
Adapting Dynamic Core Coupling to a
direct-network environment
Daniel Sánchez, Juan L. Aragón and José M. Garćıa1

Abstract— To obtain benefit of the increasing tran-
sistor count in current processors, designs are lead-
ing to CMPs that will integrate tens or hundreds of
processor cores on-chip. However, scaling and voltage
factors are increasing susceptibility of architectures to
transient, intermittent and permanent faults, as well
as process variations.

A very recent solution found in literature consists
of Dynamic Core Coupling (DCC) [1]. DCC provides
a fault tolerant framework based on dynamic binding
of cores for re-execution. This technique relies on the
use of a shared-bus. However, for current and future
CMP architectures, more efficient designs are tiled-
CMPs, which are organized around a direct network,
since area, scalability and power constraints make im-
practical the use of a bus as the interconnection net-
work. In this work, we present the changes needed in
the original DCC proposal to be used for a direct net-
work environment. These changes are mostly due to
the replacement of a bus for a mesh as interconnection
network, the coherence protocol and the consistency
window. Our evaluations show that, for several par-
allel scientific applications, the performance overhead
with this new environment rises to 10%, 19%, 42.5%
and 47% for 4, 8, 16 and 32 core pairs, respectively,
compared to the 5% performance degradation as pre-
viously reported for 8 core pairs in the original DCC
proposal.

I. Introduction

Nowadays, market trends are positioning CMPs as
the best way to use the big number of transistors that
we can accommodate in a chip. However, due to the
raise of the number of transistors per chip, the failure
ratio is increasing more and more in every new scale
generation. On one hand, the actual larger number
of transistors in a chip enlarges the probability of
fault. On the other, the increase of the temperature
and the decrease of the voltage in the chip leads to a
higher susceptibility to transient faults. A transient
fault is a flip in one or more bits. It may be caused
as a result of the impact of an alpha particle on the
chip or causes such as power supply noise and signal
cross talking. All zones in the chip are vulnerable to
this kind of faults, therefore, fault tolerance mecha-
nisms must be designed to avoid incorrect program
executions. Moreover, these techniques always have
both a hardware cost because of the additional extra
hardware required to re-execute instructions, and a
performance cost because of the actions needed to
assure a correct execution.

The family of techniques SRT [2], SRTR [3], CRT
[4] and CRTR [5] are based on a previous proposal
called AR-SMT [6], in which redundant threads exe-
cute the same instructions in an SMT processor with
a performance degradation between 10-30%. In all

1Dpto. de Ingenieŕıa y Tecnoloǵıa de Computa-
dores, Univ. de Murcia, e-mail: {dsanchez, jlaragon,
jmgarcia}@ditec.um.es

these studies, the fault tolerance is achieved by re-
dundant execution in two different execution cores
(or threads) called leading/master and trailing/slave.
The master core runs some instructions ahead of
the slave and they communicate with each other by
some different structures, like the LVQ, StB or RVQ.
Although applicable to sequential programs, these
techniques are not directly valid for executing paral-
lel programs due to incoherences in memory values
called input incoherences [7].

An input incoherence is a phenomenon that oc-
curs when two dynamic loads do not obtain the same
value from memory. This problem is very common
in parallel programs when a redundant core executes
the same instruction few cycles later. Reunion [7]
addresses this problem with a new paradigm called
relaxed input replication, in which the master issues
non-coherent accesses to memory (phantom request)
while the slave core issues real coherent accesses. If
a difference is detected because of an input incoher-
ence, it is marked as a transient fault when indeed it
is not.

In order to avoid the need of intermediate struc-
tures to communicate the leading and the trailing
cores, another option could be the periodic creation
of checkpoints. To detect any fault between two
checkpoints, the master and the slave interchange
a signature or a hash resuming the current state,
detecting a fault if they differ. The recovery mecha-
nism is as easy as going back to the last successfully
verified checkpoint, which establishes a safe point. A
very recent study on this fashion is made by LaFrieda
et al. in DCC [1]. DCC is a promising approach to
achieving fault tolerance in multiprocessors, based
on a shared bus.

In the present work, we analyse and evaluate how
DCC behaves in a scalable tiled-CMP architecture.
We show that the DCC execution time overhead is
more noticeable than previously reported when con-
sidering direct networks. We have evaluated in detail
the scalability, the influence of cache associativity,
the delay of L1 replacements and the total network
traffic. We have found that the main cause for this
increasing execution time overhead is the mechanism
used by DCC to assure the memory consistency be-
tween master and slave cores.

The rest of the document is organized as follows:
Section II reviews how DCC operates and points out
its major weaknesses. Section III presents how to mi-
grate DCC to work under a direct network instead
of a shared-bus. Section IV introduces the method-
ology employed in the evaluation. Section V shows
the performance results. Section VI summarizes the

Castellón, Septiembre 2008 253

Actas de las XIX Jornadas de Paralelismo, pp. 253-258, 2008. ISBN: 978-84-8021-676-0



main conclusions of our work and, finally, Section
VII indicates our future work.

II. Background

A. Understanding DCC

DCC is a fault tolerance mechanism for sequential
and parallel applications too. To achieve fault tol-
erance, DCC re-executes instructions in a redundant
core and, after a variable number of cycles, cores
exchange their state with their pairs by means of a
hash. If the hashes match with each other, the ac-
tual state of the architecture constitutes a safe point
and it is saved as a checkpoint.

In DCC, a node is formed by the master core and
the slave core. Both, master and slave, access mem-
ory to bring back new data to private cache, but just
the master is permitted to writeback data to shared
memory. However, if the data to be back-written in
the master core has not been checked against that
data in the slave core yet, the operation is aborted.
To identify those data blocks, L1 cache must be mod-
ified to add an unverified bit that indicates that a
block has been modified by a core but has not been
verified by its redundant core.

The unverified marks are cleared at the end of a
checkpoint interval when the state of both, master
and slave cores, have been verified. A checkpoint
interval is set to 10,000 cycles in DCC [1]. How-
ever, there are some causes that induce to the cre-
ation of a new checkpoint before the interval is over.
These causes are: interrupts, I/O instructions, con-
text switches, but above all, overflows in cache lines.
As said before, a block marked as unverified can-
not be replaced from private cache. Therefore, the
replacement policy should be modified to avoid re-
placing blocks marked as unverified. However, all
blocks in a cache line are sometimes marked as un-
verified which is called a cache buffering overflow.
When such an overflow appears, DCC needs to cre-
ate a new checkpoint in order to have the chance of
replacing an unverified block.

B. DCC in a parallel environment

DCC is a fault-tolerant mechanism that also works
for parallel architectures. In order to facilitate that,
DCC needs to guarantee the memory coherence and
consistence.

B.1 Coherence

As cited before, in DCC, both master and slave
cores issue requests to shared memory although just
master cores can update it. This behaviour implies
several modifications in the coherence protocol in or-
der to avoid coupled cores to fight for data blocks,
resulting in performance degradation and incorrect
program output. To solve this issue, coherence ac-
tions from requests between coupled cores are ig-
nored at destination. This also implies that requests
from external cores can cause invalidations in slave
cores which will never provide values since this task
is reserved just for master cores.

B.2 Consistency

In DCC, the consistency problem is solved by using
a structure called age table. Its aim is to prevent an
external write from modifying a value between the
time that the leading thread has read a value and
the trailing thread has not yet.

When a processor wants to perform a write, issues
a read-exclusive or upgrade request to the shared
bus. Then, the message is read by both master and
slave cores, which perform two actions. First, they
observe if they have a match between the address
of the message and its load queue and, if there is,
a NACK is submitted to prevent the write which,
in turn, will be retried later. When the master re-
ceives the age, it is compared with its own one and,
if they are different, it means that one of the cores
has committed an instruction to that address and
the other has not. In other words, if the block leaves
the cache, there will be a potential consistency error,
so a NACK is submitted.

III. Making DCC scalable using a
tiled-CMP architecture

To make the original DCC scalable we move from
a shared-bus architecture towards a more scalable
topology in a tiled-CMP architecture like a 2D-mesh.
But changing from a shared-bus has several implica-
tions on how DCC works. For further details, see the
extended version of this paper [8].

A. Changes to the coherence protocol

As in the original DCC paper, we have selected
MOESI as our coherence protocol. Modifications
needed to accommodate DCC in a direct network
are described as follows.

A.1 Slave coherence

Since we no longer have a shared-bus, every core
in the direct network must know the core-role map-
ping as well as the pairs (or trios) formed by the OS
when the fault tolerance mode is on. The main diffi-
culty when operating on this mode is that the proto-
col would have to track multiple owners for a block
(master and slave), because in any cycle both could
have that permission. Instead of that, we have mod-
ified DCC as follows: any upgrade or read-exclusive
request from a node to a master core should be sent
to its slave, too. In this way, an invalidation of the
block in the master, will not cause a later coherence
fail in the slave, since it has also seen the request.
However, this simple solution results in an increment
in the number of messages through the network, as
we evaluate in Section V-D.

A.2 Consistency

As we saw in Section II-B.2, consistency in DCC is
achieved by adding a structure called age table which
is accessed when a read-exclusive or upgrade request
arrives. In a shared-bus, one-single message is seen
by all processors, but in a direct network it does not.
The mode of operation in our scenario is different

254 XIX Jornadas de Paralelismo



and every read-exclusive or upgrade has to be sent
to the master as well as to its slave. Then, each
core accesses to its LSQ, looking for a match in the
address of the request. Upon a positive match, the
request cannot be served. At this point, we consider
that, instead of sending a NACK to the requestor,
it would be better to keep the request in the core
until it can be satisfied, saving some bandwidth in
the network. The request will be periodically retried
in the core until it could complete.

In parallel to the access to the LSQ, the slave core
sends its age from the age table to its master. The
master compares the received age with its own and,
if they differ, the request cannot be served, retrying
later. Conversely, if the ages match, the request can
be satisfied, the master is invalidated and it sends a
mandatory invalidation to its slave. Again, this mod-
ification to the original DCC proposal results in an
increase in the number of messages sent between the
requestor and the master and slave to be invalidated.

A.3 Other considerations

In the original DCC proposal, the authors point
out that the replacement of unverified blocks in L1
cache causes a buffering overflow solved with the cre-
ation of a new checkpoint. However, we have found
that there is a potential consistency risk when re-
placing non-unverified blocks when using direct net-
works.

�

������� ���	��������
�

�������

���	���


�������

�������

�������

����

Fig. 1. Potential consistency error in DCC.

As we can see in Fig. 1, some actions could lead
to a consistency error between Master and Slave in
DCC. After the replacement of block A in Master,
another core, Master’, acquires the block and even-
tually modifies it. When Slave executes the redun-
dant load, it will perceive a different value. In the
original DCC proposal with a shared-bus, the con-
sistency window is capable of resolving this conflict.
In spite of having the block replaced, Master can
see through the bus that an external core has is-
sued a read-exclusive or an upgrade request, there-
fore aborting the request. However, in a direct net-
work like a mesh, Master does not notice that an-
other core wants to acquire the block for writing
purposes, since there is no information to guide the
message from the requestor (Master’ in Fig. 1) to
the old holder of the block which replaced the block.

To imitate the shared-bus DCC behaviour, for ev-

ery cache miss, the request for the block should be
flooded all over the network, in order to avoid con-
sistency errors. This solution, however, creates a
large amount of network traffic with a big latency.
A simpler solution would be, on every replacement
of the leading core, checking that its pair has read
the block. If the partner possesses the block, the re-
placement can be executed. If not, we will delay it
until the pair reads the block some cycles later, caus-
ing a necessary extra overhead in L1 replacements.
In this way, we will solve potential consistency errors
between masters and slaves.

Another relevant aspect when using a direct net-
work to fit the original DCC proposal, is synchro-
nization when creating checkpoints, as we can see in
Fig. 2. The synchronization request is issued at the
end of an scheduled interval, or when events such
as buffering overflows occur. In our direct network,
the responsible for sending the synchronization re-
quest is called Initiator. The Initiator has to send
a message to every master in the system. When the
request is received, each master is synchronized with
its slave-pair, creating and exchanging its state us-
ing a fingerprint. If fingerprints match with each
other, an acknowledgment is sent back to the Initia-
tor. Once all the acknowledgements have been re-
ceived, the Initiator finally sends a message to each
core in the system, giving the order to save the cur-
rent state as the last checkpoint. After that, all cores
resume execution. Besides, if one core finds a mis-
match when comparing fingerprints, a NACK indi-
cating a transient fault detection will be sent to the
Initiator, which will expand the information, causing
every core in the system to rollback to its previous
saved checkpoint.

�

������� ���	��

���������	
�	���

��	��������	
�	���


��������

����	������	������

����	�������

���������

����	������	������

��	��

����	�������

������������

������	�	������

���	�����	�

��	��

Fig. 2. Synchronization and checkpoint creation.

This mechanism for creating new checkpoints dis-
plays a variable latency directly dependent on the
distance and the network congestion between the Ini-
tiator and the furthermost core. Thus, the Initiator
will not send the save-state request until all ACKs
confirming the synchronization have arrived. If any
message could not arrive due to a permanent fault
in one core, the Initiator would be waiting in an in-
finite loop. To avoid this situation, a timeout is set

Castellón, Septiembre 2008 255



up when waiting for ACKs. In our simulations, we
have found that each checkpoint takes around 250-
400 cycles, depending on the number of nodes and
pairs allocation.

IV. Simulation Environment

We have ported the original DCC proposal with
the changes explained in the previous section, to the
functional simulator Virtutech Simics extended with
Wisconsin GEMS v2.1. GEMS provides a detailed
memory simulation through a module called Ruby
and a pipeline simulation module called Opal. In
order to accommodate all DCC constraints, we have
modified the MOESI coherence protocol as well as
the pipeline behaviour. The interconnection network
has been simulated by the module Garnet.

TABLE I

System Parameters.

Processor Parameters
Max. fetch/retire rate 4 inst./cycle
Processor Speed 2 GHz.
Cache Parameters
Line Size 64 bytes
L1 Cache:
Size 32 KB
Associativity 4 ways
Hit time 2 cycles
Shared L2 Cache:
Size 512 KB/tile
Associativity 4 ways
Hit time 6+9 cycles (tag+data)
Memory Parameters
Coherence Protocol MOESI
Directory Hit Time 15 cycles
Memory Access Time 300 cycles
Network Parameters
Topology 2D-Mesh
Link Latency (one hop) 4 cycles
Routing Time 2 cycles
Flit Size 4 bytes
Link bandwidth 1 flit/cycle
Fault Tolerance Parameters
State Compression Latency 35 cycles
State Checkpoint Latency 8 cycles
Age Table Size 64 entries
Checkpoint Interval 10,000 cycles

The simulated system is a tiled-CMP consisting
of a number of replicated cores (tiled) connected by
a switched 2D-Mesh direct network. Each core has
its own private L1 cache, a portion of the shared
L2 cache and a connection to the on-chip network.
Table I shows the main parameters of the simulated
system.

All the simulations have been conducted using sev-
eral scientific programs. Barnes, Cholesky, FFT,
Ocean, Radix, Raytrace, Water-NSQ, and Water-SP
are from the SPLASH-2 benchmark suite. Tomcatv
is a parallel version of a SPEC benchmark and Un-
structured is a computational fluid dynamics appli-
cation. The results of the simulations have been ex-
tracted from the parallel phase of each benchmark
executed for 2, 4, 8, 16 and 32 application threads
and 4, 8, 16, 32 and 64 cores, respectively.

V. Evaluation Results

A. DCC overhead in a direct network

We have compared the performance results of the
extended DCC proposal in a direct network scenario,
with the results in a non-fault tolerance base sce-
nario. Fig. 3 reports the execution time overhead
which DCC obtains with respect to a non-fault tol-
erance system for 2, 4, 8, 16 and 32 nodes. As we
can see, DCC incurs in a noticeable time overhead,
more severe in applications like Ocean, Raytrace and
Unstructured. The time overhead is splitted into
Checkpoint time, the time employed in the creation
of new checkpoints, and Window time, the overhead
obtained as a result of the actions of the consistency
window that were explained in sections II-B.2 and
III-A.2.

Our results coincide with the original DCC pro-
posal where leading and trailing cores are separated
100 cycles on average. Consequently, any read-
exclusive or upgrade request to modified blocks are
delayed until the window is closed by the trailing
core. It can be observed that, on average, the exe-
cution time increases with the number of nodes as a
result of the growth of the network traffic. This way,
consistency window constraints affect more deeply
system configurations with many cores. In conclu-
sion, the time overhead grows to 6.4%, 10.2%, 19.2%,
42.5% and 47.1% when considering 2, 4, 8, 16 and 32
nodes respectively. In addition, although the time
needed by a checkpoint is not negligible, its impact
on performance degradation is hidden by the huge
overhead caused by the consistency window. On the
other hand, checkpoint time creation is responsible
for an increase in the time overhead between 2.6%
and 4.6% with no significant differences when vary-
ing the number of nodes.

The results obtained contrast with those obtained
in the original DCC proposal when using a shared-
bus as the interconnection network. As reported in
[1], the execution time overhead is just 3.9%, 4% and
4.9% for 2, 4 and 8 nodes respectively.

B. Delay in L1 replacements

As observed in Section III-A.3, there is a potential
consistency risk when replacing cache blocks. To pre-
vent it, we propose the replacement of blocks after
an additional check with the trailing core. Results in
the previous section consider that additional check
and the corresponding replacement delay. However,
in order to measure the effect of this extra delay on
the execution time overhead, we run some experi-
ments assuming non-delayed replacements.

In Fig. 4 we can observe that, without replace-
ment delays, the execution time is lower, as expected.
However, there is still a significant overhead com-
pared to a non-fault tolerance system. Summarizing,
the delay introduced because of the L1 replacements
causes an extra overhead of 2%, 3.2%, 3.6% and 7.7%
for 4, 8, 16 and 32 nodes, respectively, which is not
negligible, specially when considering a higher num-
ber of cores.

256 XIX Jornadas de Paralelismo



�
���
���
���
���
���
���
���
���
��	
�

���
���
���
���
���
���
���
���
��	

�
 �
 �
 ��
 ��
 �
 �
 �
 ��
 ��
 �
 �
 �
 ��
 ��
 �
 �
 �
 ��
 ��
 �
 �
 �
 ��
 ��
 �
 �
 �
 ��
 ��
 �
 �
 �
 ��
 ��
 �
 �
 �
 ��
 ��
 �
 �
 �
 ��
 ��
 �
 �
 �
 ��
 ��
 �
 �
 �
 ��
 ��


��
�� �������� ��� ����
 ���� ������ ������� �
�������� ����
�� ����� !"#

��
��

����
�	


���
�

$���� ��
�%����
&�
���%����

Fig. 3. Execution time overhead in DCC with respect to a non-fault tolerance system.

�

����

���

����

���

����

���

����

���

����

���

���	
�� ���	
�� ��	
�� ����	
�� ����	
��

�	
��

���
��


��
��

�

�	����

�	��������
�������������

Fig. 4. Execution time overhead because of delayed L1 re-
placements.

C. Cache associativity analysis for DCC

Cache associativity is of paramount importance
for the original DCC proposal. We must bear in
mind that, if an unverified block is replaced, a new
checkpoint must be performed. So, the replacement
policy has been modified to avoid to pick unverified
blocks to be replaced. If the number of ways is too
small, there exists a performance degradation be-
cause sometimes, when allocating new blocks, there
are only available a reduced number of cache lines.

Although 4-way L1-caches are common in real pro-
cessors nowadays, some companies still advocate for
2-way caches. As we can see in Fig. 5, the time
overhead of DCC with 8 nodes for a 2-way L1 cache,
is around 27% and, when the number of ways is in-
creased, the overhead goes down. It can be also ob-
served that an 8-way cache does not perform much
better than a 4-way cache. So, due to the hardware
cost that an 8-way cache represents, we conclude
that, for DCC, the best option is a 4-way cache.

Fig. 6 shows how many cycles there are between
the creation of two checkpoints. As suggested in [1],
this number is initially fixed to 10,000 cycles by the
system. However, as a result of the cache buffering
overflow phenomenon associated to DCC approach,
we need to do some unscheduled checkpoints. With
2-way associative caches, with much more overflows,

�

���

���

���

���

���

���

���

�	

��

���
��
�� ���

���
	� 
	�

��


	�
�
	�
�

���
�	�
�

��
�
��
��
�
�

�	
��
�
�

�	
��

�

� 
!

�
�
��

��
��
�	


�
��

�

�"�	� �"�	� #"�	�

Fig. 5. Execution time overhead in DCC with different L1
cache associativities.

�

����

����

����

����

����

����

����

����

	���

�����

�
���� �
���� �
���� ��
���� ��
����

��
���

�

�
���� �
���� �
����

Fig. 6. Checkpoint time interval in DCC depending on L1
cache associativity.

the time between checkpoints ranges from 4,500 cy-
cles in the best case to 3,700 cycles in the worst.
In conclusion, with 2-way caches it will be needed
the creation of approximately twice the number of
checkpoints than in an 8-way cache configuration,
leading to a considerable performance degradation
(as showed in Fig. 5).

Castellón, Septiembre 2008 257



D. Traffic Network Increase for DCC

It is obvious that replacing a shared-bus with a di-
rect network like a 2D-mesh leads to a natural over-
head in the number of messages within the network.
In a direct network, we lose the broadcast capabili-
ties incurring, then, in a larger number of messages
in the network. However, the DCC approach gen-
erates additional extra traffic, as a consequence of
changing a shared-bus with a 2D-mesh. This can
be summed up in that we need to assure that ev-
ery message seen by the leading core is also seen by
the trailing one. The simpler solution is sending the
message to both of them. Also, there is more ex-
tra traffic in the checkpoint creation phase, because
the synchronization mechanism is more complex in
a mesh than in a shared-bus.

�

����

���

����

���

����

���

����

���

����

���

��	

��

��
����
� ���

��
�
 	��

��
	��
�	�
�

���
��
�

�
�
�	�
��	�
�

���
�	

��

���
�	�
�

��
 

�
��

�
��
��
�	


�
��
�
��



��

��
���

�!
����
�!
����
"!
����
�#!
����
��!
����

Fig. 7. Network traffic increase in DCC in a mesh.

The total traffic is increased in 12.6%, 11.7%,
8.1%, 3.9% and 2.6%, on average, for 2, 4, 8, 16 and
32 nodes, respectively, for a 4-way associative cache,
as we can see in Fig. 7.

VI. Conclusions

In this paper we have shown how DCC could fit in
a more realistic and scalable architecture as a tiled-
CMP. Although there are some complications with
the coherence protocol and the consistency window,
DCC could be adapted to use a direct network in-
stead of a shared-bus network. However, all these
changes result in noticeable performance degrada-
tion. Simulations with SPLASH-2 benchmarks and
other scientific parallel programs show that the ex-
ecution time overhead is 10%, 19.5%, 39% and 42%
for 4, 8, 16, and 32 core pairs, respectively, in con-
trast to the 5% performance degradation reported
for the original DCC proposal in a shared-bus with
8 core pairs.

In addition, we have also shown that the perfor-
mance degradation is mostly due to the consistency
window needed to permit, for both master and slave,
the access to the shared memory. The traffic network
is also increased with a direct network because the
DCC mechanism is not properly adapted to this en-
vironment. We have also pointed out how L1 cache
associativity is an important fact to bear in mind

regarding DCC behaviour, in terms of number of
cache buffering overflows and, consequently, in per-
formance degradation.

To conclude, in this paper we have seen that, al-
though DCC is a promising approach, when moving
towards a scalable tiled-CMP architecture with an
increasing number of core pairs, there is still room
for improvement in the design of a low overhead and
resilient chip multiprocessor.

VII. Future work

Due to the overhead obtained by DCC because of
its consistency window, we think that a better ap-
proach to fault tolerant architectures should avoid
redundant accesses to shared memory. This also will
reduce the coherence mechanism complexity, lead-
ing to less network traffic overhead. Proposals like
SRTR [3] or CRTR [5] provide full tolerance but with
a noticeable performance degradation because of re-
source contention in both the core and the commu-
nication between master and slave threads. As part
of our future work, we will study the potential of re-
dundant mechanisms based on SMT processors. The
communication between cores will be based on struc-
tures in a SRTR fashion in order to avoid the over-
heads incurred by DCC for this reason. Finally, we
will explore solutions as value prediction which would
lighten the pressure over the ROB and other critical
structures leading to less performance degradation.
This way we would be able to keep a moderated sim-
ple microarchitecture without changes in coherence
and consistency mechanisms.

Acknowledgements

This work has been jointly supported by the Span-
ish MEC and European Commission FEDER funds
under grants ”Consolider Ingenio-2010 CSD2006-
00046” and ”TIN2006-15516-C04-03”, and also by
the EU FP6 NoE HiPEAC IST-004408.

References

[1] Christopher LaFrieda, Engin Ipek, Jose F. Martinez, and
Rajit Manohar, “Utilizing dynamically coupled cores to
form a resilient chip multiprocessor,” in DSN’07, Edin-
burgh, UK, 2007.

[2] Steven K. Reinhardt and Shubhendu S. Mukherjee, “Tran-
sient fault detection via simultaneous multithreading,” in
ISCA’00, Vancouver, British Columbia, Canada, 2000.

[3] T. Vijaykumar, I. Pomeranz, and K. Cheng, “Transient
fault recovery using simultaneous multithreading,” in
ISCA’02, Anchorage, Alaska, 2002.

[4] Shubhendu S. Mukherjee, Michael Kontz, and Steven K.
Reinhardt, “Detailed design and evaluation of redun-
dant multithreading alternatives,” in ISCA’02, Anchor-
age, Alaska, 2002.

[5] Mohamed Gomaa, Chad Scarbrough, T. N. Vijaykumar,
and Irith Pomeranz, “Transient-fault recovery for chip
multiprocessors,” in ISCA’03, San Diego, California, 2003.

[6] Eric Rotenberg, “Ar-smt: A microarchitectural approach
to fault tolerance in microprocessors,” in FTCS’99, Madi-
son, Wisconsin, 1999.

[7] Jared C. Smolens, Brian T. Gold, Babak Falsafi, and
James C. Hoe, “Reunion: Complexity-effective multicore
redundancy,” in MICRO 39, Orlando, Florida, 2006.

[8] Daniel Sánchez, Juan L. Aragón, and José M. Garćıa,
“Evaluating dynamic core coupling in a scalable tiled-cmp
architecture,” in WDDD’08, Beijing, China, 2008.

258 XIX Jornadas de Paralelismo


