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Abstract— The importance of transient faults is predicted to
grow due to current technology trends of increased scale of
integration. One of the components that will be significantly

I o o

affected by transient faults is the interconnection network of

CMPs. To deal efficiently with these faults and differently from | | | O
other authors, we propose to use fault-tolerant cache coheree pcats El

protocols that ensure the correct execution of programs when ot e =/ =
all messages are correctly delivered. We describe the extensions ] El El El

made to a directory-based cache coherence protocol to provide
fault tolerance and provide a modified set of token counting
rules which are useful to design fault-tolerant token-based cach
coherence protocols. We compare the directory-based fault-
tolerant protocol with a token-based fault-tolerant one. We also Fig- 1. Tiled Chip Multiprocessors.
show how to adjust the fault tolerance parameters to achieve
the desired level of fault tolerance and measure the overhead
achieved to be able to support very high fault rates. Simulation Reliability is not only required for some critical appliaats:
results using a set of scientific, multimedia and commercial eyven for commodity systems reliability needs to be abovetaice
applications show that the fault tolerance measures have virtually |eye| for the system to be useful for anything.
no impact on execution time with respect to a non fault-tolerant , ¢3¢ gince the number of components in a chip increases
protocol. Additionally, our protocols can support very high rates AR o
of transient faults at the cost of slightly increased network trafft. and the.rellablllty Qf each component decreasesl, it is ngeon
economical to design new chips and test assuming a worst case
reliability scenario. Instead, new designs will target doenmon
case and assume a certain rate of transient faults. Henosjent
I. INTRODUCTION faults will have to be handled across all the levels of theesys
to avoid actual errors. Transient faults are already a proldor
HIP Multiprocessors (CMPs) have become the preferrgdemories and caches which routinely use error detection and
way to effectively take advantage of the increased availabgorrection codes (ECC) to deal with them. Other parts of the
ity of transistors while keeping design complexity mandea system will need to use fault tolerance techniques to detd wi
Further, tiled architectures which are built by replicgtigeveral transient faults as their frequency increases.
tiles comprised by a core, private cache, part of the sharedOne of the components which will be affected by transient
cache and a network interface help in keeping complexityemofaults in a CMP is the interconnection network. It occupies a
manageable, scale well to a larger number of cores and suppsiginificant part of the chip real estate and is critical to fieefor-
families of products with varying number of tiles. In this yva mance of the system. It handles the communication between th
it seems likely that they will be the choice for future manycores and caches, which is done by means of a cache coherence
core CMP designs [23], [24]. Figure 1(b) shows a 16-core CM#totocol. Communication is usually very fine-grained (&t ligvel
organized by replicating the tile structure shown in figu(@)1 of cache lines) and requires very small and frequent message
A main drawback of current technology trends is that, dudence, to achieve good performance the interconnectiomaniet
to the miniaturization and the lower voltages used for poweiust provide very low latency.
efficiency reasons, the susceptibility of future chips ensient Fault tolerance in the interconnection network has tradéily
faults will increase. Transient faults [3], [17], also knows soft been provided at the network level. Several proposals onthow
errors or single event upsets, occur when a component pesdudo this are mentioned in section Il. Ensuring the reliabéagr
an erroneous output but continues working correctly after tmission of all messages through the network imposes signific
event. Any event which upsets the stored or communicatedjehaoverheads in latency, power consumption and area. Diffigren
can cause soft errors. Typical causes include alpha-feastitkes, from other authors, we propose to deal with transient falts
cosmic rays, radiation from radioactive atoms which exist ithe interconnection network of CMPs at the level of the cache
trace amounts in all materials, and electrical sourcespid®wer coherence protocol. This allows for more flexibility to dgsi
supply noise, electromagnetic interference (EMI) or rédim a high-performance on-chip network which can be unreliable
from lightning. At the same time, the higher level information available he t
coherence protocol enables it to achieve fault tolerancd wi
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minimize the effect of fault tolerance on performance. the token coherence framework required by the protocol
In a previous work [5], [6], we showed that a token-based presented in [6].

[12] coherence protocol can be extended to tolerate tmansie « A comparison of the two fault-tolerant cache coherence

faults. Unfortunately, token coherence is not the cacheite protocols under a common framework and using a wider

protocol of choice in current CMP proposals. selection of benchmarks than in [7]; including scientific,
Tiled CMPs implement a point-to-point interconnection -net multimedia and commercial applications. In this new evalu-

work which is best suited for directory-based cache coher- ation, we explain how to adjust the fault detection timeouts

ence protocols. Furthermore, compared with snoopy-based o and how to trade between the overhead introduced by request

token-based protocols which usually require frequent deasts, serial numbers and the desired rate of fault tolerance.
directory-based ones are more scalable and energy-effidien o We explain the fault model used in our previous works and
this work, we apply some of the lessons learned there to gtega extend it to model faults when they happen in bursts (instead
fault tolerance in a directory-based cache coherence qbto of isolated).

A fault-tolerant cache coherence protocol needs to protlide  The rest of the paper is organized as follows: In section ||
following things: a fault detection mechanism, a fault &y we review relevant previous work. The base architecture and
mechanism, and a mechanism to ensure that data is never lostathe coherence protocols are described in section llitid®ec
corrupted. IV explains our fault model. Sections V and VI explain thelfau

In both protocols, fault detection is achieved by means oftalerant coherence protocols. A performance evaluatiodoise
number of timeouts which detect deadlocks caused by disdardn section VII. Finally, section IX concludes the paper.
messages. This fault detection mechanism is reliable ahd va
for every coherence protocol where a discarded message can Il. RELATED WORK
be either harmless or lead to a deadlock in the same or gt tolerance for multiprocessors has been thoroughjie
subsequent memory transaction. This is the casecENCMP i the past. Most proposals deal with transient errors bynmea
(the non fault-tolerant token-based cache coherence quipto ¢ checkpointing and recovery. For example, Pruvioetcal.
where discarded transient requests are harmless and thef é$resented ReVive [21], which performs checkpointing, lagg
message types lead to deadlock; and in the caseBCMP 5,4 memory based distributed parity protection with lowreve
(the non fault-tolerant directory-based cache cohereng®epl) heaq in error-free execution and is compatible with off-sietf
where every discarded message leads to a deadlock. However,, o cessors, caches and memory modules. At the same tinie, Sor

all cache coherence protocols have this property: for e}@mpg 5 presented SafetyNet [22] which aims at the same objectives
some protocols do not require acknowledgments for invabda 1, t has less overhead and uses custom caches.

messages, hence discarding an invalidation message weadd | Recently, Meixneret al. proposed error detection techniques
to an mcohgrence instead of a deadlock. The number andsprecfgw], [16] for multiprocessors which can detect errors tlead to
function of timeouts depend on the way that each protocoksior memory consistency or coherence violations, but do notigeov
Also, both protocols ensure the integri.ty. of data when ivefa any recovery mechanism. Also, Aggarweilal. [1] proposed a
through the network by means of explicit acknowledgments ofhechanism to provide dynamic reconfiguration of CMPs which
of the critical path of cache misses. However, the recovegyapies fault containment and reconfiguration, but doesdiot

mechanisms used by each protocol are different. __rectly address the problems caused by a faulty intercoiumect
Our two proposals do not add any requirements to the int¢fawvork in the coherence protocol.

connection network so they are applicable to current angréut  nstead of ensuring fault tolerance at the cache coherence
designs. Aptually, since the network does not need _to gma”protocol level like we propose, a more straightforward way t
correct delivery of every message, we expect that it coute taspye the problem of transient faults in the on-chip intereection
advantage of a more aggressive design to reduce latency eNgfiwork is making the network itself fault-tolerant. Theaee

at the cost of dropping a few messages, improving .overgléverm proposals [2], [4], [19] exploring this approach.
performance. Also, our proposals could be used in conjancti (syally, these proposals achieve fault tolerance usingr err
to other techniques which provide fault tolerance to irdlil §etection or correction codes and message retransmiss&in [
cores and caches in the CMP to achieve full coverage agaifgfin end-to-end and switch-to-switch retransmission sz

transient faults inside the chip. _ o ~are possible. In an end-to-end scheme, error detectionscode
~ Some parts of this work were presented in a preliminary versigre added to messages and network interfaces have adbitiona
in [8] and [7]. The main contributions of this paper are: message buffers to store messages which have been tramubmitt

« A cache coherence protocol which extends a standaudtil it receives an acknowledgment signal. The messagebea
directory-based coherence protocol with fault-toleramiam retransmitted when a negative acknowledgment signal sved
sures and assumes a point-to-point unordered interconnec-when a timeout triggers at the sender. If timeouts are ,used
tion network. Unlike the protocol presented in [8], whichmessages require sequence numbers to detect duplicatésh-Sw
assumed a point-to-point ordered interconnection networo-switch schemes are similar, but error detection anémetnis-
this protocol can work with reconfigurable interconnectiosion hardware is added at each switch instead of at each retwo
networks or with adaptive routing. These characteristies ainterface. Error correction can be done at message leveitor fl
highly desirable for being able to deal with permanent arrotevel also.
both in the interconnection network and in the processor Other way to provide fault tolerance at the interconnectiety
cores and for other purposes beyond fault-tolerance. work level is using fault-tolerant routing techniques [26]ying

« A modified set of token counting rules that ensure reliablen flooding. These techniques trade increased networkct(affid
ownership transference and formalize the modifications fmwer consumption) for reliability.



A system could combine both interconnection level fauletol are detected. 3KENCMP uses a performance policy similar to
ance measures and cache coherence protocol level onesvalhis TOKENB (Token-using-broadcast) with a distributed arbitration
the fault rate that the coherence protocol would need to aippscheme for persistent requests.
would decrease, while part of the reliability of the intemoection DIRCMP is a traditional MOESI-based directory cache co-
network could be traded for increased performance. herence protocol which uses an on-chip directory to maintai
Also, most interconnection network fault tolerance pr@t®s coherence between several private L1 caches and a shared non
rely on adding a certain amount of fault resiliency to the- neinclusive L2 cache. It uses a directory cache in L2 and the L2
work interfaces and/or network switches by means of hardwaeffectively acts as the directory for the L1 caches. It usadipe
redundancy or VLSI transient fault mitigation techniquesvoid busy states to defer requests to lines with outstandingestgu
single points of failure. Our approach could also benefimfro Hence, the directory will attend only one request for eanh ht
these measures, although we have not identified any comportte same time. Also, it uses three-phase writebacks to cwded
of the interconnection network that would require it to qaree writebacks and the rest of requests.
correctness. The two base protocols implement a migratory sharing op-
However, ensuring the reliable transmission of all messag@mization in which a cache holding a modified cache line
through the network limits the flexibility of the network dgs invalidates its copy when responding to a request to readitiea
and imposes significant overheads in latency, power consomp (GetS), thus granting write permission to the requesting cache.
and area. Those overheads are constant per message sincd hise optimization substantially improves performance cdny
interconnection network lacks information about the megrof workloads with read-modify-write sharing behavior.
the communication that is taking place. In contrast, engufault
tolerance at the higher lever of the cache coherence piotoco IV. FAULT MODEL
allows for more flexibility to design a high-performance cimip As mentioned in the introduction, a transient fault in the
network which can be not totally reliable, but have bettégday interconnection network of a CMP can have a number of causes.
and power consumption in the common case. Since the protoEor example, any event that changes the value stored in a flip-
has more information, it can ensure the reliable retrarsions flop which is part of a buffer or that affects the signal trarted
of those few messages that carry owned data and could catiseugh a wire would cause a transient error. The actuatteffe
data loss; achieving better performance overall as longhaggh of these errors is hard to predict, but we can assume that one

messages are transmitted correctly through the network. or more messages are either corrupted or misrouted as the fina
consequence.
I1l. BASE CMP ARCHITECTURES AND PROTOCOLS Corrupted messages will be discarded upon reception. &is ¢

In this work, we assume a single CMP system built using %e ar\]ch|eved by r_lr_lﬁans °f_ usllng an e;ror de_tectloré code (CR%) in
number of tiles [23]. Each tile contains a processor coreaf® each message. The particular error detection code employe

L1 data and instruction caches and a bank of the L2 cache. 'IIH
L2 cache is logically shared by all cores but it is physicall
distributed among tiles. Each tile has its network intezfdao

Es purpose is out of the scope of this paper, but we assuate th
I"corrupted messages are detected and dischrdiedddition
0 checking the error detection code, nodes also check lilegt t

connect to the on-chip interconnection network. We assume pre the intended recipient of a message before respondmg. T

order processors since that seems the most reasonableaalppr)g’ay'_ a mlsrogltle: rggssagec}haEt arrl\_/fes ur_1corrupot|ed o thagwro
to build power-efficient CMPs with many cores. estination will be discarded. Even if a misrouted messagew

While we have assumed a tiled architecture and in-ord@Pt detected as such, the protocols would handle it grageful

processors, these choices are not constraints of the carluLXCert for invalidation requests that could lead to incehee in
coherence protocols, whose functionality and correctiest Some cases.

affected if out-of-order cores are used or a different ayeament Henceihfr(t)m”the point of V'?\r’lv Olf the (f:oherenf(f:e tpré)tocol we
is used instead of tiles. assume that all errors cause the loss of any affected message

We consider two base architectures whose main differen-ggat is, in our fault model we assume that the interconnectio
ﬁ ork will either deliver a message correctly or not at Ale
als

lies in the coherence protocol: one uses a token-based cal i
coherence protocol called SKENCMP [14] and another uses 0 assume that caches and memories are protected by nifeans o
FCC.

a more traditional directory-based protocol adapted for RCM . .
In our evaluation we consider several fault rates expressed

systems that we will refer to asiRCMP. ) -
TOKENCMP is a cache coherence protocol based on tok88 number of corrupted messages per million of messagés tha

coherence which targets hierarchical multiple CMP systants travel through the network”. Th|s rate measures the p“‘"."ﬁb'
is well suited for single CMPs. Token coherence provides FQ?"[ every message has of bemg affected byatr_anyethdH
framework for defining several particular coherence proi®by !t IS 1N Fh.e netwqu. We consider tWO. ways of dls.trlbutlng ftau
separating the protocol definition in a correctness sutesttad in time: in the. f|r§t one faults are distributed uniformly ango
a performance policy which define how the nodes exchangem SSages, Wh'l_e in the second one faults affect messagessis b
fixed number of tokens among them. Most requestsraresient ofa constant size.

requests which, in the case of 5KENCMP and most other token \, A EAULT-TOLERANT DIRECTORY COHERENCE PROTOCOL
coherence protocols, are sent using broadcast to all othekrsn
with no ordering guarantees and without even a guaranteeiofb
successfully satisfiedoken counting rules ensure that coherenc

is maintained whilepersistent requests ensure forward progress iwith our protocols, an undetected corrupted message coud te
by providing serialization when races between transiequi@sts incoherence or silent data corruption in some cases, but newdeadlock.

From now on, we consider a CMP system whose intercon-
ynection network is not reliable due to the potential preseofc



TABLE | TABLE I
MESSAGE TYPES USED BYDIRCMP. ADDITIONAL MESSAGE TYPES USED BYFTDIRCMP.
[ Type | Description | [ Type | Description |

GetX Request data and permission to write. AckO Ownership acknowledgment.
GetS Request data and permission to read. AckBD Backup deletion acknowledgment.
Put Sent by the L1 to initiate a write-back. UnblockPing | Asks confirmation that a cache miss is still in progress.
WbAck Sent by the L2 to let the L1 actually perform the write- | WbPing Asks confirmation that a writeback is still in progress

back. The L1 will not need to send the data. WhbCancel Confirms that a previous writeback has already finished.
WbAckData | Sent by the L2 to let the L1 actually perform the write- | OwnerPing Asks confirmation of ownership.

back. The L1 will need to send the data. NackO Negative response to an OwnerPing.
WhbNack Sent by the L2 when the write-back cannot be attended

(probably due to some race) and needs to be reissued.
Inv Invalidation request sent to invalidate sharers befopre

granting exclusive access. Requires an ACK response. Usually, when a fault occurs and a timeout triggers- F
Ack Invalidation acknowledgment. T . . . '
Data Message carrying data and granting read permission, DIRCMP reissues the request using a different serial number.
DataEx Message carrying data and granting write permission These reissued requests need to be identified as such bydhe no

b | o e 5 v oo oo a1 aPSWers 10 them and ot be eated ke an usual request
sender is now a sharer. “n particular, a reissued request should not wait in therimiog
UnblockEx | Informs the L2 that the data has been received and|the’équest buffer to be attended by the L2 or the memory coetroll
sender has now exclusive access to the line. until a previous request is satisfied, because that previegisgest
WhbData Write-back containing data. may be precisely the older instance of the request that isgbei
WbNoData Write-back containing no data. . .
reissued. Hence, the L2 directory needs to remember thé&dyloc
(last requester) of each line to be able to detect reissupests.
This information can be stored in the Miss Status Holding
transient faults. In the rest of this section we explain taeltf Register (MSHR) table or in a dedicated structure for theegas
tolerance mechanisms offBIRCMP in detail, as an example of when it is not necessary to allocate a full MSHR entry.
how to add fault tolerance to a cache coherence protocol.
Losing a message in IRCMP will always lead to a deadlock o Rdiable data transmission
situation, since either the sender will be waiting indeéilyitfor a

response or the receiver was already waiting for the lo A fault-tolerant cache coherence protocol needs to eniate t
" there is always at least one updated copy of the data of each

Additionally, losing a message carrying data can lead te lfs . .
. . 7S . line off the network and that such copy can be readily used for
data if the corresponding memory line is not in any other each . o2
P 9 "y Y covery in case of a fault that corrupts the data while iteim

and it has been modified since the last time that it was writtt%ﬁ
to memory. Notice that losing any message cannot lead to arough the network.
) here is always one owner noddor each line which is

incoherence, since write access to a line is only grantest aift . ) . .
. s y g responsible of sending data to other nodes to satisfy readiter

the necessary invalidation acknowledgments have beeralbctu . . o
requests or to perform writeback when the data is modified.

received. e . L
P . Data transmission needs to be reliable when ownership is
Table | shows a simplified list of the main types of messages

: . . .~ Yransferred. Ownership can be transferred either with atusive
used by DRCMP and a short explanation of their main function, .
data response or a writeback response. On the other hand, whe

Directory protocols used in most cache coherent non-umifor wnership is not being transferred, data transmission dats

memory access machines (cc-NUMASs) usually assume that ed to be reliable because if the data carrying messagstis lo

network is point-to-point unorderegl. That IS, WO MESSAER 0 yata can be sent again from the owner node when the request
from a node to another can arrive in a different order th B reissued

they were sent. Unlike our previous work, the version of the In order to ensure reliable data transmission of owned data,
FTDIRCMP protocol presented here does support unordered nE‘FDIRCMP adds some additional states to the usual set of

works. This improvement requires the gddmon of a new tm’leoNIOESI states:
and two new message types (see section V-F). i L i
FTDIRCMP is an extension of RCMP which assumes an * Backup (B): 'I_'h|s sta'_[e is similar to the Invalid (1) state,_
unreliable interconnection network. It will guarantee tw@rect but the dattr? ;s_kepthln tt?e cgchethto I?/Ie du_fs_eg fc(:)r potgntlal
execution of a program even if coherence messages are lost or rEeccl)ve_ry ( tat 1S, wden _”ea\gngd N it odinec, W;].e or
discarded by the interconnection network due to transigot® axlg]uvsvllve?j S a?si) fm i\\;\”d abandon It once anwnersnip
FTDIRCMP uses extra messages to acknowledge the reception B(I:ocie d o%vnrfgrsﬁi e(cl\jb eE'b and Ob) To prevent havin
of a few critical data messages and to detect faults. Whesilges * more than one br;cku ’ for a line at anp ven oin? in
those messages are kept out of the critical path of any cache .. S P y 9 P
. . . . time, which is important to be able to recover in case
miss and they are piggybacked in other messages in the most of a fault, a cache that acquires ownership (entering the
frequent cases. Table Il shows the message types that aeel add e cq X P 9
by FTDIRCMP to those mentioned in table | Modified, Owned or Exclusive states) will avoid transmigtin
. the ownership to another cache until it receivebaakup
Thanks to the fact that every message lost iROMP leads deletion acknowledament message from the previous owner
to a deadlock, FDIRCMP can use timeouts to detect potentially 9 g P ’
lost messages. It uses a number of timeouts to detect faudts & 2grom the point of view of the coherence protocol, a node caritier
start corrective measures. Table Il summarizes theseotitse  an L1 cache, an L2 cache bank or a memory bank.



TABLE Il
SUMMARY OF TIMEOUTS USED INFTDIRCMP.

Timeout When is it activated? Where is it activated? When is it deactivated? What happens when it trig
gers?
Lost request When a request is issued.| At the requesting L1 cache, When the request is satig- The request is reissued with
fied. a new serial number.

Lost unblock When a request is answergd At the responding L2 or| When the unblock / write-| An UnblockPing / WbPing
(and writebacks). memory. back message is received, is sent.

Lost data When owned data is sert At the node that sends When theAckO message is| An OwnerPing is sent.
through the network. owned data. received.

Lost backup deletion] When theAckO message is| At the node that sends the When theAckBD message| The AckO is reissued with

acknowledgment sent. AckO. is received. a new serial number.

For achieving this, we have added blocked versions of the
Modified, Exclusive and Owned states. While a line is in one
of these states, the cache will not attend external reqtests
that line which require ownership transference.

Using the states described above, the transmission of owned

data between two nodes works as follows:

1) When a node sends owned data to another node, it does
not transition to arinvalid state. Instead, it entersBackup
state in which the data is still kept for recovery, although n
read or write permission on the line is retained. Depending
on the particular case, the data may be kept in the same
cache block, in a backup buffer [5] or in a writeback buffennitially, for both protocols, L1b has the data in modifiable (M),
The cache will keep the data until it receives@mmership  exclusive (E) or owneltl (O) state and Lla requests write access
acknowiedgment, which can be received as a message hy L2 (1) which forwards the request to L1b (2). INEMP, L1b
itself or piggybacked along with adnblockEx message.  sends the data to L1a (3) and transitions to invalid state. Subsequently,

2) When the data message is received by the new ownghen L1a receives the data, it transitions to a modifiable (M) state
it sends anownership acknowledgment to the node that and sends atnblockEx message to L2. In FDIRCMP, when L1b
sent the data. Also, it does not transition to an M, O Giceives the forwarde@etX, it sends the data to L1a and transitions
E state. Instead it enters one of the blocked ownership the backup state (3). When Lla receives the data, it transitions
states (Mb, Eb or Ob) until it receives thackup deletion  to the blocked ownership and modifiable (Mb) state and sends the
acknowledgment. While in these states, the node will notunblockEx message to L2 and afckO message to L1b (4). When
transfer ownership to another node. This ensures that them receives theAckO, it discards the backup data, transitions to
is never more than one backup copy of the data. Howevgjvalid (I) state and sends AckBD message to Lla (5), which
at this point the node has received the data (and possilynsitions to the usual modifiable (M) state when receives it.
write permission to it) and the miss is already satisfied. The
ownership acknowledgment will carry a serial number also, Fig. 2. Message exchange for a cache-to-cache write miss.
which can be the same than the data carrying message just
received.

3) When the node that sent the data receivesadileership

4 UnblockEx

DIRCMP

3 DataEx
4 AckO
5 AckBD

FTDIRCMP

. - i These rules ensure that for every cache line there is always
acknowledgment, it transitions to anlnvalid state and sends giiher an owner node that has the data, a backup node which has
a backup deletion acknowledgment to the other node with o a0 un copy of the data or both. They also ensure that there i
the same serial number as the received ownership acknoyls,er more than one owner or one backup node
e(_jgment. . ) 1) Optimizing ownership transference from memory to L1
4) Finally, once thebackup deletion acknowledgment is re- o, e The rules explained above ensure the reliable transmis-
ceived, the node that received the data transmc_)ns to an Moo of owned data in all cases without adding any message to
O or E state and can now transfer the ownership to anothgp cjtical path of cache misses in most cases. Howevee trer
_ node if necessary. potential performance problems created by the blocked ki

Figure 2 shows an example of how a cache-to-cache trans{efies since a node (L1 cache, L2 cache bank or memory
miss which requires ownership change is handlediDIRCMP  coniroller) cannot transfer the recently received owned datil
and compares it with RCMP. _ ~ the backup deletion acknowledgment message is received.

The ownership acknowledgment can be piggybacked in therpis is not a problem when the data is received by an L1
UnblockEx message when the data is sent to the requesting Liche since the node can already use the data while it waits fo
by the L2 (or to L2 by the memory). In that case, only an extrayiq acknowledgment. However, in the case of L2 misses, Zhe L
message (the backup deletion acknowledgment) needs tmbe §&,nnot answer the L1 request immediately after receiviegitita
An example of this situation can be seen in figure 3. from memory because, according to the rules described aktove

3In owned state, additional invalidation messages and thiesponding firSt needs to send aswnership acknowledgment to memory and
acknowledgments would be needed. wait for the backup deletion acknowledgment. Hence, in the case



1 GetX 2 GetX

. 3 UnblockEx+AckO '

4 AckBD

o 1 GetX

2 1 GetX 2 GetX

O 2 DataEx

x 6 DataEx %

o) 3 UnblockEx 7 UnblockEx @

o 1Getx 2 ACKBD
AckBD

s 8 Ac 8 UnblockEx

O

o

a

'_

LL
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In both protocols, the L1 cache send&SeX message (1) to the L2,

which has the data in an exclgsive state (M or E). IROMP, When In both cases, the L1 sendsGetX message (1) to L2 which, since
Fhe L2. recglves thg.request, It §gnds the data to L1 (2) which, ONfGoes not have the data, forwards (2) it to the memory controller.
it receives it, transitions to modificable (M) state and answers to L|2he memory controller fetches the data and sends it to L2 using a
with an UanqckEx message. In FDIRCMP, whgn the L2 receives DataEx message (3). Now, in the unoptimized case, when the L2
the request, it sends the data to the L1 (2) but it also keeps a bact%'@eives the owned data, it sends an ownership acknowledgment

copy of the data. When the L1 receives the data, it transitions (t&)) to the memory controller and waits for the backup deletion

blocked ovxénershm:] and mog'f'ible m StkmEi anéj ansr‘:veirskcv)v'tha%knowledgment (5) before answering to L1 with the data (6). Once
message (3) which serves both as oc and as theAd Lil. receives the data, it sends a message to L2 (7) carrying the

mhessagesk;)s(eilﬂggure 2. The bgi)kulp_)lcppy n ,dew'“ szhg%t ur]&Nnership acknowledgment and the unblock. When the L2 receives
the UnblockEx+AckO message send by L1 s received an this message, it will send a backup deletion acknowledgment to L1

message (4) is ;ent t_o the L1, which transitions o the modifiable ('\g%d an unblock message to the memory controller (8). On the other
state when receives it. hand, in the optimized version, when the L2 receives DrataEx

Fig. 3. Message exchange for an L1 write miss that hits in L2. (3) message from memory, it sends anotbataEx message (4) to

L1. Notice that now the critical path of the miss requires only 4 hops
instead of 6. Once the L1 has received the data, it will send a message
(5) with the unblock and the ownership acknowledgment to L2 which
of L2 misses, these rules would add two messages in theatriti¥ill then send the unblock to memory and the backup deletion
path of misses. acknowledgment to L1 (6). Finally, when the memory controller

To avoid increasing the latency of L2 misses, we relax tmulreceives the ownership acknowledgment, it will answer with a backup
’ %Ietion acknowledgment message (7).

in these cases. We allow the L2 to send the data directly to tﬂ
requesting L1 just after receiving it, keeping a backup lutiti Fig. 4. L2 miss optimization of ownership transference.
receives the ownership acknowledgment from the L1. In fhet,
L2 does not send the ownership acknowledgment to memorly unti

it receives it from the L1 (most times piggybacked on an uaklo

message) since this way we can piggyback it withUumlockEx B. Reguest serial numbers

message. Figure 4 shows an example of how an L2 miss wouldAS will be explained in section V-C, whenlast request timeout

be resolved without and with this optimization. triggers FDIRCMP assumes that the request message or some
To implement this behavior, we modify the set of states fegsponse message has been lost due to a transient faultemd th
the L2 cache so that a line can be either internally blockedissues the request hoping that no fault will occur thisetim
or externally blocked, or both (which would correspond te thygwever, sometimes the timeout may trigger before the respo
blocked states already described). has been received due to unusual network congestion or hay ot
A line enters an externally blocked state when the L2 reseiveeason that causes an extraordinarily long latency forisgla
data from memory and leaves it when it receives the backufiss. That is, there may be false positives.
deletion acknowledgment from memory. While in one of those In case of a false positive, two or more duplicate response
states, the L2 cannot send the data to the memory jdaith it messages would arrive to the requestor and, in some cases, th
can send it to an L1 cache keeping a backup until the respectdkira messages could lead to an incoherence. For this reason
ownership acknowledgment is received. This ensures tea¢ s FTDIRCMP usesrequest serial numbers to discard responses
at most one backup of the data out of the chip, although these mwhich arrive too late, when the request has already beesuesis
be another in the chip. This is enough to guarantee corrsstne Every request and every response message carries a serial
in case of faults. number. Request serial numbers are chosen by the L1 cadhe tha
Conversely, a line enters an internally blocked state wihen tissues the request (or by the L2 in case of writebacks fronolL2 t
L2 cache receives data from an L1 cache and leaves it whamemory). Responses or forwarded requests will carry thialser
the corresponding backup deletion acknowledgment is vedei number of the request that they are answering to. When aseque
While in an internally blocked state, ownership cannot lamgr is reissued, it will be assigned a new serial number whict wil
ferred to another L1 cache. allow to distinguish between responses to the old requedt an
responses to the new one.
4ln a multiple CMP setting, it would not be able to send it to oth2 in The L1 cache, L2 cache and memory controller must remember

different chips either. In other words, the ownership of line cannot leave the Se_"ial number of the requests th_at the}_/ are currentlxdlfl_mﬁ
the chip. and discard any message which arrives with an unexpected ser




1 Getx message that may have been lost is not very important: it ean b

the request itselfGetX or GetS), an invalidation request sent by
10 WbAckData :G
S —/

timeout is restarted after the request is reissued to bet@blietect
additional faults.

To retry the request, the L1 chooses a new request serialerumb
and will ignore any response which arrives with the old deria
number after thdost request timeout triggers. See section V-B
for more details.

As mentioned before, the L2 needs to be able to detect reissue
requests and merge them in the MSHR with the original request

L1a makes a request (1) to L2 which forwards it to L1b (2). L1b send@SSuming it was not lost). The L2 will identify an incoming
the data (3) to L1a, but this message gets delayed in the network fBAUESt as reissued if it has the same requestor and addagss t
such a long time that thesquest timeout triggers and L1a reissues theanqther request currently in the MSHR but a different retjues
request (4) which is forwarded again to L1b (5) which has a back§§"ial number. o

copy of the data and resends it (6). This time, the message arrived* Node which holds a line imackup state should also detect

to L1a which sends (7) an unblock message to L2 and an ownersHisSued requests to be able to resend the data (using the new
acknowledgment to L1b. L1b answers with a (8) backup deleticif"ial number). Hence, every cache that transmits ownea dat
acknowledgment to L1a. After modifying the data, L1a performs 38€ds to remember the destination node of that data at Isfist u
writeback to L2 (messages 9 to 13) and after that, it issues anotH&# Ownership acknowledgment is received. This way,DiagaEx
request (14). If the first data message (3) arrives at this monment 46SPONSe is lost, it will be detected using thet request timeout

is not discarded using its serial number, it would allow L1a to usdd corrected by resending the request.
the old data. This timeout is also used for writeback reque$ist(nessages).

The timeout starts when theut message is sent and stops once
Fig. 5. Transaction where request serial numbers avoid stalg data. the writeback acknowledgmentvpAck or WbAckData messages)
is received. When it triggers, theut message will be reissued
with a different serial number. This way, this timeout caredée

the loss ofPut, WbAck andWhAckData messages but not the loss

number or from an unexpected sender. This information nee(gi,,'s\/\,bData or WbNoData messages which is handled by tlost
to be updated when a reissued request arrives. Discarding ARblock timeout

message in FDIRCMP is always safe (even if it could be not
strictly necessary in some cases) since the protocol airbad
provisyions for Iosx,lt messages of a)ny type. P 3 D. Faults detected by the lost unblock timeout

Figure 5 show a case where not using request serial numbers te/nblock messagesJfiblock or UnblockEx) are sent by the L1
discard a message that arrives too late would lead to ineahgr once it receives the data and all required invalidation aekn
or using stale data. The example assumes that the interctiome edgments to notify the L2 that the miss has been satisfiednWhe
network is not point-to-point ordered, but similar sitea are the L2 receives one of these messages, it proceeds to attend t
also possible on point-to-point ordered networks [8]. next miss for that line, if any.

Analogously, serial numbers are also used to be able tordisca When an unblock message is lost, the L2 will be blocked
duplicated unblock messages, duplicated writeback messag indefinitely and will not be able to attend further requests f
duplicated backup deletion acknowledgments. These datptic the same line. Lost unblock messages cannot be detectedtby th
messages can appear due to unnecessabjockPing, WbPing |ost requests timeout because that timeout is deactivated once the
or duplicated ownership acknowledgment messages sentein faduest is satisfied, just before sending the unblock messag
case of false positives of thiost unblock timeout or the lost ~ To avoid a deadlock due to a lost unblock message, the L2
backup deletion acknowledgment timeout. starts thelost unblock timeout when it answers to a request and

waits for an unblock message to finalize the transaction. Whe
i this timeout triggers, it will send abinblockPing message to the
C. Faults detected by the lost request timeout L1,

The lost request timeout starts when a requesGétX, GetS When an L1 cache receives addnblockPing message and
or Put message) is issued and stops once it is satisfied (thatiishas already satisfied that miss (hence it has already sent a
when the L1 cache acquires the data and the requested accesgesponding unblock message which may have been lostpr no
rights for it). Hence, it will trigger whenever a requesteéakoo it will answer with a reissuedJnblock or UnblockEx message,
much time to be satisfied or cannot be satisfied because anydepending on whether it has exclusive or shared access to the
the involved messages has been dropped, causing a dealilockne. If the miss has not been resolved yet (hence no unblock
is maintained by the L1 for each pending miss. Hence, theextnessage could have been lost because it was not sent in the firs
hardware required to implement it is one extra counter faheaplace), theUnblockPing message will be ignored. The L1 cache
MSHR entry. can check whether the miss has been already resolved or not by

When this timeout triggers, TDIRCMP assumes that somelooking at its MSHR for a pending miss for the same address.
message which was necessary to finish the transaction has bedJnblock messages are also exchanged between the L2 and the
lost due to a transient fault and retries the request. Thigcplar  memory controller in an analogous way. HencePFRCMP uses

the L2 or the memory controlledrfv), a response to the request
(Data or DataEx) or an invalidation acknowledgmentgk). The

12 AckO

13 AckBD




an unblock timeout andJnblockPing in the memory controller G

too. Tl 2 Getx

Also, this timeout is used to detect lost writeback messages o 4Getx' .
(WbData and WbNoData) in a similar manner. When But is
received by the L2 (or the memory), the timeout is started and
WhbACck or WhAckData is sent to L1 (or L2) to indicate that it can
perform the eviction and whether data must be sent or notnUpo > Datakx
receiving this message, the L1 stopddst request timeout, sends oA%O

the appropriate writeback message and assumes that tiebaaikt ag

is already done. Once the writeback message arrives to E2, th
lost unblock timeout is deactivated. If the writeback message is 12 ACkBD
lost (or it just takes too long to arrive), the timeout wilgger and
the L2 will send aWbPing message to L1. The L1 will answerLla makes a request (1) to L2 which forwards it to L1b. The
with a new writeback message (in case it still has the data) forwarded message (2) gets delayed in the network and hence the
a WbCancel message which tells the L2 that the writeback hdsst request timeout triggers in L1a. When this happens, L1a reissues
already been performed. Note that modified data cannot ke ld® request (3) which is forwarded again by L2 (4). This time, the
thanks to the rules described in section V-A. request arrives to L1b which sends the data (5) to L1la. When Lla
receives the data, it sends (6) an unblock message to L2 and an
E. Faults detected by the lost backup deletion acknowledgmentwnership acknowledgment to L1b which responds with a backup
timeout deletion acknowledgment (7) to L1a. Later, L1b makes a new request

As explained in section V-A, when ownership has to pwhich is handled in a similar way (messages 8 to 12), so it has
transferred from one node to anothemrRRCMP uses a pair the only copy of the data again with exclusive access. If the first
of acknowledgments to ensure the reliable transmissiorhef fforwarded request (2) arrives now to L1b, it will send the data to L1a
data. These acknowledgments are sent out of the critichl qfat which will discard it (since it does not expect a response with that
a miss when they are not piggybacked with the unblock messa@%rial number anymore). In this situation no node will have the data
Losing any of these acknowledgments would lead to a dead|de®r expect it, so future accesses to the line would cause a deadlock.
which will not be detected by théost request or lost unblock g 6. Transaction where the lost data timeout detects daiahvnas been
timeout (unless the ownership acknowledgment was lostgalowrongly discarded.
with an unblock message) because these timeouts are dgeadtiv
once the miss has been satisfied.

For these reasons, we intoduce flost backup deletion ac- In the previous situations, the fault was detected (eithtr the
knowledgment timeout which is started when an ownership adost request timeout or thelost backup deletion acknowledgment
knowledgment is sent and is stopped when the backup deletiimeout) because there was still some node which expected the
acknowledgment arrives. This way, it will trigger if any dfese data to arrive and for that reason had a timeout enabled &xtdet
acknowledgments is lost or arrives too late. When it trigger the situation.
new AckO message will be sent with a newly assigned serial However, if request messages can be reordered while tngveli
number. through the network, it can happen that the owned data isteent

If the ownership acknowledgment was actually lost, the nesome node which does not expect the data and hence will discar
message will hopefully arrive to the node that is holding ekb@ it. Since in that case the data will be kept only in backupestat
of the line and that backup will be discarded and A&okBD the sender node, no node will be able to access it and this will
message will be returned. lead to a deadlock the next time that the line is accessed.

If the first ownership acknowledgment did arrive to its des- To be able to detect this situation, we have added ltdse
tination (false positive), the new message will arrive toaglen data timeout which is started whenever an owned data carrying
which no longer has a backup and which already responded witiessage is sent and stopped once the ownership acknowletilgme
an AckBD message. Anyway, a neckBD message will be sent is received. Thelost data timeout is not activated when the
using the serial number of the new message. TheAukBD unblock timeout is activated in the same node, since the latter
message will be discarded (if it was not actually lost) beeaiti can detect the same faults too. This timeout is not neceskary

carries an old serial number. the network guarantees point-to-point ordering of message
Figure 6 shows a case where a message carrying owned data is
F. Faults detected with the lost data timeout discarded by a node which receives it unexpectedly andasie

The rules described in section V-A guarantee that when &ata timeout is needed to detect the situation.
owned data carrying message is lost or discarded due to agwronYhen thelost data timeout triggers, anOwnerPing message
serial number, the data will always be in backup state in sortfesent to the node that was sent the data before. Upon regeivi
node. Usually, when this happens the node that requested i€ message, a node will react as described below:
data in the first place will reissue the request aftetdss request « If the node does not have the ownership of the line, it will
timeout triggers and the data will be resent using the backup answer with aNAckO message with the same serial number

copy. Alternatively, if the data ownership transferences wae to than the received ping message. Additionally, if it has a
a writeback, thdost unblock timeout will trigger in the L2 (or pending request for that address, it should reissue it with a
memory) and the data will be resent when thWePing message new serial number to avoid gaining ownership after sending

is received. the NackO due to some data message currently delayed in



the network. fashion during theoken recreation process. Hence, they require

« If the node has the ownership in a blocked state (i.e., dn additional structure in each cache to store them (only for
already sent an ownership acknowledgment and is waititigose hopefully few lines that had a token serial numbeedifit
for the corresponding backup deletion acknowledgment)tihan O, but even for lines which are not currently in any cache
will reissue the ownership acknowledgment with a new seri@ln the other handrequest serial numbers are associated with
number. Basically, it will act as if théost backup deletion individual requests and so they are short-lived informmatidhich

acknowledgment timeout had triggered. can be stored in the MSHR. Howevésken serial numbers do not
« In other cases (the node has ownership but it is not blockedged to be carried in request messages (only in responsds) wh
the ownership ping should be ignored. request serial numbers are sent with every request and need to

The node that has the backup will regain ownership if fee propagated with every message which is sent as consequenc
receives aNackO message with the expected serial numbe@f the request.
avoiding the potential deadlock if owned data had been disca ~ In some cases, HOKENCMP achieves deadlock recovery
It will forget the serial number of the issuedackO (hence issuing ping messages when a timeout triggers to force theue
canceling the ping) if it receives aAckO or a new reissued Of a message which is expected to finish a coherence tramsacti
request. like a Persistent Request Deactivation. These ping messages are

analogous to thé&nblockPing messages used byrBIRCMP.
VI. A TOKEN-BASED FAULT-TOLERANT CACHE COHERENCE
PROTOCOL

Prior to the design of fDIRCMP, we had already designed
and evaluated a token-based fault-tolerant cache colespnto-

A. Fault-tolerant token-counting rules

The main observation of the token framework is that simple
. - : - token counting rules can ensure that the memory system bghav
col which we call FTOKENCMP [5]. In this section we briefly in a coherentg manner. To implement fault tole%ar?ce we have

describe FTOKENCMP and compare it with FDIRCMP. - .
... modified the token counting rules to ensure that data can@ot b
The fault tolerance measures of both protocols are similar i

their intent and functionality and differ mostly in the inasl lost when some message fails to arrive to its destinatiore Th

. . ollowing token counting rules are based of those introduce
mentation. Table IV shows a summary of the timeouts used - : .
FTTOKENCMP ¥ Martin [11], and extend them to ensure reliable ownership

FTTOKENCMP uses a mechanism similar to the one af F tranﬁ;zrger:j(;(.e (modification with respect to the originabsuare
DIRCMP to avoid data loss, ensuring reliable transmission &P '

owned data as described in section V-A. Section VI-A forzesti ~ * Conservation of Tokens Each line of shared memory has
that mechanism with a modified version of token countinggule & fixed number of T 1 tokens associated with it. Once the

The fault recovery mechanism is different for each prototrol system is initialized, tokens may not be created or destfoye
FTTOKENCMP, fault recovery is achieved by means of a central- ~ One token for each block is the owner token. The owner
ized mechanism called theken recreation process arbitrated by token may be either clean or dirtpnother token is the

the memory controller. This process works as long as theee is ~ Packup token.

valid copy of data in some cache or one and only one backup copy Write Rule: A component can write a block only if it holds

(which is guaranteed by the rules in section VI-A). The mgmor &l T tokens for that blockwhich are not the backup token

controller attends token recreation requests in FIFO dalavoid and has valid data. After writing the block, the owner token

livelock and it works sending messages to every cache asking IS Set to dirty.

to invalidate all tokens and send back to memory any data thar Read Rule A component can read a block only if it holds

it may have. Once the memory receives the data or invalidatio 2t least one tokeuwlifferent than the backup token for that

acknowledgments from every cache, it sends it to the cachehwh ~ Plock and has valid data.

requested the recovery with a new set of tokens. « Data Transfer Rule: If a coherence message carries a dirty
To avoid the risk of creating an incoherence due to stale OWner token, it must contain data.

responses still traveling through the interconnectiomvoek after ¢ Owner Token Transfer Rule: If a coherence message carries

a token recreation, all coherence responses are tagged with a the owner token, it must not carry the backup token also.

token serial number which is increased during the token recreation ® Backup Token Transfer Rule: The backup token can only

process. Messages with a wrong token serial number arerdésta be sent to another node that already holds the owner token.
when received by any node. Token serial numbers are store¢ Blocked Ownership Rule: The owner token cannot be sent
in every node in a dedicated structure (tioken serial number to other component until the backup token has been received.

table), but only for those cache lines which have a serial numbere Valid-Data Bit Rule: A component sets its valid-data bit for
different than 0. We have found that having a very small numbe @ block when a message arrives with data and at least one
of entries of only a few bits each is enough for good results. tokendifferent than the backup token. A component clears

When all entries are used, one of them is evicted settingeiials the valid-data bit when it no longer holds any tokensvhen
number to 0 by means of theken recreation process. it holds only the backup token. The home memory sets the

The token serial numbers used in FTOKENCMP serve a valid-data bit whenever it receives a clean owner tokem eve
similar purpose to theequest serial numbers used in FDIRCMP if the message does not contain data.

(e.g.: being able to discard stale messages after faulveego * Clean Rule Whenever the memory receives the owner
which could cause an incoherence), but the latter are etsier  token, the memory sets the owner token to clean.
implement and more scalablfken serial numbersare associated The above token counting rules along with the starvation
with each cache line and need to be updated in a coordinatedl deadlock avoidance measures implemented by persistent



TABLE IV

SUMMARY OF TIMEOUTS USED INFTTOKENCMP.

sent.

backup.

knowledgement arrives.

Timeout When is it activated? Where is it activated? When is it deactivated? What happens when it trig
gers?
Lost token When a persistent request At the starver cache. When the persistent request Request a token recreation.
becomes active. is deactivated.
Lost data When the owner token ig At the cache that holds the When the ownership act Request a token recreation.

Lost backup deletion

When a line enters the

At the cache that holds thg

When the backup deletio

Request a token recreation.

10

acknowledgement blocked state. owner token. acknowledgement arrives.
Lost persistent deac; When an external persistent At every cache (by the per; When the persistent request Send a persistent request
tivation request is activated. sistent request table). is deactivated. ping.

TABLE V

requests and the token recreation process compose thetoese
substrate of FTOKENCMP. These rules enforce the same global
invariants than the original rules and additionally thefoece the
following invariant: “For any given line of shared memoryaaty

CHARACTERISTICS OF SIMULATED SYSTEMS

16-Way Tiled CMP System
Processor parameters

. e . Processor speed 2 GHz
given point in time, there will be at least one component imgjd Sache pargmeters
a valid copy of the data, or one and only one component holding Cacheriine size 64 bytes
: ” . f L1 cache:
a backup copy of it, or both”. In o_th_er words: when the da’Fa is Size, associativity | 32 KB, 4 ways
sent through the network (where it is vulnerable to corampgti Hit time 3 cycles

Shared L2 cache:
Size, associativity
Hit time

it is guaranteed to be stored also in some component (whése it
assumed to be safe) either as a valid and readable cachedslock
as a backup block to be used for recovery if necessary.

We have modified theconservation of tokens rule to add a
special backup token. We have also modified wrée rule and

1024 KB, 4 ways
15 cycles
Memory parameters
Memory access time 160 cycles
Memory interleaving 4-way
Network parameters

. . Topology 2D Mesh
theread rule so that, unlike the rest of the tokens, this token does Non-data message sizk 8 bytes
not grant any permission to its holder. Instead, a cacheirpld Data message size 72 bytes
this token will keep the data only for recovery purposes. fiew Channel bandwidth _| 64 GB/s

owner token transfer rule ensures that whenever a cache has to

transfer the ownership to another cache, it will keep thekbyac

token (and the associated data as a backup). Thebaghup A. Methodology

token transfer rule ensures that the backup token is not transferredys have used full system simulations of a mix of applications

until the owner token (and hence the data) has been receige, ¢t injection with the aims of determining adequatiues

by another cache. Of course, this implies that the componggt ¢ome protocol parameters, assess the fault toleramabitiay
holding the owner token has to communicate that fact 1 the oach protocol and measure the overhead introduced by the
component that holds the backup token, usually by means of @iy y5jerance measures. For this, we have used a custsioner
ownership acknowledgement. It also implies that a cache receivi_ngof Multifacet GEMS [13] detailed memory model and Virtutech
the backup token has always received the data before. finag;n,icq [10]. Every simulation has been performed sevena¢gi

the newblocked ownership rule ensures that there is at most oNngqing gifferent random seeds to account for the variahifftgnul-
backup copy of the data, since there is only one backup tGKEn. iy eaded execution, such variability is representedHey error

reliable ownership transference mechanism used®yENCMP  5.q i the figures which enclose the resulting 95% confidence

(explained in [5]) complies with these rules. interval of the results. We have simulated tiled CMP systesis
described in section lll. Table V shows the relevant paranset
common to all the simulations. We have performed experiment
to adjust some protocol-specific parameters, as shown tiossc
VII-E and VII-F.

The goals of this section are to measure the overheads introwe have used a mix of scientific, multimedia and commercial
duced by our fault tolerant measures in the fault-free casetlee  applications for the evaluation: Apache (10000 http tratisas)
performance degradation due to faults when they occur. is version 2.2.4 of the http server serving static pagesftéreint

We have also performed an extensive functional validatibn sizes. SpecJbb (8000 transactions) is a Java server wdrésed
these measures using randomized testing and manuallyingeclon SPEC JBB 2000. Barnes (8192 bodies, 4 time steps), FFT
many possible cases. The randomized testing stressesc@rot¢256K complex doubles), Ocear25@ x 258 ocean), Raytrace
corner cases by issuing requests that simulate very coeden@lOMb, teapot.env scene) and Water-SP (512 molecules, & tim
accesses to a few memory lines, using random latencies $beps) are from the SPLASH-2 [25] benchmark suite. Unstruc-
message delivery, and performing fault injection with vaigh tured (Mesh.2K, 5 time steps) is a computational fluid dynam-
fault rates. The tester also issues many concurrent reqjligsta ics application. FaceRec (ALPBench training input), MPG&de
very aggressive out-of-order processor would do. Hentegagh (525tens040.m2v) and SpeechRec (ALPBench default input)
we have not done a formal verification of the protocols, we age from the ALPBench [9] benchmark suite. The experimental
fairly confident of the correctness of our fault-tolerantamares. results reported here correspond to the parallel phase df ea

VIl. EVALUATION
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program only. _ Ty
1.277 |MFtDir-4 ZAFtDIr-256 [ FtToken-4 [ FtToken-256 protocol-burst length

g [ FtDir-16 M FtDir-1024 N FtToken-16 M FtToken-1024
= 1.17
B. Execution time overhead S
We have measured the execution time of each one of the fault< , o FAN AN HE L VURTERTER VN G
N N N N N N N N N NI
tolerant protocols using the fault tolerance parameteterohned g § \ MR \ VIR g \ VIR
7 4 7 7 N[
above with several message loss rates and compared it to thg ~|lINIEI I EAAEE Y VIR ER TR TN |
0.7 4 7 4 7 7N ]
execution time of the non fault-tolerant protocols in a faul 2 MU VIERTER TR TVR |
N NI A NI I N AL NI B2 B2 D G NI

free scenario. The results are shown in figure 7(a). Faulsrat O-B’apache barnes ocean watersp | facerec  speechrec
are expressed in number of messages discarded per million specjob fit rayrace - unstructured  mpgdec  Average
of messages that travel trough the network and all results ar (a) Execution time overhead

normalized with respect to the execution time of thROMP
protocol. Of course, results for non fault-tolerant pratigcare 7

1.27 |MFtDir-4 7 FtDir-256 []FtToken-4 [l FtToken-256 protocol-burst length
only shown in the fault free cases. ’i [ FtDir-16 [ FtDir-1024 N FtToken-16 Ml FtToken-1024
We can see that the run-time overhead of each fault- tolerantz b
protocol when compared to its non fault-tolerant counterpa g 101 g § n i T n [T [T / \ INTER
. . . . . . al ZIN N N N AN N N N 7N N
a fault-free scenario is not measurable. This is consistetht g oo\ N g VR T NIERTERLR MR
. e . N N 21N N N N N AN N N NI H N
the fact that, when no faults occur, the only significantegishce < os NN INILL L L | ! ANTERTERTER TN R
i i i S PR R R R L ER LR B ET IR R
in the behavior of the fault-tolerant protocols with regpiecthe e PR TERTERTERTERTENTURTERTER IR § IR
. . A 7 7 7 7| H
non fault-tolerant ones is just the extra acknowledgmesési io gols, AN S S A SIS S SO A NN
ensure reliable owned data transmission, which are senbfout apache  bames ocean watersp ~ facerec speechrec

specjbb fft raytrace  unstructured mpgdec Average

the critical path of misses.
These results assume that there is enough bandwidth so that
the extra messages required by our protocols (see sectie@)VI
do not increase the latency of the network. This is likely & bFlg 8. Relative execution time with burst faults of seveedths with
h . . ' respect to single message faults. The fault rate is fixed to ci?Bupted
the case in a CMI? environment. o messages per million.
As the fault rate increases, so does the execution time. tHawe
this performance degradation is very moderate, and only one
application (Raytrace) suffers a performance degraddiigher FTDIRCMP has a higher relative overhead because network

(b) Network traffic overhead

than 5% even with 125 corrupted messages per million. traffic is much lower for DRCMP than for OKENCMP.
Figure 7(c) shows the network overhead under several fault
C. Network overhead rates. The network traffic increases slowly with the faule rdue

In ab f faults. th ¢ ant diff tho the reissued messages or the token recreation messagkes. |
n absence of faults, the most important difference in €ase of FDIRCMP, the increase is almost unmeasurable for the
behavior of our protocols with respect to their non fauletant

counterparts is the exchange of acknowledgments to enkate t fault rates shown for all applications except Raytrace.
owned data is transferred safely and avoid data loss. Adthou
they are sent out of the critical path of cache misses so hiegt t D- Effect of bursts of faults
do not have effect in the miss latency, these acknowledgnent Until now, we have assumed that all faults are distributezhiy
introduce additional network traffic which is the main coktte in time and that each fault only affects one message. Howitver
fault tolerance measures. is possible for a single fault to affect more than one message

We have measured the network overhead of our proposaldrwample, a fault may hit a buffer holding several messages an
terms of the relative increase in the number of messages andke it discard all of them. Note that usually those messages
the number of bytes transmitted. We have increased one bte part of different transactions involving different aglskes.
the message sizes of the fault tolerant protocols with @@sfpe We have performed experiments to determine the effect of
the non fault-tolerant ones to accommodate tbhguest serial the burst length in the performance of our fault tolerantheac
numbers andtoken serial numbers. This means 1.14% increase incoherence protocols. Figure 8 shows how the execution timde a
size for data messages and 12.5% increase for control nesssagetwork overhead vary with the length of burst. When perfognm
The results of these measurements are shown in figures 7)lt injection of bursts of lengthL, we determine for each
and 7(d). To allow a comparison with simple interconnectiomessage whether it has been corrupted or not based on the
level fault tolerance measures, we also include bars sliptiae probability given by the fault rate divided hy. If the message is
network overhead of using the base protocols with end-tb-edetermined to have been corrupted, it and the fiext messages
reliable delivery (DRCMP+NLFT and TOKENCMP+NLFT), to arrive will be discarded. This ensures that the total nemds
using an acknowledgment for each message. corrupted messages is the same for the same amount of traffic

We can see that, in terms of message traffic, the overheaé of &md fault rate, independently of the burst size.
fault-tolerant protocols comes entirely from the acknalgiments  As can be seen in figure 8(a), on average and for most
used to ensure reliable data transmissioBwhership” part of applications the length of the burst of dropped messagekttias
each bar). This overhead is less than 40% on average for ity faeffect in the execution time. Some applications (like ocaad
tolerant protocols. Moreover, the overhead drops conalgr unstructured) show a modest slowdown as the fault rateasese
when it is measured in terms of bytes, even considering thdbre surprisingly, some applications seem to benefit fronyéw
every message is one byte longer in the fault-tolerant podéo bursts. This can be explained due to the fact that since taé to
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Fig. 7. Execution time and network overhead of each cacherenbe protocol compared toIRCMP.

number of messages that get corrupted is approximatelyatie s _ _
- 2.47 | H FtDir-1500 Z FtDir-3000 [ FtToken-1500 [ FtToken-3000
(125 messages per million of messages that travel trough the | | FtDir-2000 8 FiDir-4000 S FtToken-2000 M FtToken-4000

network), longer bursts actually mean fewer faults (eaaiitfa =, | P me
affects more messages). Since the recovery of each message: s
usually happens in parallel to the recovery of other message & 16
the overhead of the recovery process may actually be reduced 14
over the whole execution of the program. Raytrace is also the,E: L2l
application which is most affected by single message faaks Z; | ‘
can be seen in figure 7(a). apache  barmes ocean watersp facerec  speechrec

The effect in network traffic is similar, as can be seen in fgur specibh b rayiace - unstiuctured - mpgdec - Average
8(b). It is important to note that the effect of burst length i
performance is more dependent on the application than on ffi@ 9. Relative execution time with respect toRZMP without faults for
particular coherence protocol: the behavior for each apfitin g.""Ch fault-tolerant protocol with 250 corrupted messagesipiion using
: L ) ; ifferent values for the fault detection timeouts.
is very similar with FDIRCMP and with FTOKENCMP.

E. Adjusting the fault detection timeouts the timeout values should be large enough to allow every mgmo
As explained above, all fault-tolerant protocols achieudtfde- transaction to finish, assuming that no fault occurs. Figl@e
tection by means of a number of timeouts. Each protocol requi shows the measured maximum latency in CPU cycles of each
up to four timeouts which are active at different places am#$ protocol when no faults occur and disabling all the timeouts
during a memory transaction or cache replacement. The wilue Looking at figure 10, we can see that the maximum latency
these timeouts determines the latency of fault detectiemcéd of the fault-tolerant protocols is almost the same as thaheir
shorter values help to achieve lesser performance degradatorresponding non fault-tolerant counterpaithis is expected,
in presence of faults since fault recovery will start earlieor since the behavior of the fault-tolerant protocols whenimzout
example, for the two fault-tolerant protocols consideraedtiis triggers is almost the same as that of the non fault-tolevass,
work, figure 9 shows how the execution time increases mome thexcept for the ownership acknowledgments which are senbfout
15% on average when the value of these timeouts vary from 1500
cycles to 4000 cycles under a fixed fault rate of 250 corrupted’in some cases, the maximum latency of the fault tolerant protisco

1 slightly lower that its non fault tolerant counterpart, weimay be surprising.
messages per million of messages that travel through thepriet This is accidental and is not due to any optimization. Slighnges in the

Since false positives occur when a timeout triggers beforepgnayior of the protocols produce these variations duestaitin deterministic
miss has had enough time to be satisfied, to avoid false yeEsiti nature of parallel applications.
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Fig. 10. Maximum miss latency (in cycles) of each protocol withfaults. Fig. 11. Required RSN bit length to discard every old respdosa reissued
message in FDIRCMP.

the critical path of cache misses.

This latency is less than 1200 cycles for theCRRCMP pro-  As can be seen, when using the IHRRCMP protocol 9 bits
tocol and less than 1900 cycles for theTTOKENCMP protocol. are enough for all the tested fault rates and 8 bits sufficéafait
Hence, we can choose any value greater than those for the tirf&es up to 250 corrupted messages per million. Hence, we hav
outs to avoid having any false positive for these workloatisng chosen to use 8 bits to encode the request serial numbers in th
shorter values is still possible but would increase the rembrest of our experiments which is enough to achieve faulramiee
of false positives and could degrade performance and isere&p to 250 corrupted messages per million, which is already an
network traffic due to the retried requests or token reapeatiunrealistic and unreasonably high fault rate. For the réshe
requests. However, if the chosen values are too low (lovar the evaluation, we will show fault rates only up to 125 corrupted
time required to finish the transaction), the recovery meisima messages per million. This fault rate should be supportellotly
would be invoked too frequently preventing forward progres protocols with the configuration described above.

We have considered using different values for each of the fou
timeouts of each protocol, but our experiments do not show an VIIl. H ARDWARE IMPLEMENTATION OVERHEADS
significant advantage in doing so. . o )

We have chosen a value of 2000 cycles for all timeouts in | € token serial number table is implemented with a small

the FrTOKENCMP protocol and 1500 cycles in ther BIRCMP associative table in each tile and at the memory contradlstdre
protocol. These values are large enough to avoid false iyesit those serial numbers whose value is not zero. We have fournd th

in every case and, as shown below, achieve very low perfarmary/Sing tWo bits to encode the serial number and 16 entriescit ea
degradation when faults actually occur. node is enough for supporting the fault rates used in thiepap
If the tokens of any line need to be recreated more than 4 times

the counter wraps to zero (effectively freeing a table etdble)
F. Effect of the request serial number size in fault tolerance and if more than 16 different lines need to be stored in thietab
The ability of FrDIRCMP to correctly recover from faults the least recently modified line is evicted by means of usheg t
depends on the number of bits used for encoding the requtsdten recreation process to set its serial number to zero.
serial number which is used to discard stale responses tesexy On the other handrequest serial numbers do not need to be
which have been reissued (for example, to be able to disddrd &ept once the memory transaction has completed. They can be
acknowledgments to reissued invalidation requests whatiidc stored in the MSHR or in a small associative structure in £ase
lead to incoherence in some cases). Ideally, this numbarlghowhere a full MSHR is not needed. As shown in section VII-F,
be as low as possible to reduce overhead in terms of increasising 8 bits to encode request serial numbers is enough tevach
message size and hardware resources to store it while beligrance to very high fault rates.
sufficient to ensure that when a request is reissued (evemadev To be able to detect reissued requests TDRRCMP, the
times in a row and in case of false positives) every respantiget identity of the requester currently being serviced by theoLzhe
old request is discarded. Since the number of reissued gessanemory controller needs to be recorded, as well as the mceiv
increases as the fault rate increases, the number of bitstase when transferring ownership from one L1 cache to another.
encode request serial numbers determines the maximunréelt The timeouts used for fault detection require the additibn o
supported by each protocol. counters to the MSHRs or a separate pool of timeout counters.
To measure this, we have performed simulations af FAlthough there are up to four different timeouts involvedainy
DIRCMP using a wide variety of fault rates. We have used 3Zoherence transaction, no more than one counter is recatised/
bit request serial numbers in our simulator to encode thae®tg time in the same node for a single coherence transactiorheln t
serial number for these simulations but we have recorded hoase of FTOKENCMP, all but one timeout can be implemented
many lower order bits were required to distinguish all thguest using the same hardware already used to implement the Sterva
serial numbers that needed to be compared (every time tlwat ttivneout required by token protocols.
request serial numbers are compared, we record the position We have analyzed /DIRCMP from the point of view of its
the least significant bit which is different in both numbemfen, implementation using deterministic routing on a 2D-mesheD
we assume that the maximum of all these measures is an upjeethe exchange of ownership acknowledgments to ensusbleli
bound of the number of bits required to ensure correctness ftata transmission, the worst case message dependence ohain
each fault rate. These results are shown in figure 11. FTDIRCMP are one message longer than those cR@MP.



Hence, a correct implementation requires an additionaliair

network to ensure deadlock free operation.

(3]

A less important source of overhead is the increased pl(essdfl]
in caches and writeback buffers because of the blocked ewner
ship and backup states and the effect of the reliable owipersh
transference mechanism in replacements. When a backuer buffs)
or a writeback buffer is used, we have not been able to detect

any effect in the execution time due to these reasons. Tleeo§iz

the writeback buffer may need to be increased, but our pusvio [6]

work [5] shows that one extra entry would be enough.

Finally, the design complexity of the cache coherence paito

increases due to the fault tolerance measures. Howeveagditie
tional complexity is assumable, and the fault tolerance suess
may simplify the handling of some corner cases.

IX. CONCLUSION

(7]

(8]

We have shown that it is possible to deal with transient ault
in the interconnection network of CMPs at the cache coherengg;

protocol level. For this task, we have designed a faultrtoie

directory-based coherence protocol which ensures theeaorr

execution of programs even if the network is subject to iearis

faults and does not correctly deliver all the coherence agess
and we have presented a set of fault-tolerant token countieg
and a fault-tolerant token based protocol that uses them.

We have compared and evaluated the performance of

two protocols using full system simulation and performiaglf

(20]

(11]

thd

injection to check the correctness of the protocol and tosmea [13]

the performance degradation caused by several fault reifes.

have shown that the overhead imposed in the execution time

due to the fault-tolerant measures is negligible. Furtiverhave

shown that the performance impact of moderate fault ratélsen

interconnection network is insignificant when using ourtpcols.

(14]

We have explained how to tune the fault tolerance parametgrs)

of the protocols to achieve the desired level of fault talem

performance degradation in presence of faults and overhead
absence of faults. We have shown that, even for fault ratestwh,¢;

are unrealistically high, the hardware overhead of our psajs is

low. The main cost of our fault tolerance measures is a meglera

increase in network traffic.

17
We have found that the network usage of our protocols ir[l- ]
creases with the fault rate and hence network capacity cam be

limiting factor for fault tolerance. Due to the efficient metrk
usage of directory-based protocols, we think thaDIRCMP is

(18]

a good cache coherence protocol for large scale tiled CMPs. [19]
As future work, we would want to explore whether similar

techniques can be used to deal with intermittent faultsoAls

since the main feature of our protocol that it does not assurpg

that every coherence message arrives to its destinatioe will

guaranteeing correct program execution, we want to try ke ta

advantage of this ability to allow the interconnection nartwto
occasionally drop messages if that helps with performandae

common case or enables simpler interconnection netwoilmes
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