
A fault-tolerant directory-based cache coherence protocol for CMP
architectures

Ricardo Ferńandez-Pascual, José M. Garćıa, Manuel E. Acacio and José Duato†

Universidad de Murcia, Spain. E-mail:{rfernandez,jmgarcia,meacacio}@ditec.um.es
†Universidad Polit́ecnica de Valencia, Spain. E-mail:jduato@gap.upv.es

Abstract

Current technology trends of increased scale of in-
tegration are pushing CMOS technology into the deep-
submicron domain, enabling the creation of chips with a
significantly greater number of transistors but also more
prone to transient failures. Hence, computer architects
will have to consider reliability as a prime concern for
future chip-multiprocessor designs (CMPs). Since the
interconnection network of future CMPs will use a sig-
nificant portion of the chip real state, it will be especially
affected by transient failures. We propose to deal with
this kind of failures at the level of the cache coherence
protocol instead of ensuring the reliability of the net-
work itself. Particularly, we have extended a directory-
based cache coherence protocol to ensure correct pro-
gram semantics even in presence of transient failures in
the interconnection network. Additionally, we show that
our proposal has virtually no impact on execution time
with respect to a non fault-tolerant protocol, and just
entails modest hardware and network traffic overhead.

1. Introduction
Recent technology improvements have made possi-

ble to put more than a billion transistors in a single chip.
To date, the best way to use this sheer number of transis-
tors seems to be implementing several processor cores
and increasing amounts of cache memory in a single
chip. Compared to other options, Chip Multiprocessors
(CMPs) [2, 8] offer a way to utilize these resources to
increase performance in an energy-efficient way while
keeping complexity manageable by means of exploit-
ing thread-level parallelism. There are already several
commercial CMP systems, most of them based on the
well-known shared-memory paradigm and with varying
implementations of the cache coherence protocol.

Also, tiled architectures which are built by replicating
severaltiles comprised by a core, private cache, part of
the shared cache and a network interface further help in

keeping complexity manageable, scale well to a larger
number of cores and support families of products with
varying number of tiles. In this way, it seems likely that
they will be the choice for future many-core CMP de-
signs [12,21,23].

Tiled CMPs implement a point-to-point interconnec-
tion network which is best suited for directory-based
cache coherence protocols. Furthermore, compared with
snoopy based or token-based [10] protocols which re-
quire frequent broadcasts, directory-based ones are more
scalable and energy-efficient.

On the other hand, the reliability of electronic com-
ponents is never perfect. Components are subject to
several types of failures, which can be either perma-
nent, intermittent or transient. Transient failures [15],
also known as soft errors or single event upsets, occur
when a component produces an erroneous output but
continues working correctly after the event. Any event
which upsets the stored or communicated charge can
cause soft errors. Typical causes include alpha-particles
strikes, cosmic rays, radiation from radioactive atoms
which exist in trace amounts in all materials, and elec-
trical sources like power supply noise, electromagnetic
interference (EMI) or radiation from lightning.

In many applications high availability and reliability
are critical requirements. Even for commodity systems,
reliability needs to be above a certain level for the sys-
tem to be useful for anything. However, the same tech-
nology trends of increased scale of integration which
make CMPs possible will make transient failures more
common [3]. Also, the lower voltages used for power-
efficiency reasons make transient failures even more fre-
quent. Transient failures are already a problem for mem-
ories (and caches) which routinely use error detection
and correction codes (ECC) to deal with them. Other
parts of the system will need to use fault tolerance tech-
niques to deal with transient failures as their frequency
increases.

In fact, since the number of components in a chip in-
creases and the reliability of each component decreases,

1



it is no longer economical to design and test assuming a
worst case scenario for new chips. Instead, new designs
will target the common case and assume a certain rate
of transient failures. Hence, transient failures will have
to be handled across all the levels of the system to avoid
actual errors.

One of the components which will be affected by
transient failures in a CMP is the interconnection net-
work. The interconnection network occupies a signif-
icant part of the chip real estate and is critical to the
performance of the system. It handles the communi-
cation between the cores and caches, which is done by
means of a cache coherence protocol. Communication
is usually very fine-grained (at the level of cache lines)
and requires very small and frequent messages. Hence,
to achieve good performance the interconnection net-
work must provide very low latency and should avoid
acknowledgment messages and other flow-control mes-
sages as much as possible.

Differently from other authors, we propose to deal
with transient failures in the interconnection network of
CMPs at the level of the cache coherence protocol. In
a previous work [7], we showed that a token-based co-
herence protocol can be extended to tolerate transient
failures. In this work, we apply some of the lessons
learned there to guarantee fault tolerance in widely used
directory-based protocols.

In our failure model we assume that the interconnec-
tion network will either deliver a message correctly or
not at all. This can be achieved by means of using an
error detection code (CRC) in each message and dis-
carding corrupted messages upon arrival. We also as-
sume that caches and memories are protected by means
of ECC.

Our cache coherence protocol extends a standard
directory-based coherence protocol with fault tolerant
measures: the integrity of data when cache lines travel
through the network is ensured by means of explicit ac-
knowledgments out of the critical path of cache misses,
a number of timeouts to detect faults are added alongside
with the ability to reissue some requests to avoid dead-
locks due to transient faults, and request serial numbers
are added to ensure correctness when requests are reis-
sued.

Our proposal does not add any requirement to the in-
terconnection network so it is applicable to current and
future designs. Moreover, most fault tolerance proposals
require some kind of checkpointing and rollback while
ours does not. Our proposal could be used in conjunc-
tion to other techniques which provide fault tolerance to
individual cores and caches in the CMP to achieve full
coverage against transient failures inside the chip.

Although the cache coherence protocol is critical to

the performance of parallel applications, we show that
the fault tolerance measures introduced in our protocol
add minimal overhead in terms of execution time. The
main cost of our proposal is a slight increase in network
traffic due to some extra acknowledgments

The rest of the paper is organized as follows. The
base architecture and cache coherence protocol are de-
scribed in section 2. Section 3 explains the fault toler-
ance measures added to the coherence protocol. A per-
formance evaluation of the new protocol is done in sec-
tion 4. In section 5 we review previous work relevant to
this paper. Finally, section 6 concludes the paper.

2. Base architecture and directory protocol
In this work, we assume a CMP system built using

a number of tiles [21]. Each tile contains a processor,
private L1 data and instruction caches, a bank of the L2
cache, and a network interface. The L2 cache is logi-
cally shared by all cores but it is physically distributed
among all tiles. Each tile has its network interface to
connect to the on-chip interconnection network. We as-
sume in-order processors since that seems the most rea-
sonable approach to build power-efficient CMPs with
many cores, although the correctness of the protocol is
not affected if out-of-order cores are used.

Our base architecture uses a traditional directory pro-
tocol adapted for CMP systems that we will refer to as
DIRCMP. DIRCMP is a MOESI-based cache coher-
ence protocol which uses an on-chip directory to man-
tain coherence between several private L1 caches and a
shared non-inclusive L2 cache. It uses a directory cache
in L2 and the L2 effectively acts as the directory for the
L1 caches.

DIRCMP uses per line busy states to defer requests
to lines with outstanding requests. Hence, the directory
will attend only one request for each line at the same
time. Also, it uses three-phase writebacks to coordi-
nate writebacks with other requests. It includes a mi-
gratory sharing optimization to accelerate read-modify-
write sharing behavior. Table 1 shows a simplified list
of the main types of messages used by DIRCMP and a
short explanation of their main function.

We assume a point-to-point ordered network for
our base architecture (in particular, the 2D-mesh with
dimension-ordered routing typically employed in tiled
CMPs) and take advantage of this fact to simplify the
design of our fault-tolerant protocol. Directory proto-
cols used in most cc-NUMAs usually assume that the
network is point-to-point unordered. That is, two mes-
sages sent from a node to another can arrive in a differ-
ent order than they were sent. This assumption makes
possible using any routing technique, including adap-
tive ones. In CMPs, adaptive routing may be useful in
some situations. Fortunately, our protocol can be easily



Table 1. Message types used by DIRCMP.

Type Description

GetX Request data and permission to write.
GetS Request data and permission to read.
Put Sent by the L1 to initiate a write-back.
WbAck Sent by the L2 to let the L1 actually perform the

write-back.
Inv Invalidation request sent to invalidate sharers before

granting exclusive access.
Ack Invalidation acknowledgment.
Data Message carrying data and read permission.
DataEx Message carrying data and write permission.
Unblock Informs the L2 that the data has been received and

the sender is now a sharer.
UnblockEx Informs the L2 that the data has been received and

the sender has now exclusive access to the line.
WbData Write-back containing data.
WbNoData Write-back containing no data.

extended to support unordered point-to-point networks
(see [6] for details).

3. A fault tolerant directory coherence pro-
tocol

From now on, we consider a CMP system whose in-
terconnection network is not reliable due to the potential
presence of transient errors. We assume that these er-
rors cause the loss of messages (either an isolated one
or a burst of them) since they directly disappear from
the interconnection network or arrive to their destination
corrupted and are discarded.

Losing a message in DIRCMP will always lead to a
deadlock situation, since either the sender will be wait-
ing indefinitely for a response or the receiver was al-
ready waiting for the lost response. Additionally, losing
a message carrying data can lead to loss of data if the
corresponding memory line is not in any other cache and
it has been modified since the last time that it was written
to memory. Notice that losing any message cannot lead
to an incoherence, since write access to a line is only
granted after all the necessary invalidation acknowledg-
ments have been actually received.

FTDIRCMP is an extension of DIRCMP which as-
sumes an unreliable interconnection network. It will
guarantee the correct execution of a program even if co-
herence messages are lost or discarded by the intercon-
nection network due to transient errors.

FTDIRCMP uses extra messages to acknowledge the
reception of a few critical data messages and to detect
faults. When possible, those messages are kept out of the
critical path of any cache miss and they are piggybacked
in other messages in the most frequent cases. Table 2
shows the message types that are added by FTDIRCMP
to those mentioned in table 1.

Thanks to the fact that every message lost in
DIRCMP leads to a deadlock, FTDIRCMP can use

Table 2. New message types for FT-
DIRCMP.

Type Description

AckO Ownership acknowledgment.
AckBD Backup deletion acknowledgment.
UnblockPing Requests confirmation whether a cache miss is

still in progress.
WbPing Requests confirmation whether a writeback is

still in progress.
WbCancel Confirms that a previous writeback has already

finished.
OwnershipPing Requests confirmation of ownership.
NackO Not ownership acknowledgment.

timeouts to detect potentially lost messages. FT-
DIRCMP uses a number of timeouts to detect faults and
start corrective measures. Table 3 shows a summary of
these timeouts.

Usually, when a fault occurs and a timeout triggers,
FTDIRCMP reissues the request using a different
serial number. The need for request serial numbers is
explained in section 3.5. These reissued requests need
to be identified as such by the node that answers to them
and not be treated like an usual request. In particular, a
reissued request should not wait in the incoming request
buffer to be attended by the L2 or the memory controller
until a previous request is satisfied, because that previ-
ous request may be precisely the older instance of the
request that is being reissued. Hence, the L2 directory
needs to remember the blocker (last requester) of each
line to be able to detect reissued requests. This informa-
tion can be stored in the Miss Status Holding Register
(MSHR) table or in a dedicated structure for the cases
when it is not necessary to allocate a full MSHR entry.

3.1. Reliable data transmission

A fault tolerant cache coherence protocol needs to en-
sure that there is always at least one updated copy of the
data of each line off the network and that such copy can
be readily used for recovery in case of a fault that cor-
rupts the data while it travels through the network.

There is always one owner node1 for each line which
is responsible of sending data to other nodes to satisfy
read or write requests or to perform writeback when the
data is modified.

Data transmission needs to be reliable when owner-
ship is transferred. Ownership can be transferred either
with an exclusive data response or a writeback response.
On the other hand, when ownership is not being trans-
ferred, data transmission does not need to be reliable be-
cause if the data carrying message is lost, the data can
be sent again from the owner node when the request is

1From the point of view of the coherence protocol, a node can be
either an L1 cache, an L2 cache bank or a memory bank.



Table 3. Timeouts summary.

Timeout When is it activated? Where is it activated? When is it deactivated? What happens when it triggers?

Lost Request When a request is is-
sued.

At the requesting L1
cache.

When the request is satis-
fied.

The request is reissued with a
new serial number.

Lost Unblock When a request is
answered (even write-
back requests).

At the responding L2
or memory.

When the unblock (or
writeback) message is
received.

An UnblockPing/WbPingis sent
to the cache that should have sent
theUnblockor writeback.

Lost backup deletion
acknowledgment

When theAckO mes-
sage is sent.

At the node that sends
theAckO.

When theAckBD message
is received.

TheAckOis reissued with a new
serial number.

reissued.
In order to ensure reliable data transmission of owned

data, FTDIRCMP adds some additional states to the
usual set of MOESI states:

• Backup (B): This state is similar to the Invalid (I)
state, but the data is kept in the cache to be used for
potential recovery (that is, when leaving the Modi-
fied, Owned or Exclusive states) and will abandon it
once anownership acknowledgmentis received.

• Blocked ownership (Mb, Eb and Ob): To pre-
vent having more than one backup for a line at any
given point in time, which is important to be able
to recover in case of a fault, a cache that acquires
ownership (entering the Modified, Owned or Ex-
clusive states) will avoid transmitting the ownership
to another cache until it receives abackup deletion
acknowledgmentmessage from the previous owner.
For achieving this, we have added blocked versions
of the Modified, Exclusive and Owned states. While
a line is in one of these states, the cache will not at-
tend external requests to that line which require own-
ership transference.

Using the states described above, the transmission of
owned data between two nodes works as follows:

1. When a node sends owned data to another node, it
does not transition to anInvalid state. Instead, it
enters aBackupstate in which the data is still kept
for recovery, although no read or write permission
on the line is retained. Depending on the particular
case, the data may be kept in the same cache block,
in a backup buffer [7] or in a writeback buffer. The
cache will keep the data until it receives anowner-
ship acknowledgment, which can be received as a
message by itself or piggybacked along with anUn-
blockExmessage.

2. When the data message is received by the new
owner, it sends anownership acknowledgmentto the
node that sent the data. Also, it does not transition
to an M, O or E state. Instead it enters one of the
blocked ownership states (Mb, Eb or Ob) until it re-
ceives thebackup deletion acknowledgment. While
in these states, the node will not transfer ownership

to another node. This ensures that there is never
more than one backup copy of the data. However,
at this point the node has received the data (and pos-
sibly write permission to it) and the miss is already
satisfied. Theownership acknowledgmentwill carry
a serial number also, which can be the same than the
data carrying message just received.

3. When the node that sent the data receives theown-
ership acknowledgment, it transitions to anInvalid
state and sends abackup deletion acknowledgment
to the other node with the same serial number as the
received ownership acknowledgment.

4. Finally, once thebackup deletion acknowledgmentis
received, the node that received the data transitions
to an M, O or E state and can now transfer the own-
ership to another node if necessary.

Figure 1 shows an example of how a cache-to-cache
miss which requires ownership change is handled in FT-
DIRCMP and compares it with DIRCMP.

The ownership acknowledgment can be piggybacked
in the UnblockExmessage when the data is sent to the
requesting L1 by the L2 (or to L2 by the memory). In
that case, only an extra message (the backup deletion
acknowledgment) needs to be sent.

These rules ensure that for every cache line there is
always either an owner node that has the data, a backup
node which has a backup copy of the data or both. They
also ensure that there is never more than one owner or
one backup node.

3.1.1 Optimizing ownership transference from
memory to L1 caches

The rules explained above ensure the reliable transmis-
sion of owned data in all cases without adding any mes-
sage to the critical path of cache misses in most cases.
However there are potential performance problems cre-
ated by the blocked ownership states, since a node can-
not transfer the recently received owned data until the
backup deletion acknowledgmentmessage is received.

This is not a problem when the data is received by an
L1 cache since the node can already use the data while it
waits for said acknowledgment. However, in the case of
L2 misses, the L2 cannot answer the L1 request imme-



D
IR

C
M

P
F

T
D

IR
C

M
P

Initially, for both protocols, L1b has the data in modifiable (M), exclusive (E)
or owned2 (O) state and L1a requests write access to L2 (1) which forwards the
request to L1b (2). In DIRCMP, L1b sends the data to L1a (3) and transitions
to invalid state. Subsequently, when L1a receives the data, it transitionsto a
modifiable (M) state and sends anUnblockExmessage to L2. In FTDIRCMP,
when L1b receives the forwardedGetX, it sends the data to L1a and transitions
to the backup state (3). When L1a receives the data, it transitions to the blocked
ownership and modifiable (Mb) state and sends theUnblockExmessage to L2
and anAckOmessage to L1b (4). When L1b receives theAckO, it discards the
backup data, transitions to invalid (I) state and sends aAckBDmessage to L1a
(5), which transitions to the usual modifiable (M) state when receives it.

Figure 1. Cache-to-cache write miss.

diately after receiving the data from memory because,
according to the rules described above, it first needs to
send anownership acknowledgmentto memory and wait
for thebackup deletion acknowledgment. Hence, in the
case of L2 misses, these rules would add two messages
in the critical path of misses.

To avoid increasing the latency of L2 misses, we re-
lax the rules in these cases. We allow the L2 to send
the data directly to the requesting L1 just after receiv-
ing it, keeping a backup until it receives the ownership
acknowledgment from the L1. In fact, the L2 does not
send the ownership acknowledgment to memory until it
receives it from the L1 (most times piggybacked on an
unblock message) since this way we can piggyback it
with anUnblockExmessage.

To implement this behavior, we modify the set of
states for the L2 cache so that a line can be either in-
ternally blocked or externally blocked, or both (which
would correspond to the blocked states already de-
scribed). The ownership of internally blocked lines can-
not be transferred from one L1 cache to another, and the
ownership of an externally blocked line cannot be trans-
ferred from L2 to memory. This ensures that there is at
most one backup of the data out of the chip, although
there may be another in the chip, which is enough to
guarantee correctness in case of faults.

2In owned state, additional invalidation messages and their corre-
sponding acknowledgments would be needed.

3.2. Faults detected by the lost request timeout

The lost request timeoutstarts when a request (GetX
or GetSmessage) is issued and stops once it is satis-
fied (that is, when the L1 cache acquires the data and
the requested access rights for it). Hence, it will trigger
whenever a request takes too much time to be satisfied or
cannot be satisfied because any of the involved messages
has been dropped, causing a deadlock. It is maintained
by the L1 for each pending miss. Hence, the extra hard-
ware required to implement it is one extra counter for
each MSHR entry.

When thelost request timeouttriggers, FTDIRCMP
assumes that some message which was necessary to fin-
ish the transaction has been lost due to a transient fault
and retries the request. The particular message that may
have been lost is not very important: it can be the request
itself (GetXor GetS), an invalidation request sent by the
L2 or the memory controller (Inv), a response to the re-
quest (Data or DataEx) or an invalidation acknowledg-
ment (Ack). The timeout is restarted after the request is
reissued to be able to detect additional faults.

To retry the request, the L1 chooses a new request
serial number and will ignore any response which arrives
with the old serial number after thelost request timeout
triggers. See section 3.5 for more details.

As mentioned before, the L2 needs to be able to de-
tect reissued requests and merge them in the MSHR with
the original request (assuming it was not lost). The L2
will identify an incoming request as reissued if it has
the same requestor and address than another request cur-
rently in the MSHR but a different request serial number.

A node which holds a line inbackupstate should also
detect reissued requests to be able to resend the data (us-
ing the new serial number). Hence, every cache that
transmits owned data needs to remember the destination
node of that data at least until the ownership acknowl-
edgment is received. This way, if aDataExresponse is
lost, it will be detected using thelost request timeoutand
corrected by resending the request.

This timeout is also used for writeback requests (Put
messages). The timeout starts when thePut message
is sent and stops once the writeback acknowledgment
(WbAckmessage) is received. When it triggers, thePut
message will be reissued with a different serial number.
This way, this timeout can detect the loss ofPut and
WbAckmessages but not the loss ofWbDataor WbN-
oData messages which is handled by thelost unblock
timeout.

3.3. Faults detected by the lost unblock time-
out

Unblock messages (Unblockor UnblockEx) are sent
by the L1 once it receives the data and all required inval-
idation acknowledgments to notify the L2 that the miss



has been satisfied. When the L2 receives one of these
messages, it proceeds to attend the next miss for that
line, if any.

When an unblock message is lost, the L2 will be
blocked indefinitely and will not be able to attend fur-
ther requests for the same line. Lost unblock messages
cannot be detected by thelost requests timeoutbecause
that timeout is deactivated once the request is satisfied,
just before sending the unblock message.

To avoid a deadlock due to a lost unblock message,
the L2 starts thelost unblock timeoutwhen it answers to
a request and waits for an unblock message to finalize
the transaction. When this timeout triggers, it will send
anUnblockPingmessage to the L1.

When an L1 cache receives anUnblockPingmessage
and it has already satisfied that miss (hence it has al-
ready sent a corresponding unblock message which may
have been lost or not), it will answer with a reissuedUn-
block or UnblockExmessage, depending on whether it
has exclusive or shared access to the line. If the miss has
not been resolved yet (hence no unblock message could
have been lost because it was not sent in the first place),
theUnblockPingmessage will be ignored. The L1 cache
can check whether the miss has been already resolved or
not by looking at its MSHR for a pending miss for the
same address.

Unblock messages are also exchanged between the
L2 and the memory controller in an analogous way.
Hence, FTDIRCMP uses an unblock timeout andUn-
blockPingin the memory controller too.

Also, this timeout is used to detect lost writeback
messages (WbDataand WbNoData) in a similar man-
ner. When aPut is received by the L2 (or the memory),
the timeout is started and aWbAckis sent to L1 (or L2)
to indicate that it can perform the eviction and whether
data must be sent or not. Upon receiving this message,
the L1 stops itslost request timeout, sends the appropri-
ate writeback message and assumes that the writeback
is already done. Once the writeback message arrives to
L2, the lost unblock timeoutis deactivated. If the write-
back message is lost (or it just takes too long to arrive),
the timeout will trigger and the L2 will send aWbPing
message to L1. The L1 will answer with a new write-
back message (in case it still has the data) or aWbCan-
cel message which tells the L2 that the writeback has
already been performed. Note that modified data cannot
be lost thanks to the rules described in section 3.1.

3.4. Faults detected by the lost backup dele-
tion acknowledgment timeout

As explained in section 3.1, when ownership has to
be transferred from a node to another, FTDIRCMP uses
a pair of acknowledgments to ensure the reliable trans-
mission of the data. Losing any of these acknowledg-

ments would lead to a deadlock which will not be de-
tected by thelost requestor lost unblocktimeout (un-
less the ownership acknowledgment was lost along with
an unblock message) because these timeouts are deacti-
vated once the miss has been satisfied.

For these reasons, we intoduce thelost backup dele-
tion acknowledgmenttimeout which is started when an
ownership acknowledgment is sent and is stopped when
the backup deletion acknowledgment arrives. This way,
it will trigger if any of these acknowledgments is lost or
arrives too late. When it triggers, a newAckOmessage
will be sent with a newly assigned serial number.

If the ownership acknowledgment was actually lost,
the new message will hopefully arrive to the node that
is holding a backup of the line and that backup will be
discarded and anAckBDmessage will be returned.

If the first ownership acknowledgment did arrive to
its destination (false positive), the new message will ar-
rive to a node which no longer has a backup and which
already responded with anAckBDmessage. Anyway, a
newAckBDmessage will be sent using the serial num-
ber of the new message. The oldAckBDmessage will be
discarded (if it was not actually lost) because it carries
an old serial number.

3.5. Request serial numbers

As described above, when alost request timeouttrig-
gers FTDIRCMP assumes that the request message or
some response message has been lost due to a transient
fault and then reissues the request hoping that no fault
will occur this time. However, sometimes the timeout
may trigger before the response has been received due
to unusual network congestion or any other reason that
causes an extraordinarily long latency for solving a miss.
That is, there may be false positives.

In case of a false positive, two or more duplicate re-
sponse messages would arrive to the requestor and, in
some cases, the extra messages could lead to an inco-
herence (see figure 2 for an example). For this reason,
FTDIRCMP usesrequest serial numbersto discard re-
sponses which arrive too late, when the request has al-
ready been reissued.

Every request and every response message carries a
serial number. Request serial numbers are chosen by the
L1 cache that issues the request (or by the L2 in case
of writebacks from L2 to memory). Responses or for-
warded requests will carry the serial number of the re-
quest that they are answering to. When a request is reis-
sued, it will be assigned a new serial number which will
allow to distinguish between responses to the old request
and responses to the new one.

The L1 cache, L2 cache and memory controller must
remember the serial number of the requests that they are
currently handling and discard any message which ar-



Initially, the data is present in L2 in O state and in L1b in S state. L1a makes a
write request (1) to L2 which sends an invalidation to L1b and aDataExmessage
to L1a (2). TheDataExalso tells L1a that it needs to wait for one invalidation ac-
knowledgment before entering the M state. When L1b receives the invalidation,
it sends an acknowledgment to L1a (3). However, due to network congestion,
this message takes a long time to arrive to L1a, hence thelost request time-
out triggers and L1a reissues the write request (4) to L2. The reissued request
arrives to L2 which resends the data message and the invalidation request (5).
When the invalidation request arrives to L1b, it resends an acknowledgment (6)
to L1a. Notice that the first acknowledgment (3) will arrive to L1a before the
second one (6) because the network is point-to-point ordered. It will be accepted
if request serial numbers are not used (otherwise it would be discarded and L1a
would wait for the second one) and anUnblockExmessage (6) carrying also the
ownership acknowledgment will be sent to L2 which will answer with anAckBD
(8). Now, due to the stale acknowledgment (6) that is traveling through the net-
work, the system can arrive to an incoherent state: another cache L1c issues a
read request (9) which is forwarded (10) by L2 to L1a. L1a answers it (11) and
transitions to O state. L1c receives it (11), sends an unblock (12) and transitions
to S state. Next, L1a issues a new write request (13) to L2 which sends an inval-
idation message to L1c and an acknowledgment message to L1a which tells it
that it needs to wait for one invalidation acknowledgment (14). The invalidation
request gets lost due to corruption. If the stale acknowledgment (6) arrives now
to L1a, it will assume that it can transition to M state despite the fact that L1c is
still in S state, thus violating coherency.

Figure 2. Transaction where request serial
numbers are needed to avoid incoherency.

rives with an unexpected serial number or from an un-
expected sender. This information needs to be updated
when a reissued request arrives. Discarding any mes-
sage in FTDIRCMP is always safe (even if it could be
not strictly necessary in some cases) since the protocol
already has provisions for lost messages of any type.

Analogously, serial numbers are also used to be
able to discard duplicated unblock messages, duplicated
writeback messages or duplicated backup deletion ac-
knowledgments. These duplicated messages can appear
due to unnecessaryUnblockPing, WbPingor duplicated
ownership acknowledgment messages sent in the case
of false positives of thelost unblock timeoutor the lost
backup deletion acknowledgment timeout.

3.5.1 Choosing serial numbers and their size

Serial numbers are used to discard duplicated responses
to reissued requests3. This means that they need to be

3In this context, we can considerUnblockPing, WbPing, AckOand
WbAckmessages as requests too.

different for requests to the same address and by the
same node (specially for reissued requests) but it does
not matter if the same serial number is used for requests
to different addresses or by different requestors.

On the other hand, the number of available serial
numbers is finite. In our implementation, we use a small
number of bits to encode the serial number in messages
and MSHRs to minimize the overhead.

Since the initial serial number of a request is not im-
portant, we can choose it “randomly”. For example, in
our implementation, each node has a wrapping counter
which is used to choose serial numbers for new requests.

On the other hand, when reissuing a request, it is de-
sirable to minimize the chances of using the serial num-
ber of any response to the former request currently trav-
eling through the network. For this, serial numbers for
reissued requests are chosen sequentially increasing the
serial number of the previous attempt (wrapping to 0 if
necessary). This way, when usingn bits to encode the
serial number, we would have to reissue the same re-
quest2n times before having any possibility of receiv-
ing a response to an old request and accepting it, which
could cause problems in some situations as shown in fig-
ure 2.

3.6. Overhead estimation

The main overhead introduced by our protocol is the
extra network traffic due to the acknowledgment used to
ensure reliable ownership transference. Message sizes
may also have to be increased to make room for the re-
quest serial numbers and the CRC.

There is also a small hardware overhead due to the
counters that need to be added to MSHRs for the time-
outs and additional space in the MSHR (or a separate
structure) for storing the request serial number of the
transaction, the identity of the requester currently being
serviced (in the L2 cache and memory controller), and
the identity of the receiver of owned data when transfer-
ring ownership (in the L1 cache, to make possible to de-
tect reissued forwarded requests). Finally, FTDIRCMP
requires two virtual channels more than DIRCMP.

4. Evaluation
4.1. Methodology

We have experimentally measured the overhead of
FTDIRCMP in comparison with DIRCMP both in terms
of execution time overhead and network traffic over-
head. For this, we have performed full system simu-
lations using Multifacet GEMS [11] detailed memory
model and Virtutech Simics [9].

We have simulated a tiled CMP as described in sec-
tion 2. Table 4 shows the most relevant configuration
parameters of the modeled system. The values chosen
for the fault-detection timeouts have been chosen exper-



Table 4. Characteristics of simulated archi-
tectures.

16-Way Tiled CMP System
Processor parameters

Processor speed 2 GHz
Cache parameters

Cache line size 64 bytes
L1 cache:
Size, associativity 32 KB, 4 ways
Hit time 2 cycles

Shared L2 cache:
Size, associativity 1024 KB, 4 ways
Hit time 15 cycles

Memory parameters
Memory access time 300 cycles
Memory interleaving 4-way

Network parameters
Topology 2D Mesh
Non-data message size 8 bytes
Data message size 72 bytes
Channel bandwidth 64 GB/s

Fault tolerance parameters
Lost request timeout 2000 cycles
Lost unblock timeout 4000 cycles
Lost backup deletion acknowledgment 4000 cycles
Request serial number size 8 bits

imentally to minimize the number of false positives, thus
ensuring minimal performance degradation in the fault-
free scenario.

Finally, we have used a selection of scientific ap-
plications for the evaluation: Barnes (8192 bodies, 4
time steps), Cholesky (tk16.O), FFT (256K complex
doubles), Ocean (258 × 258 ocean), Radix (1M keys,
1024 radix), Raytrace (10Mb, teapot.env scene), Water-
NSQ (512 molecules, 4 time steps), and Water-SP (512
molecules, 4 time steps) are from the SPLASH-2 [22]
benchmark suite. Tomcatv (256 points, 5 iterations) is a
parallel version of a SPEC benchmark and Unstructured
(Mesh.2K, 5 time steps) is a computational fluid dynam-
ics application. The experimental results reported here
correspond to the parallel phase of each program only.
Every simulation has been performed several times us-
ing different random seeds to account for the variability
of multithreaded execution. Such variability is repre-
sented by the error bars in the figures which enclose the
resulting 95% confidence interval of the results.

4.2. Results

We have measured the execution time of DIRCMP
in a fault-free scenario and compared it to FTDIRCMP
with several message loss rates. The results are shown
in figure 3. Fault rates are expressed in number of
messages discarded per million of messages that travel
through the network.

First, we see that there is no measurable overhead in
terms of execution time for FTDIRCMP with respect
to DIRCMP when there are no faults (DirCMP-0 and
FtDirCMP-0 bars respectively). This is consistent with
the fact that, when no faults occur, the main difference

barnes

cholesky fft
ocean

radix

raytra
ce

tomcatv

unstru
ctured

waternsq

watersp

Average

Applications

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

DirCMP-0
FtDirCMP-0

FtDirCMP-125
FtDirCMP-250

FtDirCMP-500
FtDirCMP-1000

FtDirCMP-2000

Figure 3. Execution time overhead of FT-
DIRCMP compared to DIRCMP for several
fault rates.

between our proposal and a standard directory-based
protocol is just the extra acknowledgments used to en-
sure reliable data transmission, which are sent out of the
critical path of misses.

As the fault rate increases, so does the execution time.
The performance degradation depends mainly on the la-
tency of the error detection mechanism. Hence, short-
ening the fault detection timeouts can reduce perfor-
mance degradation when faults happen but at the risk
of increasing the number of false positives which could
lead to performance degradation in the fault-free case.
With the timeouts used in this work, the performance
degradation is not severe for most benchmarks even with
fault rates which are unrealistically high. The execu-
tion time of three benchmarks doubles when the fault
rate reaches 2000 messages lost per million (FtDirCMP-
2000 bar), but on average execution time increases less
than 50% even for the highest fault rate tested. Obvi-
ously, DIRCMP would not be able to execute correctly
for any fault rate greater than zero.

We have also measured the network overhead of our
proposal in terms of the relative increase of both num-
ber of messages and bytes transmitted through the net-
work. These results are shown in figure 4 for the fault-
free scenario and categorized by type of message. We
can see that, on average, the overhead in terms of num-
ber of messages that FTDIRCMP introduces is less than
30%. Moreover, the overhead drops to 10% when it is
measured in terms of bytes. These overheads represent
the main cost of the fault tolerance features of our pro-
tocol. As can be seen, the overhead comes entirely from
the acknowledgments used to ensure reliable ownership
transference as explained in section 3.1 (portionowner-
shipof each bar).



barnes

cholesky fft
ocean

radix

raytra
ce

tomcatv

unstru
ctured

waternsq

watersp

Average

Applications

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

N
et

w
or

k 
us

ag
e 

(n
or

m
al

iz
ed

 m
es

sa
ge

 c
ou

nt
 a

nd
 b

yt
es

)
control
data

ownership
reissued

Figure 4. Network overhead of FTDIRCMP
compared to DIRCMP without faults.

5. Related work
Fault tolerance for multiprocessors has been thor-

oughly studied in the past. Most proposals deal with
transient errors by means of checkpointing and recov-
ery. For example, Pruvlovicet al. presented ReVive
[19], which performs checkpointing, logging and mem-
ory based distributed parity protection with low over-
head in error-free execution and is compatible with off-
the-self processors, caches and memory modules. At the
same time, Sorinet al. presented SafetyNet [20] which
aims at the same objectives but has less overhead and
uses custom caches.

Recently, Meixneret al. proposed error detection
techniques [13, 14] for multiprocessors which can de-
tect errors that lead to memory consistency or coherence
violations, but do not provide any recovery mechanism.
Also, Aggarwalet al. [1] proposed a mechanism to pro-
vide dynamic reconfiguration of CMPs which enables
fault containment and reconfiguration, but does not di-
rectly address the problems caused by a faulty intercon-
nection network in the coherence protocol.

An alternative way to solve the problem of transient
failures in the on-chip interconnection network is mak-
ing the network itself fault tolerant. There are several
proposals [4, 5, 16–18] exploring this approach. Ensur-
ing the reliable transmission of all messages through the
network imposes significant overheads in latency, power
consumption and area. In contrast, our protocol allows
for more flexibility to design a high-performance on-
chip network which can be unreliable. The protocol
itself ensures the reliable retransmission of those few
messages that carry owned data and could cause data
loss.

In a previous work [7], we presented a low overhead
fault tolerant protocol based on the token coherence

framework [10]. This work applies similar ideas for
directory-based cache coherence protocols. Directory-
based protocols are better known than token-based ones
and are actually used in commercial systems. Also, we
expect that directory-based protocols will be used pre-
dominantly for future CMPs due to their good scalabil-
ity characteristics in terms of interconnection network
usage and power consumption. Hence, we think that our
current work is more relevant than the previous one.

In both protocols, fault detection is achieved by
means of a number of timeouts which detect deadlocks
caused by lost messages. Also we provide essentially the
same mechanism to achieve the reliable transmission of
owned data. The main differences between our previous
fault tolerant protocol and this one are:

• In our previous protocol, fault recovery was done by
means of a centralized mechanism called thetoken
recreation processarbitrated by the memory con-
troller. In this work, fault recovery is achieved sim-
ply reissuing requests with a different serial number.

• The token serial numbersused in our previous pro-
tocol serve a similar purpose torequest serial num-
bers, but the latter are easier to implement and more
scalable.Token serial numberswere associated with
each cache line and needed to be updated in a coor-
dinated fashion during thetoken recreation process.
Hence, they required an additional structure in each
cache to store them (even for lines which were not
currently in the cache, but only for those hopefully
few lines that had a token serial number different
than 0). On the other hand,request serial numbers
are associated with individual requests and so they
are short-lived information which can be stored in
the MSHR.

6. Conclusion
In this work, we have shown how to build a fault-

tolerant directory-based coherence protocol which can
ensure the correct execution of programs even if the in-
terconnection network is subject to transient failures and
does not correctly deliver all the coherence messages.
Our protocol uses error detection codes (CRC) to de-
tect corrupted messages and discard them upon recep-
tion, uses a number of timeouts to detect faults, adds
acknowledgments only for a small number of messages,
and uses request retries to resolve deadlock situations
caused by transient failures.

We have evaluated the overhead of our protocol with
respect to a base directory-based non fault-tolerant co-
herence protocol both in terms of execution time over-
head and network usage overhead. We have found that,
in absence of failures, the overhead of our protocol is
minimal: the execution time does not increase, there is



a very small hardware overhead and the network traffic
increases moderately.

We have also performed fault injection to check the
correctness of the protocol and to measure the perfor-
mance degradation caused by several fault rates. We
have found only a moderate performance degradation
for fault rates which are much higher than what can be
expected in a real scenario. Hence, we expect that the
transient faults occurring in the interconnection network
of a system using our protocol would have a negligible
effect in performance.

In this way, our protocol provides a solution to tran-
sient failures in the interconnection network of CMPs
using directory-based cache coherence protocols with
very low overhead which can be combined with other
fault tolerance measures to build reliable CMPs.

Acknowledgements
This work has been jointly supported by the Span-

ish MEC and European Comission FEDER funds un-
der grants “Consolider Ingenio-2010 CSD2006-00046”
and “TIN2006-15516-C04-03”, and also by the EU FP6
NoE HiPEAC IST-004408.

References
[1] N. Aggarwal, P. Ranganathan, N. P. Jouppi, and J. E.

Smith. Configurable isolation: building high availability
systems with commodity multi-core processors. In34th
Int’l Symp. on Computer Architecture (ISCA 2007), June
2007.

[2] L. A. Barroso, K. Gharachorloo, R. McNamara,
A. Nowatzyk, S. Qadeer, B. Sano, S. Smith, R. Stets, and
B. Verghese. Piranha: A Scalable Architecture Based
on Single-Chip Multiprocessing. InProc. of 27th Int’l
Symp. on Computer Architecture (ISCA’00), pages 282–
293, June 2000.

[3] R. Baumann. Soft errors in advanced computer sys-
tems. IEEE Design and Test of Computers, 22(3):258–
266, 2005.

[4] K. Constantinides, S. Plaza, J. Blome, B. Zhang,
V. Bertacco, S. Mahlke, T. Austin, and M. Orshansky.
BulletProof: a defect-tolerant CMP switch architecture.
In 12th Int’l Symp. on High-Performance Computer Ar-
chitecture (HPCA’06), pages 3–14, February 2006.

[5] T. Dumitras, S. Kerner, and R. M̆arculescu. Towards on-
chip fault-tolerant communication. InASPDAC: Pro-
ceedings of the 2003 conference on Asia South Pacific
design automation, pages 225–232, January 2003.

[6] R. Ferńandez-Pascual, J. M. Garcı́a, M. E. Acacio, and
J. Duato. A fault-tolerant directory-based cache coher-
ence protocol for shared-memory architectures. Techni-
cal report, Universidad de Murcia, December 2007. TR-
DITEC-UM-0001-2007.

[7] R. Ferńandez-Pascual, J. M. Garcı́a, M. E. Acacio, and
J. Duato. A low overhead fault tolerant coherence proto-
col for CMP architectures. In13th Int’l Symp. on High-
Performance Computer Architecture (HPCA’07), pages
157–168, February 2007.

[8] L. Hammond, B. A. Hubbert, M. Siu, M. K. Prabhu,
M. Chen, and K. Olukotun. The Stanford Hydra
CMP. IEEE MICRO Magazine, 20(2):71–84, March-
April 2000.

[9] P. S. Magnusson, M. Christensson, J. Eskilson, D. Fors-
gren, G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt,
and B. Werner. Simics: A full system simulation plat-
form. Computer, 35(2):50–58, 2002.

[10] M. M. Martin, M. D. Hill, and D. A. Wood. Token co-
herence: Decoupling performance and correctness. In
The 30th Annual International Symp. on Computer Ar-
chitecture, pages 182–193, June 2003.

[11] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R.
Marty, M. Xu, A. R. Alameldeen, K. E. Moore, M. D.
Hill, and D. A. Wood. Multifacet’s general execution-
driven multiprocessor simulator (GEMS) toolset.Com-
puter Architecture News, 33(4):92–99, September 2005.

[12] M. R. Marty and M. D. Hill. Virtual hierarchies to sup-
port server consolidation. InISCA ’07: Proceedings of
the 34th annual international symposium on Computer
architecture, pages 46–56, June 2007.

[13] A. Meixner and D. J. Sorin. Dynamic verification of
memory consistency in cache-coherent multithreaded
computer architectures. InProceedings of the Inter-
national Conference on Dependable Systems and Net-
works, pages 73–82, June 2006.

[14] A. Meixner and D. J. Sorin. Error detection via online
checking of cache coherence with token coherence sig-
natures. In13th Int’l Symp. on High-Performance Com-
puter Architecture (HPCA-13), pages 145–156, Febru-
ary 2007.

[15] S. S. Mukherjee, J. Emer, and S. K. Reinhardt. The soft
error problem: An architectural perspective. In11th
Int’l Symp. on High-Performance Computer Architec-
ture (HPCA’05), February 2005.

[16] S. Murali, T. Theocharides, N. Vijaykrishnan, M. J. Ir-
win, L. Benini, and G. D. Micheli. Analysis of error
recovery schemes for networks on chips.IEEE Design
and Test of Computers, 22(5):434–442, 2005.

[17] D. Park, C. Nicopoulos, J. Kim, N. Vijaykrishnan, and
C. R. Das. Exploring fault-tolerant network-on-chip ar-
chitectures. InProceedings of the 2006 Int’l Conference
on Dependable Systems and Networks (DSN’06), pages
93–104, 2006.

[18] M. Pirretti, G. Link, R. Brooks, N. Vijaykrishnan,
M. Kandemir, and M. Irwin. Fault tolerant algorithms
for network-on-chip interconnect. InProceedings of the
IEEE Computer society Annual Symp. on VLSI, pages
46–51, February 2004.

[19] M. Prvulovic, Z. Zhang, and J. Torrellas. ReVive: Cost-
effective architectural support for rollback. In29th An-
nual Int’l Symp. on Computer Architecture (ISCA’02),
pages 111–122, May 2002.

[20] D. J. Sorin, M. M. Martin, M. D. Hill, and D. A. Wood.
SafetyNet: Improving the availability of shared mem-
ory multiprocessors with global checkpoint/recovery.
In 29th Annual Int’l Symp. on Computer Architecture
(ISCA’02), pages 123–134, May 2002.

[21] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Gho-
drat, B. Greenwald, H. Hoffman, J.-W. Lee, P. Johnson,
W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman,
V. Strumpen, M. Frank, S. Amarasinghe, and A. Agar-
wal. The raw microprocessor: A computational fab-
ric for software circuits and general purpose programs.
IEEE Micro, 22(2):25–35, May 2002.

[22] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The
SPLASH-2 Programs: Characterization and Method-
ological Considerations. In22nd Int’l Symp. on Com-
puter Architecture (ISCA’95), pages 24–36, June 1995.

[23] M. Zhang and K. Asanovic. Victim replication: Max-
imizing capacity while hiding wire delay in tiled chip
multiprocessors. In32th Int’l Symp. on Computer Ar-
chitecture (ISCA’05), pages 336–345, June 2005.


