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Dealing with transient faults in the interconnection
network of CMPs at the cache coherence level
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Abstract— The importance of transient faults is predicted to
grow due to current technology trends of increased scale of
integration. One of the components that will be significantly
affected by transient faults is the interconnection network of
CMPs. To deal efficiently with these faults and differently from
other authors, we propose to use fault-tolerant cache coherence
protocols that ensure the correct execution of programs when not
all messages are correctly delivered. We describe the extensions
made to a directory-based cache coherence protocol to provide
fault tolerance and provide a modified set of token counting
rules which are useful to design fault-tolerant token-based cache
coherence protocols. We compare the directory-based fault-
tolerant protocol with a token-based fault-tolerant one. We also
show how to adjust the fault tolerance parameters to achieve
the desired level of fault tolerance and measure the overhead
achieved to be able to support very high fault rates. Simulation
results using a set of scientific, multimedia and commercial
applications show that the fault tolerance measures have virtually
no impact on execution time with respect to a non fault-tolerant
protocol. Additionally, our protocols can support very high rates
of transient faults at the cost of slightly increased network traffic.

I. I NTRODUCTION

CHIP Multiprocessors (CMPs) have become the preferred
way to effectively take advantage of the increased availabil-

ity of transistors while keeping design complexity manageable.
Further, tiled architectures which are built by replicating several
tiles comprised by a core, private cache, part of the shared
cache and a network interface help in keeping complexity more
manageable, scale well to a larger number of cores and support
families of products with varying number of tiles. In this way,
it seems likely that they will be the choice for future many-
core CMP designs [23], [24]. Figure 1(b) shows a 16-core CMP
organized by replicating the tile structure shown in figure 1(a).

A main drawback of current technology trends is that, due
to the miniaturization and the lower voltages used for power
efficiency reasons, the susceptibility of future chips to transient
faults will increase. Transient faults [3], [17], also known as soft
errors or single event upsets, occur when a component produces
an erroneous output but continues working correctly after the
event. Any event which upsets the stored or communicated charge
can cause soft errors. Typical causes include alpha-particle strikes,
cosmic rays, radiation from radioactive atoms which exist in
trace amounts in all materials, and electrical sources likepower
supply noise, electromagnetic interference (EMI) or radiation
from lightning.
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(a) Diagram of an individual
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Fig. 1. Tiled Chip Multiprocessors.

Reliability is not only required for some critical applications:
even for commodity systems reliability needs to be above a certain
level for the system to be useful for anything.

In fact, since the number of components in a chip increases
and the reliability of each component decreases, it is no longer
economical to design new chips and test assuming a worst case
reliability scenario. Instead, new designs will target thecommon
case and assume a certain rate of transient faults. Hence, transient
faults will have to be handled across all the levels of the system
to avoid actual errors. Transient faults are already a problem for
memories and caches which routinely use error detection and
correction codes (ECC) to deal with them. Other parts of the
system will need to use fault tolerance techniques to deal with
transient faults as their frequency increases.

One of the components which will be affected by transient
faults in a CMP is the interconnection network. It occupies a
significant part of the chip real estate and is critical to theperfor-
mance of the system. It handles the communication between the
cores and caches, which is done by means of a cache coherence
protocol. Communication is usually very fine-grained (at the level
of cache lines) and requires very small and frequent messages.
Hence, to achieve good performance the interconnection network
must provide very low latency.

Fault tolerance in the interconnection network has traditionally
been provided at the network level. Several proposals on howto
do this are mentioned in section II. Ensuring the reliable trans-
mission of all messages through the network imposes significant
overheads in latency, power consumption and area. Differently
from other authors, we propose to deal with transient faultsin
the interconnection network of CMPs at the level of the cache
coherence protocol. This allows for more flexibility to design
a high-performance on-chip network which can be unreliable.
At the same time, the higher level information available to the
coherence protocol enables it to achieve fault tolerance with
lower overhead, avoiding acknowledgment messages in most
cases, protecting only those messages which are critical tothe
correctness of the protocol. The few necessary acknowledgments
are sent out of the critical path of coherence transactions to
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minimize the effect of fault tolerance on performance.
In a previous work [5], [6], we showed that a token-based

[12] coherence protocol can be extended to tolerate transient
faults. Unfortunately, token coherence is not the cache coherence
protocol of choice in current CMP proposals.

Tiled CMPs implement a point-to-point interconnection net-
work which is best suited for directory-based cache coher-
ence protocols. Furthermore, compared with snoopy-based or
token-based protocols which usually require frequent broadcasts,
directory-based ones are more scalable and energy-efficient. In
this work, we apply some of the lessons learned there to guarantee
fault tolerance in a directory-based cache coherence protocol.

A fault-tolerant cache coherence protocol needs to providethe
following things: a fault detection mechanism, a fault recovery
mechanism, and a mechanism to ensure that data is never lost or
corrupted.

In both protocols, fault detection is achieved by means of a
number of timeouts which detect deadlocks caused by discarded
messages. This fault detection mechanism is reliable and valid
for every coherence protocol where a discarded message can
be either harmless or lead to a deadlock in the same or a
subsequent memory transaction. This is the case of TOKENCMP
(the non fault-tolerant token-based cache coherence protocol),
where discarded transient requests are harmless and the rest of
message types lead to deadlock; and in the case of DIRCMP
(the non fault-tolerant directory-based cache coherence protocol)
where every discarded message leads to a deadlock. However,not
all cache coherence protocols have this property: for example,
some protocols do not require acknowledgments for invalidation
messages, hence discarding an invalidation message would lead
to an incoherence instead of a deadlock. The number and precise
function of timeouts depend on the way that each protocol works.
Also, both protocols ensure the integrity of data when it travels
through the network by means of explicit acknowledgments out
of the critical path of cache misses. However, the recovery
mechanisms used by each protocol are different.

Our two proposals do not add any requirements to the inter-
connection network so they are applicable to current and future
designs. Actually, since the network does not need to guarantee
correct delivery of every message, we expect that it could take
advantage of a more aggressive design to reduce latency even
at the cost of dropping a few messages, improving overall
performance. Also, our proposals could be used in conjunction
to other techniques which provide fault tolerance to individual
cores and caches in the CMP to achieve full coverage against
transient faults inside the chip.

Some parts of this work were presented in a preliminary version
in [8] and [7]. The main contributions of this paper are:

• A cache coherence protocol which extends a standard
directory-based coherence protocol with fault-tolerant mea-
sures and assumes a point-to-point unordered interconnec-
tion network. Unlike the protocol presented in [8], which
assumed a point-to-point ordered interconnection network,
this protocol can work with reconfigurable interconnection
networks or with adaptive routing. These characteristics are
highly desirable for being able to deal with permanent errors
both in the interconnection network and in the processor
cores and for other purposes beyond fault-tolerance.

• A modified set of token counting rules that ensure reliable
ownership transference and formalize the modifications to

the token coherence framework required by the protocol
presented in [6].

• A comparison of the two fault-tolerant cache coherence
protocols under a common framework and using a wider
selection of benchmarks than in [7]; including scientific,
multimedia and commercial applications. In this new evalu-
ation, we explain how to adjust the fault detection timeouts
and how to trade between the overhead introduced by request
serial numbers and the desired rate of fault tolerance.

• We explain the fault model used in our previous works and
extend it to model faults when they happen in bursts (instead
of isolated).

The rest of the paper is organized as follows: In section II
we review relevant previous work. The base architecture and
cache coherence protocols are described in section III. Section
IV explains our fault model. Sections V and VI explain the fault-
tolerant coherence protocols. A performance evaluation isdone
in section VII. Finally, section IX concludes the paper.

II. RELATED WORK

Fault tolerance for multiprocessors has been thoroughly studied
in the past. Most proposals deal with transient errors by means
of checkpointing and recovery. For example, Pruvlovicet al.
presented ReVive [21], which performs checkpointing, logging
and memory based distributed parity protection with low over-
head in error-free execution and is compatible with off-the-self
processors, caches and memory modules. At the same time, Sorin
et al. presented SafetyNet [22] which aims at the same objectives
but has less overhead and uses custom caches.

Recently, Meixneret al. proposed error detection techniques
[15], [16] for multiprocessors which can detect errors thatlead to
memory consistency or coherence violations, but do not provide
any recovery mechanism. Also, Aggarwalet al. [1] proposed a
mechanism to provide dynamic reconfiguration of CMPs which
enables fault containment and reconfiguration, but does notdi-
rectly address the problems caused by a faulty interconnection
network in the coherence protocol.

Instead of ensuring fault tolerance at the cache coherence
protocol level like we propose, a more straightforward way to
solve the problem of transient faults in the on-chip interconnection
network is making the network itself fault-tolerant. Thereare
several proposals [2], [4], [19] exploring this approach.

Usually, these proposals achieve fault tolerance using error
detection or correction codes and message retransmission [18].
Both end-to-end and switch-to-switch retransmission schemes
are possible. In an end-to-end scheme, error detection codes
are added to messages and network interfaces have additional
message buffers to store messages which have been transmitted
until it receives an acknowledgment signal. The messages can be
retransmitted when a negative acknowledgment signal is received
or when a timeout triggers at the sender. If timeouts are used,
messages require sequence numbers to detect duplicates. Switch-
to-switch schemes are similar, but error detection and retransmis-
sion hardware is added at each switch instead of at each network
interface. Error correction can be done at message level or flit
level also.

Other way to provide fault tolerance at the interconnectionnet-
work level is using fault-tolerant routing techniques [20]relying
on flooding. These techniques trade increased network traffic (and
power consumption) for reliability.
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A system could combine both interconnection level fault toler-
ance measures and cache coherence protocol level ones. Thisway,
the fault rate that the coherence protocol would need to support
would decrease, while part of the reliability of the interconnection
network could be traded for increased performance.

Also, most interconnection network fault tolerance proposals
rely on adding a certain amount of fault resiliency to the net-
work interfaces and/or network switches by means of hardware
redundancy or VLSI transient fault mitigation techniques to avoid
single points of failure. Our approach could also benefit from
these measures, although we have not identified any component
of the interconnection network that would require it to guarantee
correctness.

However, ensuring the reliable transmission of all messages
through the network limits the flexibility of the network design
and imposes significant overheads in latency, power consumption
and area. Those overheads are constant per message since the
interconnection network lacks information about the meaning of
the communication that is taking place. In contrast, ensuring fault
tolerance at the higher lever of the cache coherence protocol
allows for more flexibility to design a high-performance on-chip
network which can be not totally reliable, but have better latency
and power consumption in the common case. Since the protocol
has more information, it can ensure the reliable retransmission
of those few messages that carry owned data and could cause
data loss; achieving better performance overall as long as enough
messages are transmitted correctly through the network.

III. B ASE CMP ARCHITECTURES AND PROTOCOLS

In this work, we assume a single CMP system built using a
number of tiles [23]. Each tile contains a processor core, private
L1 data and instruction caches and a bank of the L2 cache. The
L2 cache is logically shared by all cores but it is physically
distributed among tiles. Each tile has its network interface to
connect to the on-chip interconnection network. We assume in-
order processors since that seems the most reasonable approach
to build power-efficient CMPs with many cores.

While we have assumed a tiled architecture and in-order
processors, these choices are not constraints of the evaluated
coherence protocols, whose functionality and correctnessis not
affected if out-of-order cores are used or a different arrangement
is used instead of tiles.

We consider two base architectures whose main difference
lies in the coherence protocol: one uses a token-based cache
coherence protocol called TOKENCMP [14] and another uses
a more traditional directory-based protocol adapted for CMP
systems that we will refer to as DIRCMP.

TOKENCMP is a cache coherence protocol based on token
coherence which targets hierarchical multiple CMP systemsand
is well suited for single CMPs. Token coherence provides a
framework for defining several particular coherence protocols by
separating the protocol definition in a correctness substrate and
a performance policy which define how the nodes exchange a
fixed number of tokens among them. Most requests aretransient
requests which, in the case of TOKENCMP and most other token
coherence protocols, are sent using broadcast to all other nodes
with no ordering guarantees and without even a guarantee of being
successfully satisfied.Token counting rules ensure that coherency
is maintained whilepersistent requests ensure forward progress
by providing serialization when races between transient requests

are detected. TOKENCMP uses a performance policy similar to
TOKENB (Token-using-broadcast) with a distributed arbitration
scheme for persistent requests.

DIRCMP is a traditional MOESI-based directory cache co-
herence protocol which uses an on-chip directory to maintain
coherence between several private L1 caches and a shared non-
inclusive L2 cache. It uses a directory cache in L2 and the L2
effectively acts as the directory for the L1 caches. It uses per line
busy states to defer requests to lines with outstanding requests.
Hence, the directory will attend only one request for each line at
the same time. Also, it uses three-phase writebacks to coordinate
writebacks and the rest of requests.

The two base protocols implement a migratory sharing op-
timization in which a cache holding a modified cache line
invalidates its copy when responding to a request to read that line
(GetS), thus granting write permission to the requesting cache.
This optimization substantially improves performance of many
workloads with read-modify-write sharing behavior.

IV. FAULT MODEL

As mentioned in the introduction, a transient fault in the
interconnection network of a CMP can have a number of causes.
For example, any event that changes the value stored in a flip-
flop which is part of a buffer or that affects the signal transmitted
through a wire would cause a transient error. The actual effect
of these errors is hard to predict, but we can assume that one
or more messages are either corrupted or misrouted as the final
consequence.

Corrupted messages will be discarded upon reception. This can
be achieved by means of using an error detection code (CRC) in
each message. The particular error detection code employedfor
this purpose is out of the scope of this paper, but we assume that
all corrupted messages are detected and discarded1. In addition
to checking the error detection code, nodes also check that they
are the intended recipient of a message before responding. This
way, a misrouted message that arrives uncorrupted to the wrong
destination will be discarded. Even if a misrouted message were
not detected as such, the protocols would handle it gracefully
except for invalidation requests that could lead to incoherence in
some cases.

Hence, from the point of view of the coherence protocol we
assume that all errors cause the loss of any affected messages.
That is, in our fault model we assume that the interconnection
network will either deliver a message correctly or not at all. We
also assume that caches and memories are protected by means of
ECC.

In our evaluation we consider several fault rates expressed
as “number of corrupted messages per million of messages that
travel through the network”. This rate measures the probability
that every message has of being affected by a transient faultwhile
it is in the network. We consider two ways of distributing faults
in time: in the first one faults are distributed uniformly among
messages, while in the second one faults affect messages in bursts
of a constant size.

V. A FAULT-TOLERANT DIRECTORY COHERENCE PROTOCOL

From now on, we consider a CMP system whose intercon-
nection network is not reliable due to the potential presence of

1With our protocols, an undetected corrupted message could lead to
incoherence or silent data corruption in some cases, but never to deadlock.
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TABLE I

MESSAGE TYPES USED BYDIRCMP.

Type Description

GetX Request data and permission to write.
GetS Request data and permission to read.
Put Sent by the L1 to initiate a write-back.
WbAck Sent by the L2 to let the L1 actually perform the write-

back. The L1 will not need to send the data.
WbAckData Sent by the L2 to let the L1 actually perform the write-

back. The L1 will need to send the data.
WbNack Sent by the L2 when the write-back cannot be attended

(probably due to some race) and needs to be reissued.
Inv Invalidation request sent to invalidate sharers before

granting exclusive access. Requires an ACK response.
Ack Invalidation acknowledgment.
Data Message carrying data and granting read permission.
DataEx Message carrying data and granting write permission

(invalidation acknowledgments may still be pending).
Unblock Informs the L2 that the data has been received and the

sender is now a sharer.
UnblockEx Informs the L2 that the data has been received and the

sender has now exclusive access to the line.
WbData Write-back containing data.
WbNoData Write-back containing no data.

transient faults. In the rest of this section we explain the fault
tolerance mechanisms of FTDIRCMP in detail, as an example of
how to add fault tolerance to a cache coherence protocol.

Losing a message in DIRCMP will always lead to a deadlock
situation, since either the sender will be waiting indefinitely for a
response or the receiver was already waiting for the lost response.
Additionally, losing a message carrying data can lead to loss of
data if the corresponding memory line is not in any other cache
and it has been modified since the last time that it was written
to memory. Notice that losing any message cannot lead to an
incoherence, since write access to a line is only granted after all
the necessary invalidation acknowledgments have been actually
received.

Table I shows a simplified list of the main types of messages
used by DIRCMP and a short explanation of their main function.

Directory protocols used in most cache coherent non-uniform
memory access machines (cc-NUMAs) usually assume that the
network is point-to-point unordered. That is, two messagessent
from a node to another can arrive in a different order than
they were sent. Unlike our previous work, the version of the
FTDIRCMP protocol presented here does support unordered net-
works. This improvement requires the addition of a new timeout
and two new message types (see section V-F).

FTDIRCMP is an extension of DIRCMP which assumes an
unreliable interconnection network. It will guarantee thecorrect
execution of a program even if coherence messages are lost or
discarded by the interconnection network due to transient errors.

FTDIRCMP uses extra messages to acknowledge the reception
of a few critical data messages and to detect faults. When possible,
those messages are kept out of the critical path of any cache
miss and they are piggybacked in other messages in the most
frequent cases. Table II shows the message types that are added
by FTDIRCMP to those mentioned in table I.

Thanks to the fact that every message lost in DIRCMP leads
to a deadlock, FTDIRCMP can use timeouts to detect potentially
lost messages. It uses a number of timeouts to detect faults and
start corrective measures. Table III summarizes these timeouts.

TABLE II

ADDITIONAL MESSAGE TYPES USED BYFTDIRCMP.

Type Description

AckO Ownership acknowledgment.
AckBD Backup deletion acknowledgment.
UnblockPing Asks confirmation that a cache miss is still in progress.
WbPing Asks confirmation that a writeback is still in progress.
WbCancel Confirms that a previous writeback has already finished.
OwnerPing Asks confirmation of ownership.
NackO Negative response to an OwnerPing.

Usually, when a fault occurs and a timeout triggers, FT-
DIRCMP reissues the request using a different serial number.
These reissued requests need to be identified as such by the node
that answers to them and not be treated like an usual request.
In particular, a reissued request should not wait in the incoming
request buffer to be attended by the L2 or the memory controller
until a previous request is satisfied, because that previousrequest
may be precisely the older instance of the request that is being
reissued. Hence, the L2 directory needs to remember the blocker
(last requester) of each line to be able to detect reissued requests.
This information can be stored in the Miss Status Holding
Register (MSHR) table or in a dedicated structure for the cases
when it is not necessary to allocate a full MSHR entry.

A. Reliable data transmission

A fault-tolerant cache coherence protocol needs to ensure that
there is always at least one updated copy of the data of each
line off the network and that such copy can be readily used for
recovery in case of a fault that corrupts the data while it travels
through the network.

There is always one owner node2 for each line which is
responsible of sending data to other nodes to satisfy read orwrite
requests or to perform writeback when the data is modified.

Data transmission needs to be reliable when ownership is
transferred. Ownership can be transferred either with an exclusive
data response or a writeback response. On the other hand, when
ownership is not being transferred, data transmission doesnot
need to be reliable because if the data carrying message is lost,
the data can be sent again from the owner node when the request
is reissued.

In order to ensure reliable data transmission of owned data,
FTDIRCMP adds some additional states to the usual set of
MOESI states:

• Backup (B): This state is similar to the Invalid (I) state,
but the data is kept in the cache to be used for potential
recovery (that is, when leaving the Modified, Owned or
Exclusive states) and will abandon it once anownership
acknowledgment is received.

• Blocked ownership (Mb, Eb and Ob): To prevent having
more than one backup for a line at any given point in
time, which is important to be able to recover in case
of a fault, a cache that acquires ownership (entering the
Modified, Owned or Exclusive states) will avoid transmitting
the ownership to another cache until it receives abackup
deletion acknowledgment message from the previous owner.

2From the point of view of the coherence protocol, a node can beeither
an L1 cache, an L2 cache bank or a memory bank.
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TABLE III

SUMMARY OF TIMEOUTS USED IN FTDIRCMP.

Timeout When is it activated? Where is it activated? When is it deactivated? What happens when it trig-
gers?

Lost request When a request is issued. At the requesting L1 cache. When the request is satis-
fied.

The request is reissued with
a new serial number.

Lost unblock When a request is answered
(and writebacks).

At the responding L2 or
memory.

When the unblock / write-
back message is received.

An UnblockPing / WbPing
is sent.

Lost data When owned data is sent
through the network.

At the node that sends
owned data.

When theAckO message is
received.

An OwnerPing is sent.

Lost backup deletion
acknowledgment

When theAckO message is
sent.

At the node that sends the
AckO.

When theAckBD message
is received.

The AckO is reissued with
a new serial number.

For achieving this, we have added blocked versions of the
Modified, Exclusive and Owned states. While a line is in one
of these states, the cache will not attend external requeststo
that line which require ownership transference.

Using the states described above, the transmission of owned
data between two nodes works as follows:

1) When a node sends owned data to another node, it does
not transition to anInvalid state. Instead, it enters aBackup
state in which the data is still kept for recovery, although no
read or write permission on the line is retained. Depending
on the particular case, the data may be kept in the same
cache block, in a backup buffer [5] or in a writeback buffer.
The cache will keep the data until it receives anownership
acknowledgment, which can be received as a message by
itself or piggybacked along with anUnblockEx message.

2) When the data message is received by the new owner,
it sends anownership acknowledgment to the node that
sent the data. Also, it does not transition to an M, O or
E state. Instead it enters one of the blocked ownership
states (Mb, Eb or Ob) until it receives thebackup deletion
acknowledgment. While in these states, the node will not
transfer ownership to another node. This ensures that there
is never more than one backup copy of the data. However,
at this point the node has received the data (and possibly
write permission to it) and the miss is already satisfied. The
ownership acknowledgment will carry a serial number also,
which can be the same than the data carrying message just
received.

3) When the node that sent the data receives theownership
acknowledgment, it transitions to anInvalid state and sends
a backup deletion acknowledgment to the other node with
the same serial number as the received ownership acknowl-
edgment.

4) Finally, once thebackup deletion acknowledgment is re-
ceived, the node that received the data transitions to an M,
O or E state and can now transfer the ownership to another
node if necessary.

Figure 2 shows an example of how a cache-to-cache transfer
miss which requires ownership change is handled in FTDIRCMP
and compares it with DIRCMP.

The ownership acknowledgment can be piggybacked in the
UnblockEx message when the data is sent to the requesting L1
by the L2 (or to L2 by the memory). In that case, only an extra
message (the backup deletion acknowledgment) needs to be sent.
An example of this situation can be seen in figure 3.

3In owned state, additional invalidation messages and their corresponding
acknowledgments would be needed.
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Initially, for both protocols, L1b has the data in modifiable (M),
exclusive (E) or owned3 (O) state and L1a requests write access
to L2 (1) which forwards the request to L1b (2). In DIRCMP, L1b
sends the data to L1a (3) and transitions to invalid state. Subsequently,
when L1a receives the data, it transitions to a modifiable (M) state
and sends anUnblockEx message to L2. In FTDIRCMP, when L1b
receives the forwardedGetX, it sends the data to L1a and transitions
to the backup state (3). When L1a receives the data, it transitions
to the blocked ownership and modifiable (Mb) state and sends the
UnblockEx message to L2 and anAckO message to L1b (4). When
L1b receives theAckO, it discards the backup data, transitions to
invalid (I) state and sends aAckBD message to L1a (5), which
transitions to the usual modifiable (M) state when receives it.

Fig. 2. Message exchange for a cache-to-cache write miss.

These rules ensure that for every cache line there is always
either an owner node that has the data, a backup node which has
a backup copy of the data or both. They also ensure that there is
never more than one owner or one backup node.

1) Optimizing ownership transference from memory to L1
caches: The rules explained above ensure the reliable transmis-
sion of owned data in all cases without adding any message to
the critical path of cache misses in most cases. However there are
potential performance problems created by the blocked ownership
states, since a node (L1 cache, L2 cache bank or memory
controller) cannot transfer the recently received owned data until
the backup deletion acknowledgment message is received.

This is not a problem when the data is received by an L1
cache since the node can already use the data while it waits for
said acknowledgment. However, in the case of L2 misses, the L2
cannot answer the L1 request immediately after receiving the data
from memory because, according to the rules described above, it
first needs to send anownership acknowledgment to memory and
wait for thebackup deletion acknowledgment. Hence, in the case
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In both protocols, the L1 cache sends aGetX message (1) to the L2,
which has the data in an exclusive state (M or E). In DIRCMP, when
the L2 receives the request, it sends the data to L1 (2) which, once
it receives it, transitions to modificable (M) state and answers to L2
with an UnblockEx message. In FTDIRCMP, when the L2 receives
the request, it sends the data to the L1 (2) but it also keeps a backup
copy of the data. When the L1 receives the data, it transitions to
blocked ownership and modifiable (Mb) state and answers with a
message (3) which serves both as theUnblockEx and as theAckO
messages used in figure 2. The backup copy in L2 will be kept until
theUnblockEx+AckO message send by L1 is received and theAckBD
message (4) is sent to the L1, which transitions to the modifiable (M)
state when receives it.

Fig. 3. Message exchange for an L1 write miss that hits in L2.

of L2 misses, these rules would add two messages in the critical
path of misses.

To avoid increasing the latency of L2 misses, we relax the rules
in these cases. We allow the L2 to send the data directly to the
requesting L1 just after receiving it, keeping a backup until it
receives the ownership acknowledgment from the L1. In fact,the
L2 does not send the ownership acknowledgment to memory until
it receives it from the L1 (most times piggybacked on an unblock
message) since this way we can piggyback it with anUnblockEx
message. Figure 4 shows an example of how an L2 miss would
be resolved without and with this optimization.

To implement this behavior, we modify the set of states for
the L2 cache so that a line can be either internally blocked
or externally blocked, or both (which would correspond to the
blocked states already described).

A line enters an externally blocked state when the L2 receives
data from memory and leaves it when it receives the backup
deletion acknowledgment from memory. While in one of those
states, the L2 cannot send the data to the memory again4, but it
can send it to an L1 cache keeping a backup until the respective
ownership acknowledgment is received. This ensures that there is
at most one backup of the data out of the chip, although there may
be another in the chip. This is enough to guarantee correctness
in case of faults.

Conversely, a line enters an internally blocked state when the
L2 cache receives data from an L1 cache and leaves it when
the corresponding backup deletion acknowledgment is received.
While in an internally blocked state, ownership cannot be trans-
ferred to another L1 cache.

4In a multiple CMP setting, it would not be able to send it to other L2 in
different chips either. In other words, the ownership of theline cannot leave
the chip.
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In both cases, the L1 sends aGetX message (1) to L2 which, since
it does not have the data, forwards (2) it to the memory controller.
The memory controller fetches the data and sends it to L2 using a
DataEx message (3). Now, in the unoptimized case, when the L2
receives the owned data, it sends an ownership acknowledgment
(4) to the memory controller and waits for the backup deletion
acknowledgment (5) before answering to L1 with the data (6). Once
L1 receives the data, it sends a message to L2 (7) carrying the
ownership acknowledgment and the unblock. When the L2 receives
this message, it will send a backup deletion acknowledgment to L1
and an unblock message to the memory controller (8). On the other
hand, in the optimized version, when the L2 receives theDataEx
(3) message from memory, it sends anotherDataEx message (4) to
L1. Notice that now the critical path of the miss requires only 4 hops
instead of 6. Once the L1 has received the data, it will send a message
(5) with the unblock and the ownership acknowledgment to L2 which
will then send the unblock to memory and the backup deletion
acknowledgment to L1 (6). Finally, when the memory controller
receives the ownership acknowledgment, it will answer with a backup
deletion acknowledgment message (7).

Fig. 4. L2 miss optimization of ownership transference.

B. Request serial numbers

As will be explained in section V-C, when alost request timeout
triggers FTDIRCMP assumes that the request message or some
response message has been lost due to a transient fault and then
reissues the request hoping that no fault will occur this time.
However, sometimes the timeout may trigger before the response
has been received due to unusual network congestion or any other
reason that causes an extraordinarily long latency for solving a
miss. That is, there may be false positives.

In case of a false positive, two or more duplicate response
messages would arrive to the requestor and, in some cases, the
extra messages could lead to an incoherence. For this reason,
FTDIRCMP usesrequest serial numbers to discard responses
which arrive too late, when the request has already been reissued.

Every request and every response message carries a serial
number. Request serial numbers are chosen by the L1 cache that
issues the request (or by the L2 in case of writebacks from L2 to
memory). Responses or forwarded requests will carry the serial
number of the request that they are answering to. When a request
is reissued, it will be assigned a new serial number which will
allow to distinguish between responses to the old request and
responses to the new one.

The L1 cache, L2 cache and memory controller must remember
the serial number of the requests that they are currently handling
and discard any message which arrives with an unexpected serial
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L1a makes a request (1) to L2 which forwards it to L1b (2). L1b sends
the data (3) to L1a, but this message gets delayed in the network for
such a long time that therequest timeout triggers and L1a reissues the
request (4) which is forwarded again to L1b (5) which has a backup
copy of the data and resends it (6). This time, the message arrives
to L1a which sends (7) an unblock message to L2 and an ownership
acknowledgment to L1b. L1b answers with a (8) backup deletion
acknowledgment to L1a. After modifying the data, L1a performs a
writeback to L2 (messages 9 to 13) and after that, it issues another
request (14). If the first data message (3) arrives at this moment and
is not discarded using its serial number, it would allow L1a to use
the old data.

Fig. 5. Transaction where request serial numbers avoid usingstale data.

number or from an unexpected sender. This information needs
to be updated when a reissued request arrives. Discarding any
message in FTDIRCMP is always safe (even if it could be not
strictly necessary in some cases) since the protocol already has
provisions for lost messages of any type.

Figure 5 show a case where not using request serial numbers to
discard a message that arrives too late would lead to incoherency
or using stale data. The example assumes that the interconnection
network is not point-to-point ordered, but similar situations are
also possible on point-to-point ordered networks [8].

Analogously, serial numbers are also used to be able to discard
duplicated unblock messages, duplicated writeback messages or
duplicated backup deletion acknowledgments. These duplicated
messages can appear due to unnecessaryUnblockPing, WbPing
or duplicated ownership acknowledgment messages sent in the
case of false positives of thelost unblock timeout or the lost
backup deletion acknowledgment timeout.

C. Faults detected by the lost request timeout

The lost request timeout starts when a request (GetX, GetS
or Put message) is issued and stops once it is satisfied (that is,
when the L1 cache acquires the data and the requested access
rights for it). Hence, it will trigger whenever a request takes too
much time to be satisfied or cannot be satisfied because any of
the involved messages has been dropped, causing a deadlock.It
is maintained by the L1 for each pending miss. Hence, the extra
hardware required to implement it is one extra counter for each
MSHR entry.

When this timeout triggers, FTDIRCMP assumes that some
message which was necessary to finish the transaction has been
lost due to a transient fault and retries the request. The particular

message that may have been lost is not very important: it can be
the request itself (GetX or GetS), an invalidation request sent by
the L2 or the memory controller (Inv), a response to the request
(Data or DataEx) or an invalidation acknowledgment (Ack). The
timeout is restarted after the request is reissued to be ableto detect
additional faults.

To retry the request, the L1 chooses a new request serial number
and will ignore any response which arrives with the old serial
number after thelost request timeout triggers. See section V-B
for more details.

As mentioned before, the L2 needs to be able to detect reissued
requests and merge them in the MSHR with the original request
(assuming it was not lost). The L2 will identify an incoming
request as reissued if it has the same requestor and address than
another request currently in the MSHR but a different request
serial number.

A node which holds a line inbackup state should also detect
reissued requests to be able to resend the data (using the new
serial number). Hence, every cache that transmits owned data
needs to remember the destination node of that data at least until
the ownership acknowledgment is received. This way, if aDataEx
response is lost, it will be detected using thelost request timeout
and corrected by resending the request.

This timeout is also used for writeback requests (Put messages).
The timeout starts when thePut message is sent and stops once
the writeback acknowledgment (WbAck or WbAckData messages)
is received. When it triggers, thePut message will be reissued
with a different serial number. This way, this timeout can detect
the loss ofPut, WbAck andWbAckData messages but not the loss
of WbData or WbNoData messages which is handled by thelost
unblock timeout.

D. Faults detected by the lost unblock timeout

Unblock messages (Unblock or UnblockEx) are sent by the L1
once it receives the data and all required invalidation acknowl-
edgments to notify the L2 that the miss has been satisfied. When
the L2 receives one of these messages, it proceeds to attend the
next miss for that line, if any.

When an unblock message is lost, the L2 will be blocked
indefinitely and will not be able to attend further requests for
the same line. Lost unblock messages cannot be detected by the
lost requests timeout because that timeout is deactivated once the
request is satisfied, just before sending the unblock message.

To avoid a deadlock due to a lost unblock message, the L2
starts thelost unblock timeout when it answers to a request and
waits for an unblock message to finalize the transaction. When
this timeout triggers, it will send anUnblockPing message to the
L1.

When an L1 cache receives anUnblockPing message and
it has already satisfied that miss (hence it has already sent a
corresponding unblock message which may have been lost or not),
it will answer with a reissuedUnblock or UnblockEx message,
depending on whether it has exclusive or shared access to the
line. If the miss has not been resolved yet (hence no unblock
message could have been lost because it was not sent in the first
place), theUnblockPing message will be ignored. The L1 cache
can check whether the miss has been already resolved or not by
looking at its MSHR for a pending miss for the same address.

Unblock messages are also exchanged between the L2 and the
memory controller in an analogous way. Hence, FTDIRCMP uses
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an unblock timeout andUnblockPing in the memory controller
too.

Also, this timeout is used to detect lost writeback messages
(WbData and WbNoData) in a similar manner. When aPut is
received by the L2 (or the memory), the timeout is started anda
WbAck or WbAckData is sent to L1 (or L2) to indicate that it can
perform the eviction and whether data must be sent or not. Upon
receiving this message, the L1 stops itslost request timeout, sends
the appropriate writeback message and assumes that the writeback
is already done. Once the writeback message arrives to L2, the
lost unblock timeout is deactivated. If the writeback message is
lost (or it just takes too long to arrive), the timeout will trigger and
the L2 will send aWbPing message to L1. The L1 will answer
with a new writeback message (in case it still has the data) or
a WbCancel message which tells the L2 that the writeback has
already been performed. Note that modified data cannot be lost
thanks to the rules described in section V-A.

E. Faults detected by the lost backup deletion acknowledgment
timeout

As explained in section V-A, when ownership has to be
transferred from one node to another, FTDIRCMP uses a pair
of acknowledgments to ensure the reliable transmission of the
data. These acknowledgments are sent out of the critical path of
a miss when they are not piggybacked with the unblock message.
Losing any of these acknowledgments would lead to a deadlock
which will not be detected by thelost request or lost unblock
timeout (unless the ownership acknowledgment was lost along
with an unblock message) because these timeouts are deactivated
once the miss has been satisfied.

For these reasons, we intoduce thelost backup deletion ac-
knowledgment timeout which is started when an ownership ac-
knowledgment is sent and is stopped when the backup deletion
acknowledgment arrives. This way, it will trigger if any of these
acknowledgments is lost or arrives too late. When it triggers, a
new AckO message will be sent with a newly assigned serial
number.

If the ownership acknowledgment was actually lost, the new
message will hopefully arrive to the node that is holding a backup
of the line and that backup will be discarded and anAckBD
message will be returned.

If the first ownership acknowledgment did arrive to its des-
tination (false positive), the new message will arrive to a node
which no longer has a backup and which already responded with
an AckBD message. Anyway, a newAckBD message will be sent
using the serial number of the new message. The oldAckBD
message will be discarded (if it was not actually lost) because it
carries an old serial number.

F. Faults detected with the lost data timeout

The rules described in section V-A guarantee that when an
owned data carrying message is lost or discarded due to a wrong
serial number, the data will always be in backup state in some
node. Usually, when this happens the node that requested the
data in the first place will reissue the request after itslost request
timeout triggers and the data will be resent using the backup
copy. Alternatively, if the data ownership transference was due to
a writeback, thelost unblock timeout will trigger in the L2 (or
memory) and the data will be resent when theWbPing message
is received.

L1a makes a request (1) to L2 which forwards it to L1b. The
forwarded message (2) gets delayed in the network and hence the
lost request timeout triggers in L1a. When this happens, L1a reissues
the request (3) which is forwarded again by L2 (4). This time, the
request arrives to L1b which sends the data (5) to L1a. When L1a
receives the data, it sends (6) an unblock message to L2 and an
ownership acknowledgment to L1b which responds with a backup
deletion acknowledgment (7) to L1a. Later, L1b makes a new request
which is handled in a similar way (messages 8 to 12), so it has
the only copy of the data again with exclusive access. If the first
forwarded request (2) arrives now to L1b, it will send the data to L1a
which will discard it (since it does not expect a response with that
serial number anymore). In this situation no node will have the data
nor expect it, so future accesses to the line would cause a deadlock.

Fig. 6. Transaction where the lost data timeout detects data which has been
wrongly discarded.

In the previous situations, the fault was detected (either with the
lost request timeout or the lost backup deletion acknowledgment
timeout) because there was still some node which expected the
data to arrive and for that reason had a timeout enabled to detect
the situation.

However, if request messages can be reordered while traveling
through the network, it can happen that the owned data is sentto
some node which does not expect the data and hence will discard
it. Since in that case the data will be kept only in backup state in
the sender node, no node will be able to access it and this will
lead to a deadlock the next time that the line is accessed.

To be able to detect this situation, we have added thelost
data timeout which is started whenever an owned data carrying
message is sent and stopped once the ownership acknowledgment
is received. Thelost data timeout is not activated when the
unblock timeout is activated in the same node, since the latter
can detect the same faults too. This timeout is not necessaryif
the network guarantees point-to-point ordering of messages.

Figure 6 shows a case where a message carrying owned data is
discarded by a node which receives it unexpectedly and thelost
data timeout is needed to detect the situation.

When thelost data timeout triggers, anOwnerPing message
is sent to the node that was sent the data before. Upon receiving
this message, a node will react as described below:

• If the node does not have the ownership of the line, it will
answer with aNAckO message with the same serial number
than the received ping message. Additionally, if it has a
pending request for that address, it should reissue it with a
new serial number to avoid gaining ownership after sending
the NackO due to some data message currently delayed in
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the network.
• If the node has the ownership in a blocked state (i.e., it

already sent an ownership acknowledgment and is waiting
for the corresponding backup deletion acknowledgment) it
will reissue the ownership acknowledgment with a new serial
number. Basically, it will act as if thelost backup deletion
acknowledgment timeout had triggered.

• In other cases (the node has ownership but it is not blocked),
the ownership ping should be ignored.

The node that has the backup will regain ownership if it
receives aNackO message with the expected serial number,
avoiding the potential deadlock if owned data had been discarded.
It will forget the serial number of the issuedNackO (hence
canceling the ping) if it receives anAckO or a new reissued
request.

VI. A TOKEN-BASED FAULT-TOLERANT CACHE COHERENCE

PROTOCOL

Prior to the design of FTDIRCMP, we had already designed
and evaluated a token-based fault-tolerant cache coherence proto-
col which we call FTTOKENCMP [5]. In this section we briefly
describe FTTOKENCMP and compare it with FTDIRCMP.

The fault tolerance measures of both protocols are similar in
their intent and functionality and differ mostly in the imple-
mentation. Table IV shows a summary of the timeouts used by
FTTOKENCMP.

FTTOKENCMP uses a mechanism similar to the one of FT-
DIRCMP to avoid data loss, ensuring reliable transmission of
owned data as described in section V-A. Section VI-A formalizes
that mechanism with a modified version of token counting rules.

The fault recovery mechanism is different for each protocol. In
FTTOKENCMP, fault recovery is achieved by means of a central-
ized mechanism called thetoken recreation process arbitrated by
the memory controller. This process works as long as there isa
valid copy of data in some cache or one and only one backup copy
(which is guaranteed by the rules in section VI-A). The memory
controller attends token recreation requests in FIFO orderto avoid
livelock and it works sending messages to every cache askingit
to invalidate all tokens and send back to memory any data that
it may have. Once the memory receives the data or invalidation
acknowledgments from every cache, it sends it to the cache which
requested the recovery with a new set of tokens.

To avoid the risk of creating an incoherence due to stale
responses still traveling through the interconnection network after
a token recreation, all coherence responses are tagged with a
token serial number which is increased during the token recreation
process. Messages with a wrong token serial number are discarded
when received by any node. Token serial numbers are stored
in every node in a dedicated structure (thetoken serial number
table), but only for those cache lines which have a serial number
different than 0. We have found that having a very small number
of entries of only a few bits each is enough for good results.
When all entries are used, one of them is evicted setting its serial
number to 0 by means of thetoken recreation process.

The token serial numbers used in FTTOKENCMP serve a
similar purpose to therequest serial numbers used in FTDIRCMP
(e.g.: being able to discard stale messages after fault recovery
which could cause an incoherence), but the latter are easierto
implement and more scalable.Token serial numbers are associated
with each cache line and need to be updated in a coordinated

fashion during thetoken recreation process. Hence, they require
an additional structure in each cache to store them (only for
those hopefully few lines that had a token serial number different
than 0, but even for lines which are not currently in any cache).
On the other hand,request serial numbers are associated with
individual requests and so they are short-lived information which
can be stored in the MSHR. However,token serial numbers do not
need to be carried in request messages (only in responses) while
request serial numbers are sent with every request and need to
be propagated with every message which is sent as consequence
of the request.

In some cases, FTTOKENCMP achieves deadlock recovery
issuing ping messages when a timeout triggers to force the reissue
of a message which is expected to finish a coherence transaction,
like a Persistent Request Deactivation. These ping messages are
analogous to theUnblockPing messages used by FTDIRCMP.

A. Fault-tolerant token-counting rules

The main observation of the token framework is that simple
token counting rules can ensure that the memory system behaves
in a coherent manner. To implement fault tolerance, we have
modified the token counting rules to ensure that data cannot be
lost when some message fails to arrive to its destination. The
following token counting rules are based of those introduced
by Martin [11], and extend them to ensure reliable ownership
transference (modification with respect to the original rules are
emphasized):

• Conservation of Tokens: Each line of shared memory has
a fixed number of T+ 1 tokens associated with it. Once the
system is initialized, tokens may not be created or destroyed.
One token for each block is the owner token. The owner
token may be either clean or dirty.Another token is the
backup token.

• Write Rule : A component can write a block only if it holds
all T tokens for that blockwhich are not the backup token
and has valid data. After writing the block, the owner token
is set to dirty.

• Read Rule: A component can read a block only if it holds
at least one tokendifferent than the backup token for that
block and has valid data.

• Data Transfer Rule: If a coherence message carries a dirty
owner token, it must contain data.

• Owner Token Transfer Rule: If a coherence message carries
the owner token, it must not carry the backup token also.

• Backup Token Transfer Rule: The backup token can only
be sent to another node that already holds the owner token.

• Blocked Ownership Rule: The owner token cannot be sent
to other component until the backup token has been received.

• Valid-Data Bit Rule : A component sets its valid-data bit for
a block when a message arrives with data and at least one
token different than the backup token. A component clears
the valid-data bit when it no longer holds any tokensor when
it holds only the backup token. The home memory sets the
valid-data bit whenever it receives a clean owner token, even
if the message does not contain data.

• Clean Rule: Whenever the memory receives the owner
token, the memory sets the owner token to clean.

The above token counting rules along with the starvation
and deadlock avoidance measures implemented by persistent



10

TABLE IV

SUMMARY OF TIMEOUTS USED IN FTTOKENCMP.

Timeout When is it activated? Where is it activated? When is it deactivated? What happens when it trig-
gers?

Lost token When a persistent request
becomes active.

At the starver cache. When the persistent request
is deactivated.

Request a token recreation.

Lost data When the owner token is
sent.

At the cache that holds the
backup.

When the ownership ac-
knowledgement arrives.

Request a token recreation.

Lost backup deletion
acknowledgement

When a line enters the
blocked state.

At the cache that holds the
owner token.

When the backup deletion
acknowledgement arrives.

Request a token recreation.

Lost persistent deac-
tivation

When an external persistent
request is activated.

At every cache (by the per-
sistent request table).

When the persistent request
is deactivated.

Send a persistent request
ping.

requests and the token recreation process compose the correctness
substrate of FTTOKENCMP. These rules enforce the same global
invariants than the original rules and additionally they enforce the
following invariant: “For any given line of shared memory atany
given point in time, there will be at least one component holding
a valid copy of the data, or one and only one component holding
a backup copy of it, or both”. In other words: when the data is
sent through the network (where it is vulnerable to corruption),
it is guaranteed to be stored also in some component (where itis
assumed to be safe) either as a valid and readable cache blockor
as a backup block to be used for recovery if necessary.

We have modified theconservation of tokens rule to add a
special backup token. We have also modified thewrite rule and
the read rule so that, unlike the rest of the tokens, this token does
not grant any permission to its holder. Instead, a cache holding
this token will keep the data only for recovery purposes. Thenew
owner token transfer rule ensures that whenever a cache has to
transfer the ownership to another cache, it will keep the backup
token (and the associated data as a backup). The newbackup
token transfer rule ensures that the backup token is not transferred
until the owner token (and hence the data) has been received
by another cache. Of course, this implies that the component
holding the owner token has to communicate that fact to the
component that holds the backup token, usually by means of an
ownership acknowledgement. It also implies that a cache receiving
the backup token has always received the data before. Finally,
the newblocked ownership rule ensures that there is at most one
backup copy of the data, since there is only one backup token.The
reliable ownership transference mechanism used by TOKENCMP
(explained in [5]) complies with these rules.

VII. E VALUATION

The goals of this section are to measure the overheads intro-
duced by our fault tolerant measures in the fault-free case and the
performance degradation due to faults when they occur.

We have also performed an extensive functional validation of
these measures using randomized testing and manually checking
many possible cases. The randomized testing stresses protocol
corner cases by issuing requests that simulate very contended
accesses to a few memory lines, using random latencies for
message delivery, and performing fault injection with veryhigh
fault rates. The tester also issues many concurrent requests, like a
very aggressive out-of-order processor would do. Hence, although
we have not done a formal verification of the protocols, we are
fairly confident of the correctness of our fault-tolerant measures.

TABLE V

CHARACTERISTICS OF SIMULATED SYSTEMS.

16-Way Tiled CMP System
Processor parameters

Processor speed 2 GHz
Cache parameters

Cache line size 64 bytes
L1 cache:

Size, associativity 32 KB, 4 ways
Hit time 3 cycles

Shared L2 cache:
Size, associativity 1024 KB, 4 ways
Hit time 15 cycles

Memory parameters
Memory access time 160 cycles
Memory interleaving 4-way

Network parameters
Topology 2D Mesh
Non-data message size 8 bytes
Data message size 72 bytes
Channel bandwidth 64 GB/s

A. Methodology

We have used full system simulations of a mix of applications
with fault injection with the aims of determining adequate values
for some protocol parameters, assess the fault tolerance capability
of each protocol and measure the overhead introduced by the
fault tolerance measures. For this, we have used a custom version
of Multifacet GEMS [13] detailed memory model and Virtutech
Simics [10]. Every simulation has been performed several times
using different random seeds to account for the variabilityof mul-
tithreaded execution, such variability is represented by the error
bars in the figures which enclose the resulting 95% confidence
interval of the results. We have simulated tiled CMP systemsas
described in section III. Table V shows the relevant parameters
common to all the simulations. We have performed experiments
to adjust some protocol-specific parameters, as shown in sections
VII-E and VII-F.

We have used a mix of scientific, multimedia and commercial
applications for the evaluation: Apache (10000 http transactions)
is version 2.2.4 of the http server serving static pages of different
sizes. SpecJbb (8000 transactions) is a Java server workload based
on SPEC JBB 2000. Barnes (8192 bodies, 4 time steps), FFT
(256K complex doubles), Ocean (258 × 258 ocean), Raytrace
(10Mb, teapot.env scene) and Water-SP (512 molecules, 4 time
steps) are from the SPLASH-2 [25] benchmark suite. Unstruc-
tured (Mesh.2K, 5 time steps) is a computational fluid dynam-
ics application. FaceRec (ALPBench training input), MPGdec
(525 tens040.m2v) and SpeechRec (ALPBench default input)
are from the ALPBench [9] benchmark suite. The experimental
results reported here correspond to the parallel phase of each
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program only.

B. Execution time overhead

We have measured the execution time of each one of the fault-
tolerant protocols using the fault tolerance parameters determined
above with several message loss rates and compared it to the
execution time of the non fault-tolerant protocols in a fault-
free scenario. The results are shown in figure 7(a). Fault rates
are expressed in number of messages discarded per million
of messages that travel trough the network and all results are
normalized with respect to the execution time of the DIRCMP
protocol. Of course, results for non fault-tolerant protocols are
only shown in the fault free cases.

We can see that the run-time overhead of each fault-tolerant
protocol when compared to its non fault-tolerant counterpart in
a fault-free scenario is not measurable. This is consistentwith
the fact that, when no faults occur, the only significant difference
in the behavior of the fault-tolerant protocols with respect to the
non fault-tolerant ones is just the extra acknowledgments used to
ensure reliable owned data transmission, which are sent outof
the critical path of misses.

These results assume that there is enough bandwidth so that
the extra messages required by our protocols (see section VII-C)
do not increase the latency of the network. This is likely to be
the case in a CMP environment.

As the fault rate increases, so does the execution time. However,
this performance degradation is very moderate, and only one
application (Raytrace) suffers a performance degradationhigher
than 5% even with 125 corrupted messages per million.

C. Network overhead

In absence of faults, the most important difference in the
behavior of our protocols with respect to their non fault-tolerant
counterparts is the exchange of acknowledgments to ensure that
owned data is transferred safely and avoid data loss. Although
they are sent out of the critical path of cache misses so that they
do not have effect in the miss latency, these acknowledgments
introduce additional network traffic which is the main cost of the
fault tolerance measures.

We have measured the network overhead of our proposal in
terms of the relative increase in the number of messages and
the number of bytes transmitted. We have increased one byte
the message sizes of the fault tolerant protocols with respect to
the non fault-tolerant ones to accommodate therequest serial
numbers andtoken serial numbers. This means 1.14% increase in
size for data messages and 12.5% increase for control messages.
The results of these measurements are shown in figures 7(b)
and 7(d). To allow a comparison with simple interconnection
level fault tolerance measures, we also include bars showing the
network overhead of using the base protocols with end-to-end
reliable delivery (DIRCMP+NLFT and TOKENCMP+NLFT),
using an acknowledgment for each message.

We can see that, in terms of message traffic, the overhead of the
fault-tolerant protocols comes entirely from the acknowledgments
used to ensure reliable data transmission (“Ownership” part of
each bar). This overhead is less than 40% on average for our fault-
tolerant protocols. Moreover, the overhead drops considerably
when it is measured in terms of bytes, even considering that
every message is one byte longer in the fault-tolerant protocols.
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Fig. 8. Relative execution time with burst faults of several lengths with
respect to single message faults. The fault rate is fixed to 125corrupted
messages per million.

FTDIRCMP has a higher relative overhead because network
traffic is much lower for DIRCMP than for TOKENCMP.

Figure 7(c) shows the network overhead under several fault
rates. The network traffic increases slowly with the fault rate due
to the reissued messages or the token recreation messages. In the
case of FTDIRCMP, the increase is almost unmeasurable for the
fault rates shown for all applications except Raytrace.

D. Effect of bursts of faults

Until now, we have assumed that all faults are distributed evenly
in time and that each fault only affects one message. However, it
is possible for a single fault to affect more than one message. For
example, a fault may hit a buffer holding several messages and
make it discard all of them. Note that usually those messageswill
be part of different transactions involving different addresses.

We have performed experiments to determine the effect of
the burst length in the performance of our fault tolerant cache
coherence protocols. Figure 8 shows how the execution time and
network overhead vary with the length of burst. When performing
fault injection of bursts of lengthL, we determine for each
message whether it has been corrupted or not based on the
probability given by the fault rate divided byL. If the message is
determined to have been corrupted, it and the nextL−1 messages
to arrive will be discarded. This ensures that the total number of
corrupted messages is the same for the same amount of traffic
and fault rate, independently of the burst size.

As can be seen in figure 8(a), on average and for most
applications the length of the burst of dropped messages haslittle
effect in the execution time. Some applications (like oceanand
unstructured) show a modest slowdown as the fault rate increases.
More surprisingly, some applications seem to benefit from longer
bursts. This can be explained due to the fact that since the total
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(a) Execution time overhead with several fault rates
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(c) Network overhead (bytes) with several fault rates
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Fig. 7. Execution time and network overhead of each cache coherence protocol compared to DIRCMP.

number of messages that get corrupted is approximately the same
(125 messages per million of messages that travel trough the
network), longer bursts actually mean fewer faults (each fault
affects more messages). Since the recovery of each message
usually happens in parallel to the recovery of other messages,
the overhead of the recovery process may actually be reduced
over the whole execution of the program. Raytrace is also the
application which is most affected by single message faults, as
can be seen in figure 7(a).

The effect in network traffic is similar, as can be seen in figure
8(b). It is important to note that the effect of burst length in
performance is more dependent on the application than on the
particular coherence protocol: the behavior for each application
is very similar with FTDIRCMP and with FTTOKENCMP.

E. Adjusting the fault detection timeouts

As explained above, all fault-tolerant protocols achieve fault de-
tection by means of a number of timeouts. Each protocol requires
up to four timeouts which are active at different places and times
during a memory transaction or cache replacement. The valueof
these timeouts determines the latency of fault detection, hence
shorter values help to achieve lesser performance degradation
in presence of faults since fault recovery will start earlier. For
example, for the two fault-tolerant protocols considered in this
work, figure 9 shows how the execution time increases more than
15% on average when the value of these timeouts vary from 1500
cycles to 4000 cycles under a fixed fault rate of 250 corrupted
messages per million of messages that travel through the network.

Since false positives occur when a timeout triggers before a
miss has had enough time to be satisfied, to avoid false positives
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Fig. 9. Relative execution time with respect to DIRCMP without faults for
each fault-tolerant protocol with 250 corrupted messages per million using
different values for the fault detection timeouts.

the timeout values should be large enough to allow every memory
transaction to finish, assuming that no fault occurs. Figure10
shows the measured maximum latency in CPU cycles of each
protocol when no faults occur and disabling all the timeouts.

Looking at figure 10, we can see that the maximum latency
of the fault-tolerant protocols is almost the same as that oftheir
corresponding non fault-tolerant counterpart5. This is expected,
since the behavior of the fault-tolerant protocols when no timeout
triggers is almost the same as that of the non fault-tolerantones,
except for the ownership acknowledgments which are sent outof

5In some cases, the maximum latency of the fault tolerant protocol is
slightly lower that its non fault tolerant counterpart, which may be surprising.
This is accidental and is not due to any optimization. Slight changes in the
behavior of the protocols produce these variations due to the non deterministic
nature of parallel applications.
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Fig. 10. Maximum miss latency (in cycles) of each protocol without faults.

the critical path of cache misses.
This latency is less than 1200 cycles for the FTDIRCMP pro-

tocol and less than 1900 cycles for the FTTOKENCMP protocol.
Hence, we can choose any value greater than those for the time-
outs to avoid having any false positive for these workloads.Using
shorter values is still possible but would increase the number
of false positives and could degrade performance and increase
network traffic due to the retried requests or token recreation
requests. However, if the chosen values are too low (lower than the
time required to finish the transaction), the recovery mechanism
would be invoked too frequently preventing forward progress.

We have considered using different values for each of the four
timeouts of each protocol, but our experiments do not show any
significant advantage in doing so.

We have chosen a value of 2000 cycles for all timeouts in
the FTTOKENCMP protocol and 1500 cycles in the FTDIRCMP
protocol. These values are large enough to avoid false positives
in every case and, as shown below, achieve very low performance
degradation when faults actually occur.

F. Effect of the request serial number size in fault tolerance

The ability of FTDIRCMP to correctly recover from faults
depends on the number of bits used for encoding the request
serial number which is used to discard stale responses to requests
which have been reissued (for example, to be able to discard old
acknowledgments to reissued invalidation requests which could
lead to incoherence in some cases). Ideally, this number should
be as low as possible to reduce overhead in terms of increased
message size and hardware resources to store it while being
sufficient to ensure that when a request is reissued (even several
times in a row and in case of false positives) every response to the
old request is discarded. Since the number of reissued messages
increases as the fault rate increases, the number of bits used to
encode request serial numbers determines the maximum faultrate
supported by each protocol.

To measure this, we have performed simulations of FT-
DIRCMP using a wide variety of fault rates. We have used 32-
bit request serial numbers in our simulator to encode the request
serial number for these simulations but we have recorded how
many lower order bits were required to distinguish all the request
serial numbers that needed to be compared (every time that two
request serial numbers are compared, we record the positionof
the least significant bit which is different in both numbers). Then,
we assume that the maximum of all these measures is an upper
bound of the number of bits required to ensure correctness for
each fault rate. These results are shown in figure 11.
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Fig. 11. Required RSN bit length to discard every old response to a reissued
message in FTDIRCMP.

As can be seen, when using the FTDIRCMP protocol 9 bits
are enough for all the tested fault rates and 8 bits suffice forfault
rates up to 250 corrupted messages per million. Hence, we have
chosen to use 8 bits to encode the request serial numbers in the
rest of our experiments which is enough to achieve fault tolerance
up to 250 corrupted messages per million, which is already an
unrealistic and unreasonably high fault rate. For the rest of the
evaluation, we will show fault rates only up to 125 corrupted
messages per million. This fault rate should be supported byboth
protocols with the configuration described above.

VIII. H ARDWARE IMPLEMENTATION OVERHEADS

The token serial number table is implemented with a small
associative table in each tile and at the memory controller to store
those serial numbers whose value is not zero. We have found that
using two bits to encode the serial number and 16 entries at each
node is enough for supporting the fault rates used in this paper.
If the tokens of any line need to be recreated more than 4 times
the counter wraps to zero (effectively freeing a table entrytable)
and if more than 16 different lines need to be stored in the table,
the least recently modified line is evicted by means of using the
token recreation process to set its serial number to zero.

On the other hand,request serial numbers do not need to be
kept once the memory transaction has completed. They can be
stored in the MSHR or in a small associative structure in cases
where a full MSHR is not needed. As shown in section VII-F,
using 8 bits to encode request serial numbers is enough to achieve
tolerance to very high fault rates.

To be able to detect reissued requests in FTDIRCMP, the
identity of the requester currently being serviced by the L2or the
memory controller needs to be recorded, as well as the receiver
when transferring ownership from one L1 cache to another.

The timeouts used for fault detection require the addition of
counters to the MSHRs or a separate pool of timeout counters.
Although there are up to four different timeouts involved inany
coherence transaction, no more than one counter is requiredat any
time in the same node for a single coherence transaction. In the
case of FTTOKENCMP, all but one timeout can be implemented
using the same hardware already used to implement the starvation
timeout required by token protocols.

We have analyzed FTDIRCMP from the point of view of its
implementation using deterministic routing on a 2D-mesh. Due
to the exchange of ownership acknowledgments to ensure reliable
data transmission, the worst case message dependence chains of
FTDIRCMP are one message longer than those of DIRCMP.
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Hence, a correct implementation requires an additional virtual
network to ensure deadlock free operation.

A less important source of overhead is the increased pressure
in caches and writeback buffers because of the blocked owner-
ship and backup states and the effect of the reliable ownership
transference mechanism in replacements. When a backup buffer
or a writeback buffer is used, we have not been able to detect
any effect in the execution time due to these reasons. The size of
the writeback buffer may need to be increased, but our previous
work [5] shows that one extra entry would be enough.

Finally, the design complexity of the cache coherence protocol
increases due to the fault tolerance measures. However, theaddi-
tional complexity is assumable, and the fault tolerance measures
may simplify the handling of some corner cases.

IX. CONCLUSION

We have shown that it is possible to deal with transient faults
in the interconnection network of CMPs at the cache coherence
protocol level. For this task, we have designed a fault-tolerant
directory-based coherence protocol which ensures the correct
execution of programs even if the network is subject to transient
faults and does not correctly deliver all the coherence messages,
and we have presented a set of fault-tolerant token countingrules
and a fault-tolerant token based protocol that uses them.

We have compared and evaluated the performance of the
two protocols using full system simulation and performing fault
injection to check the correctness of the protocol and to measure
the performance degradation caused by several fault rates.We
have shown that the overhead imposed in the execution time
due to the fault-tolerant measures is negligible. Further,we have
shown that the performance impact of moderate fault rates inthe
interconnection network is insignificant when using our protocols.

We have explained how to tune the fault tolerance parameters
of the protocols to achieve the desired level of fault tolerance,
performance degradation in presence of faults and overheadin
absence of faults. We have shown that, even for fault rates which
are unrealistically high, the hardware overhead of our proposals is
low. The main cost of our fault tolerance measures is a moderate
increase in network traffic.

We have found that the network usage of our protocols in-
creases with the fault rate and hence network capacity can bea
limiting factor for fault tolerance. Due to the efficient network
usage of directory-based protocols, we think that FTDIRCMP is
a good cache coherence protocol for large scale tiled CMPs.

As future work, we would want to explore whether similar
techniques can be used to deal with intermittent faults. Also,
since the main feature of our protocol that it does not assume
that every coherence message arrives to its destination while still
guaranteeing correct program execution, we want to try to take
advantage of this ability to allow the interconnection network to
occasionally drop messages if that helps with performance in the
common case or enables simpler interconnection network designs.
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