. 3. Basically, the simulation algorithm itself uses scatter/gather parallelism, with
no intertask communication or coordination during the Generation step. The com-
putation starts once the initial data have arrived at the CE after the Parallel Pre-
processing step is over. Then the P system rules are applied for the SAT problem
depicted in [21], and resources on each CE can be exploited at its peak to coop-
erate for speeding up the computation of the Generation and CheckOut functions.
These resources are essentially hardware cores on shared memory, distributed mem-
ory and GPU platforms, but only GPUs are manycore, which can handle this level
of parallelism at large scale using hundreds of streaming processors (see Table 1).
An alternative offered by CPUs would eventually use a fine-grain level of paral-
lelism to map on each CPU core the code simulating the behavior of each mem-
brane.

123



Evaluating the SAT problem on P systems 255

Table 1 CUDA and hardware features for the Tesla C1060 and Tesla C2050 GPUs used during our
experimental survey

Feature Tesla C1060 Tesla C2050

Multiprocessors (SM) 30 14

Streaming processors (SP)/SM 8 32

Total number of SPs 240 448

32-Bit registers/SM 16,384 32,768

Shared memory/SM 16 kB 48 kB

Threads/SM 1,024 1,536

Threads/block 512 1,024

Threads/warp 32 32

Device (video) memory available 4 GB 3 GB

Fig. 4 Initial data placement for our shared memory implementation

4 Data policies description

Our P system simulator for the SAT problem organizes data depending on the features
of the underlying architecture. We now describe those data policies.

4.1 The shared memory implementation

The simulator was implemented on the shared memory system using OpenMP [2].
Figure 4 shows the first data layout used by our simulator. The shared memory space
is equally distributed among the n processes considered, and the master process per-
forms the Parallel Preprocessing step by creating as many membranes as number of
processors are involved in the computation. Membranes are placed at the beginning

123



256 J. M. Cecilia et al.

Fig. 5 The shared memory implementation for n processes using our block-based data layout

of the memory space assigned to each process (see gray squares in Fig. 4). Now, the
Generation step is carried out by each individual process, writing the information on
its own memory fragment. Once the membranes workspace has been created by the
Generation stage, the CheckOut stage follows, where membranes are read again by
processes to eventually produce the system response.

This data policy does not take advantage of data locality when the Generation and
CheckOut stages are performed, thus producing many caches misses (in particular, read
misses) that hit the simulator performance. Locality was improved through a block-
based data layout as shown in Fig. 5. Again, the master process starts with the Parallel
Preprocessing step, which generates as many membranes as processes (represented
by black squares in Fig. 5). But now each process performs a local preprocessing
step (called Block Preprocessing, (BP)) on its own memory space before starting the
Generation stage itself. Block Preprocessing pursues a tiling or blocking execution
between different stages of the simulation. Each process creates as many membranes as
number of blocks, placing them at the beginning of each block position (represented by
gray squares in Fig. 5). Then, the Generation stage only creates blocksize membranes
before the CheckOut stage starts. Once a block has been checked out by the CheckOut
stage, processes start again with the Generation stage of the following block which
has been assigned to them.

The block-based data policy increases the time required by preprocessing, includ-
ing a new BP stage, but a shorter data block can be placed in higher levels of the
memory hierarchy, which benefits from data locality. However, there is a trade-off
between preprocessing computation (PP and BP) and the data locality benefits for the
Generation and CheckOut stages, being affected by the block size chosen.

4.2 The distributed memory implementation

The P system simulator for the SAT problem on the distributed memory system was
programmed using MPI [1]. Again, we compare here a preliminary non-blocking
version with an enhanced version based on a blocking data policy.

123



Evaluating the SAT problem on P systems 257

Fig. 6 P system simulation on a distributed memory architecture

In this case, each process allocates memory on its own and private memory space.
The master process also performs the Parallel Preprocessing step, creating as many
membranes as number of processors are involved in the computation. Then, mem-
branes are sent to processors by using the MPI Scatter instruction.

Once the initial data arrive to each node, the P system computation was devel-
oped as in the shared memory case. For the non-blocking data policy, the Genera-
tion is fully performed before the CheckOut starts its computations. For the block-
based data policy, the Block Preprocessing is required for a blocking or tiling exe-
cution. Figure 6 shows the data layout for the block-based data policy. Finally, a
reduction is applied using the MPI Reduce instruction to end up with the system
answer.

To take advantage of all hardware resources currently available on modern large-
scale systems, we also provide a hybrid implementation of the simulator, which is
programmed using both OpenMP and MPI programming models [15,23].

Similarly to the previous, the master process performs the Parallel Preprocessing
step, creating as many membranes as number of nodes are involved in the computa-
tion. However, each node is now a shared memory platform, where several OpenMP
processes collaboratively perform the simulation by also using blocking to exploit
data locality.

With this implementation, the distributed architecture can also enable fine-grained
parallelism, taking advantage of the multiple CPU cores available on each node, and
thus simulating the behavior of each membrane.

123



258 J. M. Cecilia et al.

4.3 Implementation on GPUs

The simulator sets a CUDA thread block for each membrane and a CUDA thread per
object (or set of objects) in the multiset.

This time, the first attempt for the SAT P system simulation on GPUs, the Generation
stage, is encoded as a CUDA kernel, and it starts right after the Parallel Preprocessing
step. Once membranes have been generated, the CheckOut stage starts its execution.
Each thread block loads a membrane from global memory and then each thread checks
the rules associated with this stage. Finally, each block returns whether its associated
membrane makes the CNF formula true or not. For these stages, all threads within a
CUDA thread block cooperate with coalesced access to device memory (threads of
the same warp access the same memory segment either for reading or writing).

Blocking can also be exploited on GPUs, taking advantage of the on-chip shared
memory by using tiles with the aim of increasing the bandwidth to device memory
(see Fig. 7). The simulation has to perform the Block Preprocessing step, which is
implemented through a CUDA kernel where a set of membranes are partially created,
placing them apart from each other at a block size distance.

An additional kernel is created this time at the end of the simulation. This kernel
performs the Generation locally to each block, followed by the CheckOut stage. Each
thread on a thread block cooperates for an efficient load from global memory to shared
memory of the initial membrane generated by the Block Preprocessing step (repre-
sented by black squares in Fig. 7). Then, the Generation stage interacts with shared
memory, saving expensive loads/writes from/to global memory which are around 400
times slower.

Finally, the CheckOut stage is performed over the data stored in shared memory
after a block-level synchronization. This checks whether a clause makes true the CNF
formula and writes its result into device memory.

Figure 8 shows the data policy used by the simulation of the P system for the SAT
problem on a GPU-based platform. This simulator arranges data according to the “best
practices” existing for CUDA-enabled devices [18]. Nevertheless, those guidelines are
mainly focused on arithmetic intensive applications on a single GPU, and it remains to
be seen whether they are valid on architectures like GPU-based clusters with a much
higher degree of parallelism.

Within a GPU-based cluster of up to four GPUs such as those available on current
motherboards for gamers, GPUs cannot interact with each other, and a CPU process
has to be created to monitor each GPU independently. Note that this does not force
us to use parallelism at CPU core level as long as we have exactly four CPUs in our
system which can individually host each of the required processes. This way, our three
implementations lack using the multithread capabilities of CPU cores.

Figure 8 shows how the master thread creates four CPU threads (CPU context)
to invoke the execution on each GPU and manage its resources (i.e., allocate device
memory, move data to/from the GPU, and so on). Resources created on each CPU
thread are not accessible by any other thread, and there is no explicit initialization
function for the runtime API [18], which makes it hard to measure time in a reliable
manner, particularly on multi-GPU environments.

123



Evaluating the SAT problem on P systems 259

Fig. 7 P system simulation on a single GPU

For the GPU case, the master process performs the Parallel Preprocessing step as
usual, generating as many membranes as GPUs are involved in the simulation and
performing the assignment.

At a starting point, the simulation barely exploits GPU resources because the com-
putation begins with a single CUDA thread block (which represents the membrane
generated by the Parallel Preprocessing step). However, the number of CUDA thread
blocks grows exponentially in the Generation stage along with the number of mem-

123



260 J. M. Cecilia et al.

Fig. 8 Data policy on a GPU-based cluster of up to four GPUs. It may be implemented on a cheap
motherboard targeted at gamers, where up to four PCI-e sockets are available

branes, and GPU resources are fully utilized at early stages of the simulation. Another
alternative consists of creating a larger set of initial membranes in the Parallel Pre-
processing step to fulfill that GPU resources are occupied right from the beginning,
but we have tested that this initial low usage of GPU resources has a negligible impact,
even on tiny benchmarks.

5 Performance evaluation

This section evaluates our P systems implementations in three different platforms.
The shared memory platform is an HP Integrity Superdome SX2000 endowed with
64 CPUs, Intel Itanium 2 dual-core Montvale (16 kB L1, 256 kB L2, 18 MB L3).
Total DRAM memory available is 1.5 TB and interconnection network is a 4× DDR
Infiniband. The distributed memory system is an HP BladeSystem which contains
up to 102 nodes and each node is a dual socket, each containing a quad-core Intel
Xeon E5450 (Nehalem with a 12 MB L2 cache). DRAM memory capacity for the
whole system is 1,072 GB. Interconnection network is also a 4× DDR Infiniband
(see Table 2).

123



Evaluating the SAT problem on P systems 261

Table 2 Summary of hardware features for the architectures used during our experimental survey

Shared memory Distrib. memory GPU-based

Hardware HP Integrity Hewlett-Packard 4 Intel Xeon E5530 CPU

Platform Superdome SX2000 Blade System (+ GPU shown in Table 1)

Number of nodes 1 102 1

CPU sockets per node 64 2 4

CPU cores per socket 2 4 4

CPU cores and speed 128 @ 1.6 GHz 816 @ 3 GHz 16 @ 2.4 GHz

Main memory (DRAM) 1,536 GB 1,072 GB 16 GB (+video memory)

Operating system Linux 64 bits Linux 64 bits Linux 64 bits

Programming model OpenMP MPI CUDA

Compiler icc Intel 11.1 HP MPI 02.03.01 nvcc Nvidia 3.2

Finally, our GPU-based platform includes a four-socket, quad-core Intel Xeon
E5530 (Nehalem with a 8 MB L2 cache), which acts as a host machine for our Nvidia
Tesla GPUs, either a C1060 or a C2050, whose details are shown in Table 1.

Data policies and simulation performance are evaluated on each architecture under
a set of benchmarks generated by the WinSAT program [22]. WinSAT can generate
random SAT problems in DIMACS CNF format file by configuring several parameters:
the number of variables (n), the number of clauses (m) and the number of literals per
clause (k).

The number of membranes in our P system depends on the number of CNF variables,
n (membranes = 2n). We vary n from 13 variables (213 membranes) to 25 variables
(225 membranes), whereas the number of literals (l = m ×k) is kept constant (l = 256
for benchmarks with n < 22 and l = 200 for benchmarks with n ≥ 22). Doing so, we
reduce memory requirements so that more benchmarks can be simulated on the GPU-
based system. Memory requirements for each benchmark can be calculated according
to Eq. 1.

Size = 2n(membranes) × l(objects) × 4(unit) bytes (1)

5.1 The shared memory platform

A performance comparison between the blocking and non-blocking algorithm for 64
membranes per block is shown in Fig. 9. The blocking technique increases performance
either with the problem size (i.e., the number of variables in the CNF formula for the
SAT problem) or the number of computational processes (OpenMP processes created).
The former is needed to hide the Preprocessing time (PP and BP), and the latter involves
the memory coherence protocol: the network traffic in shared memory systems goes up
with the number of cores, but the blocking technique takes advantage of the local data
stored on each node to reduce the communications burden versus the non-blocking
version.

123



262 J. M. Cecilia et al.

Fig. 9 Speedup factor achieved by the blocking algorithm when varying the number of variables

Fig. 10 Breakdown for the total execution time using eight OpenMP processes for a SAT problem composed
of n = 23 variables and l = 200 literals

We now present some results about the simulation performance of the SAT P system,
depending on the block size for the block-based data layout in our shared memory
system. Figure 10 shows the breakdown for the total execution time in the three main
functions performed by the OpenMP simulation, depending on the block size used by
the blocking technique. We have checked many different block sizes to find the best
configuration, but for the sake of simplicity Fig. 10 only shows three of them for the
benchmark with n = 23 variables: the largest block size configuration, the shortest
one, and finally the one scoring peak performance.

The largest block size (219membranes/block, up to 420 MB according to Eq. 1) is
the most time-consuming configuration. The Preprocessing (PP and BP preprocess-
ing) step is the least time-consuming for this configuration because only a few initial
membranes are required in advance, but the Generation and CheckOut stages are
heavier than in the other two configurations. CheckOut starts reading the first mem-
brane right after the 219membranes of a block are generated by each process. Since
the L3 cache size for the processor in our shared memory architecture system is 18
MB, many read and write cache misses occur in those stages, affecting the overall
simulation performance.

Similarly, the smallest block size (23membranes/block) shows the highest Pre-
processing time. Although the Generation and CheckOut stages behave much better

123



Evaluating the SAT problem on P systems 263

Table 3 Execution times (in ms) for our P systems simulation on the shared memory architecture (OpenMP
code)

Number
of membranes

Number of OpenMP processes

1 2 4 8 16 32 64 128

213 132.08 65.49 46.32 32.98 28.67 67.59 123.04 191.92

215 506.40 265.38 132.96 85.00 75.00 110.36 154.09 209.35

217 1,887.95 977.63 514.97 288.65 156.93 145.58 158.32 243.96

219 7,450.16 3,785.42 1,894.35 979.19 539.13 366.85 303.77 322.46

221 29,281.70 14,766.00 7,447.95 3,745.47 1,916.27 1,023.37 616.87 576.12

223 78,996.90 39,796.60 20,049.70 10,101.90 5,153.65 2,677.78 1,544.76 997.02

225 307,756.10 156,617.02 78,758.81 39,794.82 20,227.01 10,428.92 5,812.66 3,307.33

We vary the number of membranes (by rows) and keep constant the number of literals, l = 256, for the
block-based version

on cache misses, the simulation finds its best configuration for 26 membranes (50 kB)
per block. This is the turning point between Preprocessing time and Cache misses
(write and read misses) for this architecture.

Finally, Table 3 shows the execution time for the SAT P system simulation with
the best configuration under the blocking technique. We executed several benchmarks
varying the number of variables of the SAT problem, and also varied the number
of OpenMP processes involved in the computation for each benchmark to study the
scalability of the system.

The total execution time is given by the following equation:

ttotal = tprepro + tcpu + toverhead (2)

where the first parameter (tprepro) is the preprocessing time spent by the master process
to create the initial set of membranes to be distributed among remaining processors.
This is Parallel Preprocessing plus the preprocessing time required by each process
to prepare the blocking execution (that is, Block Preprocessing), and it depends on
two values: the number of processes and the block size. The second parameter (tcpu)
concerns the processing time taken by each node, and depends on the benchmark size.
Finally, the last parameter (toverhead) is the extra overhead added to the OpenMP execu-
tion time (i.e., synchronizations, loop scheduling, communications among processors,
resource sharing, etc...). This parameter increases widely with the number of OpenMP
processes.

From the experimental numbers we have obtained (see Table 3), we may draw some
valuable remarks:

1. Processing time (tcpu in Eq. 2) predominates over tprepro and toverhead when the
problem size increases, so we have decided to present a combined value ttotal for
the sake of clarity.

123



264 J. M. Cecilia et al.

Fig. 11 Breakdown of the total execution time using 8 MPI cores with n = 23 variables and l = 200
literals

2. The scalability of the system is good on large problem sizes, but weak on smaller
benchmarks (upper rows increase the execution time when moving from 64 to
128 OpenMP processes, a situation which does not arise on GPU computing).
Nonetheless, these results on shared memory systems are encouraging given our
high performance focus, as supercomputing using high-performance platforms is
justified only on large-scale problems.

3. Our techniques are more effective on large number of membranes even when the
working set for the algorithm exceeds the L3 cache size.

4. The software is more demanding on lower rows, and hardware is more powerful
as we move to columns on the right. The last two rows and columns represent the
maximum scalability and the best compromise between what the software expects
and the hardware can contribute.

Note that this shared memory version only exploits the intra-task parallelism (that
is, among membranes). The remaining stages for the simulation are sequentially per-
formed on each node.

5.2 The distributed memory platform

In this case, the maximum speedup obtained by the best configuration for the blocking
technique algorithm reaches up to 2× versus the non-blocking alternative, with this
peak reached for the case of the n = 25 variables benchmark. Memory banks are
independent on this platform, so the blocking algorithm takes advantage of data locality
to improve memory bandwidth.

Regarding the optimal data block size, Fig. 11 shows the breakdown of the total
execution time for the three main functions performed by the MPI simulation for the
benchmark with n = 23 variables. Again, Fig. 11 shows only the largest, shortest, and
best performance block size configurations. The optimal case here corresponds to 27

membranes per block (100 kB per block).
Table 4 shows the execution time for the MPI code, taking the best configuration

blocking technique and varying the number of variables of the SAT problem and

123



Evaluating the SAT problem on P systems 265

Table 4 Execution times (ms) for our P systems simulation on the distributed memory architecture

Number
of membranes

Number of MPI processes

1 2 4 8 16 32 64 128

213 47.21 20.81 7.42 4.05 2.36 1.83 1.49 1.54

215 164.42 82.49 29.10 15.22 7.94 4.47 2.80 2.78

217 454.98 296.61 116.71 69.33 30.68 15.57 8.42 6.00

219 1,857.39 942.88 496.86 239.82 124.27 61.83 37.70 19.33

221 7,128.02 3,544.49 1,874.44 953.57 475.95 243.10 154.43 83.89

223 19,387.70 9,828.17 4,954.03 2,737.77 1335.51 668.66 364.98 220.00

225 n.a. 37,959.00 19,459.60 9,988.04 5,375.26 2,697.75 1,390.71 720.89

We vary the number of membranes (by rows) and keep constant the number of literals, l = 256, for the
block-based version. n.a. means “not available” due to device memory constraints

the number of MPI processes. Results on a single core are missing for the largest
benchmark (that of n = 25 variables), because the memory available on a single node
is not enough to run the simulation (the benchmark allocates up to 26 GB and the
maximum memory per node is 16 GB).

Similarly to Table 3, the total execution time given by Eq. 2, ttotal, was used as
metric for showing results. Minor differences are seen based on the architectural
features of each system, with the overhead being influenced by communications among
processors. Data sent to each processor by the master is a single membrane, and the
result returned by each node is just a boolean, saying whether or not a solution is
found. Note that this version does not exploit the intertask parallelism either: each
membrane is sent to a node and simulations are executed sequentially on that node.

Our analysis of these results can be summarized as follows. The system scala-
bility improves again with the problem size, but this time scales much better than
in the OpenMP case and does not suffer from small benchmarks or large number
of nodes. Only the first row increases slightly when moving to 128 nodes, but the
situation immediately reverses. More importantly, large problem sizes and number
of nodes keep scalability at high standards, overcoming those weaknesses showed
on shared memory problems. Thus, we certify that on memory-bound problems dis-
tributed memory architectures are a better alternative to the use of shared memory
when the parallelization strategy can find enough number of independent task, and
usually at a lower infrastructure cost. Given that GPUs combine small amounts of
shared memory within thread blocks with large quantities among multiprocessors (the
global memory), it is interesting to see at this point what they have to say concerning
performance and scalability.

5.3 The GPUs

Figure 12 shows the breakdown of the total execution time for a Tesla C1060 GPU
executing the benchmark with n = 21 variables and using a tiling version. It shows that

123



266 J. M. Cecilia et al.

Fig. 12 Breakdown of the total execution time in a Tesla C1060 GPU with n = 21 variables

Fig. 13 Breakdown for the execution time on a single GPU with n = 23 variables and l = 200 literals

the 51 % of total execution time is spent by the runtime API initialization on average
and only 47 % corresponds to the actual execution time. The runtime API initialization
penalty is not usually considered when timing GPU applications, because it is not stable
between different executions or related to the actual GPU computation. But in our case
it represents half of the total execution time. Data transfers are not that important here
and lose the leadership shown on previous platforms.

We first evaluate the impact of the data block size. Figure 13 shows the breakdown of
the total execution time for the two main kernels performed by the GPU simulation. The
block size is now limited by the on-chip shared memory space (16 kB for Tesla C1060,
48 kB for Tesla C2050). Simulations are tested for two, four and eight membranes per
block, reaching the best performance for the last case.

The number of global memory accesses and the number of iterations in the Block
Preprocessing kernel intrinsically depends on block size. In particular, eight mem-
branes per block require half of the memory accesses and iterations as compared to
the four membranes per block configuration, which, similarly, cut down to a half those
required by the two membranes per block case. Figure 13 reflects this fact.

Likewise, memory accesses in the Generation and CheckOut stages are reduced in a
similar way as long as the block size increases. However, the GPU resource occupancy
worsens for the eight membranes per block case, because the shared memory usage
per block prevents allocating more than one block per SM. As a result, the overall
improvement is just 14% over the four membranes per block configuration.

123



Evaluating the SAT problem on P systems 267

Table 5 Execution times (ms) for our P systems simulation on different CUDA versions and GPU platforms

Number of
membranes

GPU enhanced GPU tiled

Tesla C1060 Tesla C2050 Tesla C1060 Tesla C2050

213 0.82 0.62 0.64 0.37

214 1.55 1.20 1.15 0.66

215 2.90 2.30 2.17 1.24

216 5.65 4.37 4.23 2.37

217 11.16 8.71 8.29 4.65

218 22.06 17.15 16.46 9.19

219 44.69 33.16 32.79 18.27

220 88.48 89.03 65.51 36.65

221 171.04 127.85 124.29 69.76

222 298.26 n.a. 178.18 n.a.

We vary the number of membranes and keep constant the number of literals, l = 256. There are eight
membranes per CUDA block in the Tesla C1060, and 16 in the Tesla C2050. n.a. means “not available” due
to device memory constraints

Table 5 shows the performance for the tiling version of the GPU simulator with
eight membranes per block in the Tesla C1060 GPU and 16 membranes in the Tesla
C2050 GPU. We vary the problem size (by rows) to study the scalability for the system.
Note that video memory constraints prevent us from executing the code beyond n=23
variables, whose memory requirements are 6,400 MB. Moreover, those times do not
account for overheads like initial and final data transfers between CPU and GPU,
GPU memory allocation, and CUDA runtime initialization, which may be significant
in practice.

GPUs improve significantly the device memory bandwidth through shared memory
usage, which is explicitly used by the CUDA programmer. This way, one can control
the number of accesses and the way to access memory-bounded applications like
ours. Even though the small size of the shared memory decreases GPU occupancy,
the benefit of reducing the number of accesses to device memory is much higher and
this strategy is widely rewarded: we see that the tiling technique obtains up to 2.43×
speedup factor versus the non-tiling counterpart (see the penultimate row in Table 5).

5.4 Overall comparison

Figure 14 summarizes the performance for all our implementations, where GPU num-
bers have been extended from 1 to 2 and 4 GPUs. That way, we can study the scalability
in all platforms: for the OpenMP case, doubling the number of threads on each step
forward that is represented on the X axis within each data set interval; for the MPI case,
doubling the number of processes involved; and for CUDA, doubling the number of
GPUs. A single context is maintained per physical core to minimize communications
and avoid additional overhead for the exponential workspace generated in the simu-
lation. On the other hand, the Y axis depicts the execution time in log10 scale. With

123



268 J. M. Cecilia et al.

F
ig

.1
4

E
xe

cu
tio

n
tim

e
fo

r
th

e
th

re
e

di
ff

er
en

t
pr

og
ra

m
m

in
g

m
od

el
s

an
d

ar
ch

ite
ct

ur
es

:
C

U
D

A
on

G
PU

s,
O

pe
nM

P
on

a
sh

ar
ed

m
em

or
y

sy
st

em
an

d
M

PI
on

a
di

st
ri

bu
te

d
m

em
or

y
pl

at
fo

rm

123



Evaluating the SAT problem on P systems 269

log scales being used on both dimensions, it is not that easy to keep track of hardware
scalability, but the important issue here is that all architectures draw parallel lines
on its evolution when doubling the hardware resources involved, reflecting a similar
behavior in this respect.

Essentially, the simulation algorithm itself uses scatter/gather parallelism, with no
intertask communication or coordination during the Generation step. This produces
good (linear) scaling on distributed memory systems as only a front-end collective
scatter and a back-end collective are required to accumulate the final solution. The
hybrid version introduces the overhead of creating OpenMP processes within each
node, and for this particular problem where the number of communications is too low,
this is paid by obtaining even higher execution times than the only MPI case. We can
also see that the relative GPU performance is enhanced as we increase the problem
size, reaching its peak for n = 23 variables, where the problem size exceeds the video
memory available for a single GPU.

Starting with the smallest problem size we have run, execution times for n = 13
variables are 132.08 ms for a single OpenMP thread, 47.21 ms for a single MPI process
and 0.82 ms on a single GPU. The GPU acceleration for this case reaches 161.07×
versus OpenMP and 57.57× versus MPI. However, considering the largest problem
size and enabling the maximum amount of parallelism, we were able to expose on
the three parallel platforms for a fair comparison (n = 23 variables and four proces-
sors) that execution times were 20049.70 ms using OpenMP on the shared memory
multiprocessor, 4954.03 ms using MPI on the distributed memory multiprocessor and
64.51 ms using CUDA in a set of four Tesla C2050 GPUs (actually, a Tesla S2050
server). Those numbers are translated into more than 310× factor versus the distrib-
uted memory system and 78× versus the shared memory platform for a much cheaper
high-performance alternative (the cost for a Tesla S2050 server is around 8,000 euros).

Our work identifies GPUs as the best choice by a wide margin for running the simu-
lation of P systems, and scalability benefits large problem sizes which are more realistic
within this research area. On the hardware size, the three architectures evaluated here
pose different schemes for connecting processors and memories. Results demonstrate
that a proper combination of shared memory, strategically placed in small amounts
within distributed GPU multiprocessors and propelled by programmer’s skills, is a
winner card in memory-bound problems when data partitioning finds a clean decom-
position in independent blocks. One may think that distributed memory platforms have
a clear chance to succeed under this scenario, but the huge number of CUDA blocks
deployed guarantees hiding latencies to global memory while keeping all GPU multi-
processors busy, leading to an extraordinary processor occupancy which is unbeatable
on a large number of nodes.

6 Summary and conclusions

In this article, we have described the simulation of a family of recognizer P systems
with active membranes, solving the satisfiability (SAT) problem, on three different par-
allel architectures based on shared memory, distributed memory and a set of GPUs.
We have also used three different programming models: OpenMP, MPI and CUDA,
respectively. Our goal here was twofold: (1) analyze pros and cons of those architec-

123



270 J. M. Cecilia et al.

tures and programming models for natural computing and (2) compare them using
a representative algorithm within this field. Considering the largest problem size we
were able to run on the three parallel platforms, execution times were 20,049.70 ms
using OpenMP on the shared memory multiprocessor, 4954.03 ms using MPI on the
distributed memory multinode and 64.51 ms using CUDA in a Tesla C2050 GPUs.
This leads to execution time improvements exceeding 310 and 78×, respectively, for
a much cheaper high-performance alternative.

Along our journey, we have also introduced a number of variants in the imple-
mentation to enrich our discussion. For example, a blocking/tiling strategy for
the data placement takes advantage of data locality and leads to a more effective
use of bandwidth available in all targeted systems. Performance varies depend-
ing of the memory architecture and the way to manage it, but GPUs are ahead
in this respect due to explicit control mechanisms from a programming view-
point, combined with wider memory buses (256–512 bits) and higher frequency
rates (around 2 GHz on GDDR5 video memory technology) on the architectural
side.

Additional efforts are required on each specific architecture to reduce the cost of
preprocessing steps, with a different reward for each case too.

Remarkable findings also worth mentioning can be summarized as follows:

– Shared memory architecture. The blocking technique improves the parallel effi-
ciency, but the OpenMP simulator reaches the lowest performance as the pressure
on shared resources increases with the number of processors. On the positive side,
this was the only platform where we were able to execute all benchmarks due to
higher memory availability, and the fact that we sacrifice DRAM in our P sys-
tem implementation to provide a more general solution makes memory resources
become valuable when simulating large-scale systems.

– Distributed memory systems. They exhibit good scalability with the number of
processors, which can be partially explained by the low number of communications
required by our simulations. This also explains the lack of scalability provided by
the hybrid version that exploits all the resources within a node. In general, the MPI
solution provides a balance between performance and memory consumption.

– GPUs. The two levels of parallelism that P systems exhibit, one at the region level
and the other at the system level, were exploited using CUDA to map perfectly into
data parallelism at core level and task parallelism among graphics cards leading to
the best performance overall. However, we run out of video memory for executing
the largest problem sizes, as manycores cannot gather similar amounts of DRAM
memory as CPU multiprocessors in the current state of its evolution.

In the near future, we will work in two different directions: evaluating new hardware
frontiers and improving the definition of computational models to deal with a broader
set of problems. From the hardware side, we expect that the combination of cloud
computing and heterogeneous systems will provide us a likely path for increasing the
memory size without sacrificing performance at all [25]. This grants us a realistic
hope for running larger simulations and more sophisticated algorithms within natural
computing in the years to come. Moreover, hardware-based implementations can be
a good alternative to consider. From the algorithm point of view, we are studying

123



Evaluating the SAT problem on P systems 271

a hybrid implementation of P systems that uses heuristics to improve the particular
solution of the modeled problem.

Acknowledgments This work was jointly supported by the Fundación Séneca (Agencia Regional de
Ciencia y Tecnología, Región de Murcia) under grant 15290/PI/2010, the Spanish MEC and European
Commission FEDER under grant TIN2012-31345, the Junta de Andalucía under Project of Excellence
P12-TIC-1741, the Universidad Católica San Antonio de Murcia (UCAM) under grant PMAFI/26/12 and
the supercomputing infrastructure of the NLHPC (ECM-02). We also thank NVIDIA for hardware donation
under CUDA Teaching Center 2011-14, CUDA Research Center 2012-14 and CUDA Fellow 2012-14
Awards. Finally, we want to thank all reviewers of this paper for the valuable suggestions they gave us to
improve the overall quality of this paper.

References

1. Message Passing Interface (MPI). http://www.mcs.anl.gov/mpi
2. The OpenMP Specification. http://www.openmp.org
3. Alonso S, Fernández L, Arroyo F, Gil J (2008) A circuit implementing massive parallelism in transition

P systems. Int J Inform Technol Knowl 2(1):35–42
4. Asanovic K, Bodik R, Catanzaro B, Gebis J, Joseph J, Husbands P, Keutzer K, Patterson DA, Plishker

WL, Shalf J, Williams SW, Yelick KA (2006) The landscape of parallel computing research: a view
from Berkeley. University of California, Berkeley, EECS Department

5. Asghar S, Aubanel E, Bremner D (2013) A dynamic moldable job scheduling based parallel SAT
solver. In: Proceedings of international conference on parallel processing (ICPP), pp 110–119

6. Borkar S, Jouppin NP, Stenstrom P (2007) Microprocessors in the era of terascale integration. In DATE
07: Proceedings of the conference on design, automation and test in Europe, EDA Consortium San
Jose, CA, USA, ACM, pp 237–242

7. Cecilia JM, García JM, Guerrero GD, del Amor MAM, Pérez-Hurtado I, Pérez-Jiménez MJ (2010)
Simulating a P system based efficient solution to SAT by using GPUs. J Logic Algebraic Program
79(6):317–325

8. Cecilia JM, García JM, Guerrero GD, del Amor MAM, Pérez-Hurtado I, Pérez-Jiménez MJ (2010)
Simulation of P systems with active membranes on CUDA. Brief Bioinform 11(3):313–322

9. Cecilia JM, García JM, Guerrero GD, del Amor MAM, Pérez-Jiménez MJ, Ujaldón M (2012) The
GPU on the simulation of cellular computing models. J Soft Comput 16(2):231–246 (Special issue on
evolutionary computation on general purpose graphics processing units)

10. Cook SA (1971) The complexity of theorem-proving procedures. In STOC ’71: Proceedings of the
third annual ACM symposium on Theory of computing, New York, NY, USA, ACM, pp 151–158

11. Díaz D, Graciani C, Gutiérrez-Naranjo MA, Pérez-Hurtado I, Pérez-Jiménez MJ (2009) Software for p
systems. In: Paun Gh, Rozenberg G, Salomaa A, (eds) The Oxford handbook of membrane computing,
pp 437–454. Oxford University Press, Oxford

12. García-Quismondo M, Gutiérrez-Escudero R, Pérez-Hurtado I, Pérez-Jiménez MJ, Riscos-Núñez A
(2010) An overview of p-lingua 2.0. Lecture Notes Comput Sci 5957:264–288

13. Garland M, Kirk DB (2010) Understanding throughput-oriented architectures. Commun ACM
53(11):58–66

14. Hwu W (2011) GPU computing gems: Emerald Edition. Morgan Kaufmann, Los Altos
15. Jin H, Jespersen D, Mehrotra P, Biswas R, Huang L, Chapman B (2011) High performance computing

using MPI and OpenMP on multi-core parallel systems. J Parallel Comput 37(9):562–575
16. Meyer Q, Schonfeld F, Stamminge M, Wanka R (2010) 3-SAT on CUDA: towards a massively parallel

SAT solver. In: Proceedings of IEEE international conference on high performance computing and
simulation (HPCS), pp 306–313

17. Nguyen V, Kearney D, Gioiosa G (2010) An extensible, maintainable and elegant approach to hardware
source code generation in reconfig-p. J Logic Algebraic Program 79(6):383–396

18. NVIDIA (2011) CUDA Programming Guide 4.0
19. Paun G (2002) Membrane computing. An introduction. Springer, Berlin, pp 9–419
20. Paun G, Centre T, Science C (1998) Computing with membranes. J Comput Syst Sci 61:108–143
21. Pérez-Jiménez MJ, Romero-Jiménez Á, Sancho-Caparrini F (2003) Complexity classes in models of

cellular computing with membranes. J Nat Comput 2(3):265–285
22. Qasem M (2009) WinSAT website. http://users.ecs.soton.ac.uk/mqq06r/winsat

123

http://www.mcs.anl.gov/mpi
http://www.openmp.org
http://users.ecs.soton.ac.uk/mqq06r/winsat


272 J. M. Cecilia et al.

23. Rabenseifner R, Hager G, Jost G (2009) Hybrid MPI/OpenMP parallel programming on clusters of
multi-core SMP nodes. In: PDP 2009: Proceedings of the 17th euromicro international conference on
parallel, distributed, and network-based processing. Computer Society Press, Weimar, pp 227–236

24. Shi Z (2011) Stochastic modeling, correlation, competition, and cooperation in a CSMA wireless
network. ProQuest, UMI Dissertation Publishing

25. Trieflinger S (2013) High performance peer-to-peer desktop grid computing: architecture, methods
and applications. PhD dissertation. University of Stuttgart

123


	Evaluating the SAT problem on P systems for different high-performance architectures
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Membrane computing and P systems
	2.2 The satisfiability (SAT) problem

	3 The parallel version for the P system solving the SAT problem
	4 Data policies description
	4.1 The shared memory implementation
	4.2 The distributed memory implementation
	4.3 Implementation on GPUs

	5 Performance evaluation
	5.1 The shared memory platform
	5.2 The distributed memory platform
	5.3 The GPUs
	5.4 Overall comparison

	6 Summary and conclusions
	Acknowledgments
	References


