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Abstract
The dynamic reconfiguration of the

interconnection network is an advanced
feature of some multicomputers to reduce the
communication overhead. Up to now, the
work carried out in this field has focused on
static switching, i.e., the network changes its
topology before starting the execution of a
phase of an application program and then it
remains constant throughout the phase
execution. However, our work focuses on
true dynamic reconfiguration, i.e., the
network topology can change almost
arbitrarily at runtime. In a previous paper [6],
we presented an algorithm to handle the
dynamic reconfiguration and some
simulation results, showing the benefits
achieved by this reconfiguration algorithm.
In this paper, we expound in depth the
reconfiguration algorithm and the different
concepts related to it. The previous work is
analyzed and compared with our algorithm,
showing the improvements we have
achieved.

1.  Introduction.

Multicomputers are among the most
interesting architectures, meeting the high
performance computing requirements in
application areas such as computational
fluid dynamics, image processing and
circuit simulation. Multicomputers rely on
an interconnection network between nodes
(processors) to support the message-
passing mechanism.

The interconnection network plays a
major role in determining the overall
performance of a multicomputer. If the
network cannot provide adequate
performance, nodes will frequently be
forced to wait for data to arrive. Moreover,
as technological improvements increase the
computing power of nodes, additional
pressure is placed on the communication
network to provide a comparable
improvement in performance to avoid
becoming a bottleneck. In addition to
performance considerations, the
interconnection network should be tolerant
to failures.

As each processor has a limited number
of links, it can directly communicate with a
few neighbours. Thus, due to classical
integration constraints (pin limitations,
wiring problems, communications
capabilities, etc), most multicomputers are
based on a fixed interconnection topology.
We face two possibilities:

- For specialized architectures, the
interconnection topology is selected in
such a way that it matches the
communication requirements of a
specific (class of) application(s).
- For more general purpose
architectures, the processing elements
are connected according to a regular
pattern. But routing mechanisms must
be implemented to allow a processor to
communicate with a non-neighbour
processor. Such routing mechanisms
may introduce unacceptable delays.



Classical solutions to this problem are
selecting the optimal topology, or improving
the routing mechanisms (for example,
wormhole routing [4]) or using a dynamic
remapping for processes. A novel solution
is to make the interconnection topology
reconfigurable, i.e., the network topology
can change at runtime [1,3]. There are two
approaches to handle the dynamic
reconfiguration of a multicomputer
network. The first approach is based on a
fixed topology (static switching). A program
is divided into several phases, where each
phase requires a different topology. Before
a new phase starts its execution, a new
topology is selected by means of a software
reconfigu-ration point. This approach is
quite simple, but the flexibility of
reconfiguration is limited.

The second approach consists of
changing the topology arbitrarily at
runtime. In this approach, any arbitrary
topology is allowed, so that the
interconnection network can easily match
the communication requirements of a given
program. The main problem of this
approach is the software complexity and
overhead, because the dynamic
reconfiguration implies a cost.

Our research has been motivated by the
need to improve the latter approach. We
have tried to handle the dynamic
reconfiguration of the network in a more
efficient way. A network with this feature
has the following properties:

- It can easily match the network
topology to the communication
requirements of a given program,
properly exploiting the locality in
communications. It provides the
flexibility required for an efficient
execution of various applications.
Moreover, an optimal topology can be
chosen for each application or each
application phase.
- Programming a parallel application
becomes more independent of the target
architecture because the architecture
adapts to the application.
- Classical mapping problems become
easier to manage in such a
reconfiguration context.
- Faulty nodes or links can be bypassed

and spare nodes can be switched on.

The two main objectives of our project
were the design of an algorithm to handle
the dynamic reconfiguration and the
development of software tools needed for
coding applications that efficiently use the
reconfiguration capabilities of the
architecture.

In this paper, we present in depth the
main concepts and options about dynamic
reconfiguration, its limitations and
tradeoffs. We also present our algorithm for
the dynamic reconfiguration of the
network. Reconfiguration is limited,
preserving the original topology. Long
distance message passing is minimized by
positioning communication partners close
to each other. The algorithm decides when
a change must be carried out by means of
a cost function. This algorithm is
transparent to the programmer and is not
restricted to a particular class of
application, being very well suited for
parallel applications whose communication
pattern varies over time.

The remainder of this paper is organized
as follows. In the next section, we outline
some concepts and consider some tradeoffs
for the design of the reconfiguration
algorithm. Section 3 is devoted to describe
the reconfiguration algorithm we have
developed. In section 4 we explain the
problems we have found while testing the
algorithm. Section 5 is devoted to show the
related work in this field. Finally, in section
6, we point out some conclusions.

2. The dynamic reconfiguration:
definitions and trade offs.

The goal of the dynamic reconfiguration
of the network is to increase the
multicomputer performance by minimizing
the traffic of messages in the network.
Therefore, when the traffic between a pair
of nodes is intense, the dynamic
reconfiguration algorithm will try to put the
source node close to the destination node.

We want to reduce two parameters: the
total message traffic in the network and the
maximum node traffic. And we also want to
have a small number of changes for



keeping the reconfiguration cost low. In
order to explain our algorithm, it is
necessary to introduce several concepts
and tradeoffs regarding the dynamic
reconfiguration.

1. Local versus global reconfiguration.
A local reconfiguration only affects the
requesting node and any other node. A
global reconfiguration, on the other hand,
can bring about a modification in the links
of multiple nodes at the same time. In a
centralized control scheme, global
reconfiguration could produce a great cost
because the master node must collect
information from all the nodes in the
network, but its advantage is that several
changes can be carried out in one step. In
a distributed control scheme, global
reconfiguration could produce deadlock
problems.

2. Preserving a given topology.
Reconfiguration can be made in such a way
that the new network has the same
topology (only some nodes have exchanged
their places) or allowing any arbitrary
topology. Preserving a given topology is
equivalent, although much faster, to
renumbering some nodes, also exchanging
all the processes they are executing. Also,
it is not necessary to modify the routing
algorithm. Alternatively, any arbitrary
topology may be allowed even irregular
topologies. In the last case, we must take
into account deadlock problems.

3. Reconfiguration triggering.
Somehow the reconfiguration algorithm
has to decide when the reconfiguration of
the network is suitable. The algorithm may
use a cost function based on different
values measured from the network. This
cost function does not take into account
internal communications (between
processes executed in the same node),
because this communications do not
produce network traffic.

Up to now, we have taken into account
two important aspects: the weight of a
communication and the distance between
nodes. By weight of a communication we
mean the number of messages which have
been sent in a particular direction. We have
measured the distance between nodes
using the nominal distance, i.e., it

measures the number of intermediate
nodes that a message has to cross to go
from node A to node B; if A and B are
physically connected, the distance is null.

4. Type of change. When a node decides
that it is convenient to make a
reconfiguration, it computes the effect of
possible changes to see if the traffic
conditions will improve. There are two
strategies to choose possible changes:

a) Small alteration in the network. A node
can only exchange its position with one of
its neighbour nodes. For example, in a ring
topology a node only has two possibilities
of exchange, with the node on the right, or
the node on the left.

b) Large alteration in the network. A node
can change to any other place in the
network. To keep the same topology easily,
it is convenient for the changed node to
take the position left by the node which
requested the change.

In a large alteration strategy, less
exchanges are needed to approach the
source and destination nodes, i.e., we need
only one exchange to put the source node
close to the destination node. However, in a
small alteration strategy, we need several
exchanges to reach the same final
situation. Therefore, it seems better to use
a large alteration. However, when all the
nodes are communicating with each other
this may not be true, because this strategy
produces brusquer and less uniform
changes than the other one.  

5. Thresholds in the reconfiguration.
Two thresholds have been detected for the
correct execution of the algorithm. The first
threshold checks the value of traffic in the
network for reconfiguration triggering and
the other threshold determines how often
the cost function mentioned in point 3
should be evaluated.

These two thresholds try to minimize the
cost implied by a network reconfiguration,
choosing the best moment to carry out a
change. On the one hand they try to avoid
a large number of reconfigurations (a great
cost), and on the other hand, a small
number (no improvement in the
performance of the multicomputer) of
reconfigurations.

6. Reconfiguration control. There are
two ways for controlling the dynamic



reconfiguration of the network: a
centralized control (a node -the system
controller- is responsible to reconfigurate
the network) or a distributed control (each
node controls its own reconfiguration).

In a centralized control, the system
controller is connected to all the nodes of
the system through a control bus. This
type of control could be a bottleneck for the
system, since all the nodes must send
reconfiguration requests to the system
controller. This situation may be avoided
by means of the reconfiguration algorithm
for moderate systems, i.e. up to 64 nodes.

An alternative is to use a distributed
control. In this case, several network
reconfigurations can be carried out
simultaneously, without bottleneck
problems. Furthermore, distributed control
is well suited for fault tolerant operation as
it does not require any central facility and
can easily bypass faulty nodes or links.
However, the deadlock problem could
appear. Another problem is that every node
must communicate with each other to
make a change, increasing the message
traffic in the network.

In both schemes there exists a
considerable overhead to carry out a
reconfiguration [3]. Therefore, it is too
costly to change the topology very
frequently (e.g. for each message). So, it is
more adequate to make a change when an
intense traffic between two non-neighbour
nodes is observed (a large amount of data
is being transferred between these two
nodes).

3. Our reconfiguration algorithm.

As stated above, the reconfiguration
algorithms have different possibilities. In
our case, the reconfiguration algorithm was
developed while trying to increase the
communication performance of a
transputer-based machine, the PARSYS SN
1000. Therefore, the main features of this
algorithm have been designed for that
target machine.

We have developed a reconfiguration
algorithm with the following features: it
uses local reconfiguration, it preserves the
topology, it is based on a cost function, it

produces a small alteration in the network,
it uses two thresholds for network
reconfiguration and it has a centralized
control.

The implementation of this algorithm is
distributed, each node taking into account
the information recorded locally.

To handle the reconfiguration of the
network, we have developed a network
reconfiguration protocol among the nodes
and the system controller. The main steps
are the following:

1) When a node decides that it is
necessary to reconfigurate the network, it
sends a signal to the system controller
through the control bus. This decision is
made evaluating the cost function: when
its value is greater than threshold_1, a
reconfiguration will be convenient. The
reconfiguration algorithm only evaluates
the cost function each time it receives a
number of messages threshold_2. When
a node sends a message, this information
is only recorded without doing anything
else.
2) Then, the system controller informs all
the nodes that it is going to make a
reconfiguration, and therefore they
should stop sending messages to each
other. To minimize the reconfiguration
time and relieve the cost that it implies,
messages in transit are only allowed to
reach the next intermediate node. After
stopping messages in transit, each node
sends an acknowledgement to the
system controller to ensure that message
traffic in the network has stopped.
3) The node which made the request
sends the reconfiguration data to the
system controller to carry out the
reconfiguration.
4) The system controller modifies the
interconnection network topology,
adapting it to the new circumstances.
5) Once the new configuration has been
established, the system controller
broadcasts this configuration to all the
nodes and permits node communication
again. That information is used by the
routing algorithm.

This protocol is easily implementable
using the control bus available in the



Supernode architecture, which does not
add message traffic to the network.
Moreover, the use of a bus allows the
system controller to perform efficiently the
broadcasting operations required in steps 2
and 5.

We can see from the reconfiguration
protocol that our algorithm has two parts:
one for the system controller and another
one for the remaining nodes. These
algorithms are included in the run-time
kernel, whether of the system controller or
the nodes.

As the machine is not ideal, whenever a
change is made in the topology, some time
is wasted. The reconfiguration time has
been included in the cost function of the
reconfiguration algorithm.

3.1 The reconfiguration cost.

Now, we are going to describe briefly how
to evaluate the cost involved when a
change in the network topology is
performed. By analysing the network
reconfiguration protocol, the following
times can be obtained:

a) Ta : Time spent in each node to
evaluate the cost function and to decide
whether a reconfiguration is needed. It
measures part of the step 1 of the
previous protocol.
b) Tb : Time spent to transfer the
reconfiguration information from the
node which requests the change to the
system controller. It includes the time
required to request the change as well as
broadcasting the message to stop the
communication between nodes, receiving
the acknowledgement and sending
information about the new topology to
the system controller. Therefore, this
time includes part of the step 1 and steps
2 and 3 of the previous protocol.
c) Trec : Time needed to reconfigurate the
interconnection network topology. It
corresponds to step 4 of the previous
protocol.
d) Tc : Time needed to broadcast the new
configuration to all the nodes, allowing
again communications between
processors. It corresponds to the last
step of the previous protocol.
Then, the cost for making a change in

the network topology is given by the
following expression:

Tchange = Ta + Tb + Trec + Tc

We have evaluated an upper bound for
this expression. We have found a Tchange of
1,5 ms for short messages and a Tchange of 2
ms for long messages. These values have
been included in the cost function of the
reconfiguration algorithm for the real case.

4. Problems with the algorithm and
solutions.

Recently, we have evaluated the
reconfiguration algorithm for several
numerical problems. The results are very
promising, with a total message traffic
reduction of 35% or more. These results
and a wider study of several test cases can
be found in [6]. Our evaluations have been
obtained with the FDP environment we
have developed [7], both with and without
including the reconfiguration cost.

Up to now, we have found two main
problems in the dynamic reconfiguration:
the endless cyclic changes and the
existence of multiple optimal choices.

The endless cyclic changes problem
appears when the reconfiguration
algorithm only takes into account the
messages received in each node, without

recording the messages it sends. Then, it is

1 Fig. 1 Hypercube of 16 nodes.



possible that two or more nodes try to
reach each other following different paths
falling in a situation of cyclic changes. To
explain it, let us imagine the following
situation. We have a hypercube topology
with a deterministic routing algorithm. It
forwards messages crossing the hypercube
dimensions in decreasing order. Let us
consider that there is some message traffic
among nodes 0, 4, and 5 in the positions 0,
4 and 5 respectively in this way: node 0
sends messages to node 4, node 4 sends
messages to node 5, and node 5 sends
messages to node 0. Then, this message
traffic in the network produces that the
reconfiguration algorithm in each node
tries to reduce the traffic. So, node 0
changes its position to position 1 to
approach node 5. Then, node 4 changes its
position to position 0 to approach node 0,
and then, node 5 changes its position to
position 4 to approach node 4. Again, node
0 tries to approach node 5 and so on. This
situation leads to a high number of
changes and a small reduction in message
traffic.

To be able to avoid it, the cost function
must take into account the total number of
communications between each pair of
nodes (input and output messages). This
improvement produces a great stability in
the process of reconfigurating the
interconnection network.

The second problem is the existence of
multiple optimal changes. When a node
detects that the topology must be modified,
it tries to carry out a change which
minimizes the cost function. In some cases,
there are several possible changes that
minimize the cost function. If the
reconfiguration algorithm always chooses
the same strategy, it could lead to endless
changes, because two nodes could try to
reach the same position in the network. Let
us imagine the following situation. We have
a hypercube topology with a deterministic
routing algorithm. Again, it forwards
messages crossing the hypercube
dimensions in decreasing order. Let us
consider that there is some message traffic
in the following way: node 5 in position 5
sends messages to node 0 (in position 0)
and to node 3 (in position 3). Then, node 0
tries to place close to node placed in

position 5. It has two possibilities that
minimizes the cost function: position 1 or
position 4. On the other hand, node 3 also
tries to reach a position close to position 5.
We suposse it has two possibilities too:
position 1 or position 7 (see fig. 1). If we
have a fixed strategy, for example, to
choose the positions with lower numbers.
Then, node 0 exchanges its position to
position 1. But node 3 also wants to go to
position 1, so it carries out an exchange
with node 0. Now, node 3 is in position 1
and node 0 is in position 3. But in this
position, node 0 tries to reach position 1
again and so on. Because the strategy of
choosing the change is fixed, node 0 and
node 3 always try to reach position 1, and
never consider the possibility of going to
position 7, although this position also
minimizes the cost function. This situation
could produce a practically infinite number
of changes without reduction in message
traffic.

This situation is avoided if a round-robin
strategy among the changes which
minimize the cost function is adopted in
the algorithm. In this case, initially node 0
and node 3 choose position 1 to carry out
the first change. But the second time, node
0 chooses position 7, finishing the changes
in the network.

Our algorithm has been corrected to
avoid these problems. In this way, the
results we have obtained with the current
algorithm are better than those from the
preliminary versions.

5. Related work.

When we speak about dynamic
reconfiguration in a multicomputer
network, we usually think of a limited
dynamic reconfiguration. It is due to the
fact that most of the work carried out in
this field has focused on this approach
[1,8,9]. In this way, the programmer has to
decompose his application into algorithmic
phases. After completion of a given phase,
the interconnection topology can be
modified before beginning the execution of
the following phase. Thus an optimal
topology can be automatically associated to
each algorithmic phase. For example, we



can choose a tree topology in the phase of
initial data broadcasting and a hypercube
topology in the computation phase.
Therefore, a reconfigurable application can
be described as a set of algorithmic phases
separated by predetermined
reconfiguration points. When a
reconfiguration point is reached, a
processor synchronization procedure and a
switch setting sequence will be initiated. In
order to benefit from locality of distributed
memory, the programmer must be able to
express that data can be left in processor's
memory by a process of a given phase for a
new process of the following phase. This
approach is good for some applications, but
it has a drawback: the way to find out
which is the best topology for each phase.

Some advances have been carried out
about the second approach (true dynamic
reconfiguration). In [3], when a pair of
processors need to exchange a message,
the topology is changed, connecting those
processors directly. Paths can be
established and destroyed at any time in
an unpredictable way. Of course, there are
some restrictions in these dynamic
reconfiguration capabilities. First, only
application graphs of degree 4 can be
formed due to the limitation to 4
transputer links. Second, it can happen
that an application graph cannot be
configured because of blocking, i.e. there
are no more free links in the static
network. Moreover, since the network
reconfiguration implies a cost, a
reconfiguration is only made when a large
amount of data has to be transferred
between a pair of processors. The problem
lies in the way to know a priori when a pair
of processors are going to exchange several
messages. In [10], a dynamic connection is
established between processors on the
request of the message sender. This
request must be added by the programmer
to the application code, so the parallel
program must be modified to allow the
dynamic reconfiguration.

Our work is focused in this last
approach. We minimize long distance
message passing by positioning
communication partners close to each
other. However, this task is not carried out
by the programmer; it lies on the run-time

kernel. We have developed an algorithm to
handle the dynamic reconfiguration. The
algorithm decides when a change is more
adequate, and it is transparent to the
programmer. Therefore, the parallel
program is the same whether there is
dynamic reconfiguration or not.

6. Conclusions.

This paper deals about the dynamic
reconfiguration of the interconnection
network of a multicomputer. This feature is
a valid alternative to solve the main
problem associated to multicomputers: the
communication bottleneck. By means of
using a dynamic topology, the principle of
locality in communications is exploited,
leading to a substantial improvement in
network latency [2].

We explain a way to reconfigurate the
network dynamically. We have analyzed
several important tradeoffs and then we
have presented an algorithm to
reconfigurate dynamically the
interconnection network for
multicomputers with store-and-forward
routing. We have detailed the
reconfiguration protocol and we have
described the main problems found in the
algorithm. This algorithm is very well
suited for parallel applications whose
communication pattern varies over time.
Recently, we have evaluated our algorithm
for several test cases and the results are
very promising [6].

Finally, we have described the other
main models developed up to date,
detailing the main features of each one and
comparing them with the features of our
dynamic reconfiguration model.

References

[1] Adamo, J. and Bonello, C. "Tenor++: A
dynamic configurer for Supernode
machines". Lecture Notes in Computer
Science, No. 457, pp. 640-651, Springer-
Verlag, 1990.
[2] Agarwal, A. "Limits on interconnection
network performance". IEEE  Trans. on
Parallel and Distributed Systems, Vol. 2, No.



4, pp. 392-412, October 1991.
[3] Bauch, A.; Braam, R. and Maehle, E.
"DAMP: A dynamic reconfigurate
multiprocessor system with a distributed
switching network". 2nd European
Distributed Memory Computing Conference,
Munich, April 1991.
[4] Dally, W.J. and Seitz, C.L. "Deadlock-
free message routing in multiprocessor
interconnections networks". IEEE Trans. on
Computers, Vol. C-36, No. 5, pp. 547-553,
May 1987.
[5] Fraboul, Ch.; Rousselot, J.Y. and Siron,
P. "Software tools for developing programs
on a reconfigurable parallel architecture",
in D. Gassilloud & J.C. Grossetie (Eds.),
Computing with Parallel Architectures:
T.Node, pp. 101-110, Kluwer Academic
Publishers, 1991.
[6] García, J.M. and Duato, J. "An
algorithm for dynamic reconfiguration of a
multicomputer network". Third IEEE
Symposium on Parallel and Distributed
Processing, Dallas (Texas), December,
1991.
[7] García, J.M. and Duato, J. "An
advanced environment for programming
transputer networks with dynamic
reconfiguration". Int. Conf. on Parallel
Computing and Transputers Applications
'92, Barcelona, September 1992.
[8] Jin, L. et al. "Dynamically
reconfigurable architecture of a transputer-
based multicomputers system". 20 Int.
Conf. on Parallel Processing, August, 1991.
[9] Nicol, D.A. "Reconfigurate transputer
processor architectures", in T.J. Fountain
and M.J. Shute (Eds.), Multiprocessor
Computer Architectures, North-Holland,
1990.

[10] Vincent, P. and Wei, Z. "Dynamic link
interconnections for the transputer", in M.
Valero, E. Oñate, M. Jane, J.L. Larriba and
B. Suárez (Eds.), Parallel Computing and
Transputer Applications, IOS Press/CIMNE,
1992.


