
1

Cache coherence protocol level fault-tolerance
for directory-based tiled CMPs

Ricardo Fernández-Pascual, José M. Garćıa, Manuel E. Acacio 1 y José Duato 2

Abstract— Current technology trends of increased
scale of integration are pushing CMOS technology
into the deep-submicron domain, enabling the cre-
ation of chips with a significantly greater number
of transistors but also more prone to transient fail-
ures. Hence, computer architects will have to con-
sider reliability as a prime concern for future chip-
multiprocessor designs (CMPs). Since the intercon-
nection network of future CMPs will use a significant
portion of the chip real state, it will be especially
affected by transient failures. We propose to deal
with this kind of failures at the level of the cache
coherence protocol instead of ensuring the reliability
of the network itself. Particularly, we have extended
a directory-based cache coherence protocol to ensure
correct program semantics even in presence of tran-
sient failures in the interconnection network. Addi-
tionally, we show that our proposal has virtually no
impact on execution time with respect to a non fault-
tolerant protocol, and just entails modest hardware
and network traffic overhead.

Keywords: Fault-tolerance, coherence, CMPs.

I. Introduction

RECENT technology improvements have made
possible to put more than a billion transistors

in a single chip. Compared to other options, Chip
Multiprocessors (CMPs) [1, 2] offer a way to utilize
these resources to increase performance in an energy-
efficient way while keeping complexity manageable
by means of exploiting thread-level parallelism.

Also, tiled architectures [3] which are built by
replicating several tiles comprised by a core, private
cache, part of the shared cache and a network inter-
face further help in keeping complexity manageable,
scale well to a larger number of cores and support
families of products with varying number of tiles. In
this way, it seems likely that they will be the choice
for future many-core CMP designs.

Tiled CMPs implement a point-to-point intercon-
nection network which is best suited for directory-
based cache coherence protocols. Furthermore, com-
pared with snoopy based or token-based [4] protocols
which require frequent broadcasts, directory-based
ones are more scalable and energy-efficient.

On the other hand, electronic components are sub-
ject to several types of failures, which can be either
permanent, intermittent or transient. Transient fail-
ures [5], also known as soft errors or single event up-
sets, occur when a component produces an erroneous
output but continues working correctly after the
event. Any event which upsets the stored or commu-

1Dpto. Ingenieŕıa y Tecnoloǵıa de Com-
putadores, Universidad de Murcia, e-mail:
{rfernandez,jmgarcia,meacacio}@ditec.um.es

2Dpto. Informática de Sistemas y Computadores, Universi-
dad Politécnica de Valencia, e-mail: jduato@disca.upv.es

nicated charge can cause soft errors. Typical causes
include alpha-particles strikes, cosmic rays, radiation
from radioactive atoms which exist in trace amounts
in all materials, and electrical sources like power sup-
ply noise, electromagnetic interference (EMI) or ra-
diation from lightning. The same technology trends
of increased scale of integration which make CMPs
possible will make transient failures more common.
Also, the lower voltages used for power-efficiency rea-
sons make transient failures even more frequent.

One of the components which will be affected by
transient failures in a CMP is the interconnection
network. The interconnection network occupies a
significant part of the chip real estate and is crit-
ical to the performance of the system. It handles
the communication between the cores and caches,
which is done by means of a cache coherence pro-
tocol. Communication is very fine-grained (at the
level of cache lines) and requires small and frequent
messages. Hence, to achieve good performance the
interconnection network must provide very low la-
tency and should avoid acknowledgment messages
and other flow-control messages as much as possible.

Differently from other authors, we propose to deal
with transient failures in the interconnection network
of CMPs at the level of the cache coherence protocol.
In a previous work [6], we showed that a token-based
coherence protocol can be extended to tolerate tran-
sient failures. In this work, we apply some of the
lessons learned there to guarantee fault tolerance in
widely used directory-based protocols.

In our failure model we assume that the intercon-
nection network will either deliver a message cor-
rectly or not at all. This can be achieved by means
of using an error detection code (CRC) in each mes-
sage and discarding corrupted messages upon arrival.

Our cache coherence protocol extends a standard
directory-based coherence protocol with fault toler-
ant measures: the integrity of data when cache lines
travel through the network is ensured by means of
explicit acknowledgments out of the critical path of
cache misses, a number of timeouts to detect faults
are added alongside with the ability to reissue some
requests to avoid deadlocks due to transient faults,
and request serial numbers are added to ensure cor-
rectness when requests are reissued.

Although the cache coherence protocol is critical
to the performance of parallel applications, we show
that the fault tolerance measures of our protocol add
minimal overhead in terms of execution time. The
main cost of our proposal is a slight increase in net-
work traffic due to extra acknowledgments

The rest of the paper is organized as follows. The



2

base architecture and cache coherence protocol are
described in section II. Section III explains the fault
tolerance measures added. A performance evaluation
of the new protocol is done in section IV. In section
V we review previous work relevant to this paper.
Finally, section VI concludes the paper.

II. Base architecture and directory

protocol

In this work, we assume a CMP system built using
a number of tiles [3]. Each tile contains a processor,
private L1 data and instruction caches, a bank of the
L2 cache, and a network interface. The L2 cache is
logically shared by all cores but it is physically dis-
tributed among all tiles. Each tile has its network
interface to connect to the on-chip interconnection
network. We assume in-order processors since that
seems the most reasonable approach to build power-
efficient CMPs with many cores, although the cor-
rectness of the protocol is not affected if out-of-order
cores are used.

Our base architecture uses a traditional directory
protocol adapted for CMP systems that we will refer
to as DirCMP. DirCMP is a MOESI-based cache
coherence protocol which uses an on-chip directory to
mantain coherence between several private L1 caches
and a shared non-inclusive L2 cache. It uses a direc-
tory cache in L2 and the L2 effectively acts as the
directory for the L1 caches.

III. A fault tolerant directory coherence

protocol

FtDirCMP is an extension of DirCMP which
assumes an unreliable interconnection network. It
will guarantee the correct execution of a program
even if coherence messages are lost or discarded by
the interconnection network due to transient errors.

Losing a message carrying data can lead to loss of
data if the corresponding memory line is not in any
other cache and it has been modified since the last
time that it was written to memory. FtDirCMP

uses extra messages to acknowledge the reception of
a few critical data messages. When possible, those
messages are kept out of the critical path of any cache
miss and they are piggybacked in other messages in
the most frequent cases.

Losing any message cannot lead to an incoherence,
since write access to a line is only granted after all the
necessary invalidation acknowledgments have been
actually received.

Thanks to the fact that every message lost in
DirCMP leads to a deadlock (since either the sender
will be waiting indefinitely for a response or the re-
ceiver was already waiting for the lost response), Ft-

DirCMP can use timeouts to detect potentially lost
messages. FtDirCMP uses a number of timeouts
to detect faults and start corrective measures. Table
I shows a summary of these timeouts.

Usually, when a fault occurs and a timeout
triggers, FtDirCMP reissues the request using
a different serial number. The need for request

serial numbers is explained in section III-E. These
reissued requests need to be identified as such by the
node that answers to them and not be treated like
an usual request. In particular, a reissued request
should not wait in the incoming request buffer to
be attended by the L2 or the memory controller
until a previous request is satisfied, because that
previous request may be precisely the older instance
of the request that is being reissued. Hence, the
L2 directory needs to remember the blocker (last
requester) of each line to be able to detect reissued
requests. This information can be stored in the
Miss Status Holding Register (MSHR) table or in
a dedicated structure for the cases when it is not
necessary to allocate a full MSHR entry.

A. Reliable data transmission

FtDirCMP needs to ensure that there is always
at least one updated copy of the data of each line off
the network and that such copy can be readily used
for recovery in case of a fault that corrupts the data
while it travels through the network.

Data transmission needs to be reliable when own-
ership is transferred. Ownership can be transferred
either with an exclusive data response or a writeback
response. On the other hand, when ownership is not
being transferred, data transmission does not need
to be reliable because if the data carrying message is
lost, the data can be sent again from the owner node
when the request is reissued.

In order to ensure reliable data transmission of
owned data, FtDirCMP adds some additional
states to the usual set of MOESI states:

• Backup (B): This state is similar to the Invalid
(I) state, but the data is kept in the cache to be
used for potential recovery (that is, when leav-
ing the Modified, Owned or Exclusive states)
and will abandon it once an ownership acknowl-

edgment is received.
• Blocked ownership (Mb, Eb and Ob): To

prevent having more than one backup for a line
at any given point in time, which is important
to be able to recover in case of a fault, a cache
that acquires ownership (entering the Modified,
Owned or Exclusive states) will avoid transmit-
ting the ownership to another cache until it re-
ceives a backup deletion acknowledgment mes-
sage from the previous owner. For achieving
this, we have added blocked versions of the Mod-
ified, Exclusive and Owned states. While a line
is in one of these states, the cache will not at-
tend external requests to that line which require
ownership transference.

Using the states described above, the transmission
of owned data between two nodes works as follows:

1. When a node sends owned data to another
node, it does not transition to an Invalid state.
Instead, it enters a Backup state in which the
data is still kept for recovery, although no read
or write permission on the line is retained. The



3

TABLE I

Timeouts summary.

Timeout When is it activated? Where is it activated? When is it deactivated? Action when it triggers

Lost Request When a request is is-
sued.

At the requesting L1
cache.

When the request is sat-
isfied.

The request is reissued
with a new serial number.

Lost Unblock When a request is
answered.

At the responding L2
or memory.

When the unblock mes-
sage is received.

An UnblockPing is sent.

Lost backup deletion
acknowledgment

When the AckO
message is sent.

At the node that
sends the AckO.

When the AckBD mes-
sage is received.

The AckO is reissued with
a new serial number.

cache will keep the data until it receives an own-

ership acknowledgment.
2. When the data message is received by the

new owner, it sends an ownership acknowledg-

ment (AckO) to the node that sent the data.
Also, it does not transition to an M, O or E
state. Instead it enters one of the blocked own-
ership states (Mb, Eb or Ob) until it receives
the backup deletion acknowledgment (AckBd).
While in these states, the node will not trans-
fer ownership to another node. However, at this
point the node has received the data (and pos-
sibly write permission to it) and the miss is al-
ready satisfied.

3. When the node that sent the data receives the
ownership acknowledgment, it transitions to an
Invalid state and sends a backup deletion ac-

knowledgment to the other node.
4. Finally, once the backup deletion acknowledg-

ment is received, the node that received the data
transitions to an standard M, O or E state

Figure 1 shows an example of how a cache-to-cache
miss which requires ownership change is handled in
FtDirCMP and compares it with DirCMP.

The ownership acknowledgment can be piggy-
backed in the unblock message when the data is sent
to the requesting L1 by the L2 (or to L2 by the mem-
ory). In that case, only an extra message (the backup
deletion acknowledgment) needs to be sent.

These rules ensure that for every cache line there
is always either an owner node that has the data, a
backup node which has a backup copy of the data
or both. They also ensure that there is never more
than one owner or one backup node.

The rules explained above ensure the reliable
transmission of owned data in all cases without
adding any message to the critical path of cache
misses in most cases. However there are potential
performance problems created by the blocked owner-
ship states, since a node (L1 cache, L2 cache bank or
memory controller) cannot transfer the recently re-
ceived owned data until the backup deletion acknowl-

edgment message is received. This is not a problem
when the data is received by an L1 cache since the
node can already use the data while it waits for said
acknowledgment. However, in the case of L2 misses,
the L2 cannot answer the L1 request immediately
after receiving the data from memory because, ac-
cording to the rules described above, it first needs to
send an ownership acknowledgment to memory and
wait for the backup deletion acknowledgment. Hence,

D
ir

C
M

P
F
t
D

ir
C

M
P

Initially, for both protocols, L1b has the data in modifiable

(M), exclusive (E) or owned (O) state and L1a requests write

access to L2 (1) which forwards the request to L1b (2). In

DirCMP, L1b sends the data to L1a (3) and transitions to

invalid state. Subsequently, when L1a receives the data, it

transitions to a modifiable (M) state and sends an UnblockEx

message to L2. In FtDirCMP, when L1b receives the for-

warded GetX, it sends the data to L1a and transitions to the

backup state (3). When L1a receives the data, it transitions

to the blocked ownership and modifiable (Mb) state and sends

the UnblockEx message to L2 and an ownership acknowledg-

ment (AckO) message to L1b (4). When L1b receives the

AckO, it discards the backup data, transitions to invalid (I)

state and sends a backup deletion acknowledgment (AckBD)

message to L1a (5), which transitions to the usual modifiable

(M) state when receives it.

Fig. 1. Message exchange for a cache-to-cache write miss.

in the case of L2 misses, these rules would add two
messages in the critical path of misses.

To avoid increasing the latency of L2 misses, we
relax the rules in these cases. We allow the L2 to
send the data directly to the requesting L1 just after
receiving it, keeping a backup until it receives the
ownership acknowledgment from the L1. In fact, the
L2 does not send the ownership acknowledgment to
memory until it receives it from the L1 (most times
piggybacked on an unblock message) since this way
we can piggyback it with an unblock message.

B. Faults detected by the lost request timeout

The lost request timeout starts when a request is
issued and stops once it is satisfied. Hence, it will
trigger whenever a request takes too much time to
be satisfied or cannot be satisfied because any of the
involved messages has been dropped, causing a dead-
lock. It is maintained by the L1 for each miss. This
timeout is also used for writeback requests.

When it triggers, FtDirCMP assumes that some



4

message which was necessary to finish the transac-
tion has been lost due to a transient fault and retries
the request using a different serial number (see sec-
tion III-E). The particular message that may have
been lost is not very important: it can be the re-
quest itself, an invalidation request sent by the L2
or the memory controller, a response to the request
or an invalidation acknowledgment. The timeout is
restarted after the request is reissued to be able to
detect additional faults.

C. Faults detected by the lost unblock timeout

Unblock messages are sent by the L1 once it re-
ceives the data and all required invalidation acknowl-
edgments to notify the L2 that the miss has been sat-
isfied. When the L2 receives one of these messages,
it proceeds to attend the next miss for that line, if
any. Hence, when an unblock message is lost, the
L2 will be blocked indefinitely and will not be able
to attend further requests for the same line. Lost
unblock messages cannot be detected by the lost re-

quests timeout because that timeout is deactivated
once the request is satisfied, just before sending the
unblock message.

To avoid a deadlock due to a lost unblock mes-
sage, the L2 starts the lost unblock timeout when it
answers to a request and waits for an unblock mes-
sage to finalize the transaction. When this timeout
triggers, it will send an UnblockPing message.

When an L1 cache receives an UnblockPing mes-
sage and it has already satisfied that miss (hence
it has already sent a corresponding unblock message
which may have been lost or not), it will answer with
a reissued unblock message, depending on whether it
has exclusive or shared access to the line. If the miss
has not been resolved yet (hence no unblock message
could have been lost because it was not sent in the
first place), the UnblockPing message will be ignored.
The L1 cache can check whether the miss has been
already resolved or not by looking at its MSHR for
a pending miss for the same address.

Unblock messages are also exchanged between the
L2 and the memory controller in an analogous way.
Hence, FtDirCMP uses an unblock timeout and
UnblockPing in the memory controller too. This
timeout is used to detect lost writeback messages too.

D. Faults detected by the lost backup deletion ac-
knowledgment timeout

As explained in section III-A, when ownership
has to be transferred from a node to another, Ft-

DirCMP uses a pair of acknowledgments to ensure
the reliable transmission of the data. Losing any
of these acknowledgments would lead to a deadlock
which will not be detected by the lost request or lost

unblock timeout because these timeouts are deacti-
vated once the miss has been satisfied. For these rea-
sons, we intoduce the lost backup deletion acknowl-

edgment timeout which is started when an owner-
ship acknowledgment is sent and is stopped when
the backup deletion acknowledgment arrives. This

way, it will trigger if any of these acknowledgments
is lost or arrives too late.

When it triggers, a new ownership acknowledg-

ment (AckO) message will be sent with a newly as-
signed serial number. If the ownership acknowledg-
ment was actually lost, the new message will hope-
fully arrive to the node that is holding a backup of
the line and that backup will be discarded and an
AckBD message will be returned.

If the first ownership acknowledgment did arrive to
its destination (false positive), the new message will
arrive to a node which no longer has a backup and
which already responded with an AckBD message.
Anyway, a new AckBD message will be sent using the
serial number of the new message. The old AckBD

message will be discarded because it carries an old
serial number.

E. Request serial numbers

As described above, when a lost request timeout

triggers FtDirCMP assumes that the request mes-
sage or some response message has been lost due to a
transient fault and then reissues the request hoping
that no fault will occur this time. However, some-
times the timeout may trigger before the response
has been received due to unusual network congestion
or any other reason that causes an extraordinarily
long latency for solving a miss.

In case of a false positive, two or more duplicate
response messages would arrive to the requestor and,
in some cases, the extra messages could lead to an in-
coherence. For this reason, FtDirCMP uses request

serial numbers to discard responses which arrive too
late, when the request has already been reissued.

Every request and every response message carries a
serial number. Request serial numbers are chosen by
the L1 cache that issues the request (or by the L2 in
case of writebacks from L2 to memory). Responses or
forwarded requests will carry the serial number of the
request that they are answering to. When a request
is reissued, it will be assigned a new serial number
which will allow to distinguish between responses to
the old request and responses to the new one.

The L1 cache, L2 cache and memory controller
must remember the serial number of the requests
that they are currently handling and discard any
message which arrives with an unexpected serial
number or from an unexpected sender.

IV. Evaluation

A. Methodology

We have experimentally measured the overhead of
FtDirCMP in comparison with DirCMP both in
terms of execution time overhead and network traf-
fic overhead. For this, we have performed full sys-
tem simulations using Multifacet GEMS [7] detailed
memory model and Virtutech Simics [8].

We have simulated a tiled CMP as described in
section II. Table II shows the most relevant con-
figuration parameters of the modeled system. The
values chosen for the fault-detection timeouts have



5

TABLE II

Characteristics of simulated architectures.

16-Way Tiled CMP System

Processor parameters

Processor speed 2 GHz
Cache parameters

Cache line size 64 bytes
L1 cache:

Size, associativity 32 KB, 4 ways
Hit time 2 cycles

Shared L2 cache:
Size, associativity 1024 KB, 4 ways
Hit time 15 cycles

Memory parameters

Memory access time 300 cycles
Memory interleaving 4-way

Network parameters

Topology 2D Mesh
Non-data message size 8 bytes
Data message size 72 bytes
Channel bandwidth 64 GB/s

Fault tolerance parameters

Lost request timeout 2000 cycles
Lost unblock timeout 4000 cycles
Lost backup deletion acknowledgment 4000 cycles
Request serial number size 8 bits

been chosen experimentally to minimize the number
of false positives, thus ensuring minimal performance
degradation in the fault-free scenario.

Finally, we have used a selection of scientific ap-
plications for the evaluation: Barnes (8192 bodies, 4
time steps), Cholesky (tk16.O), FFT (256K complex
doubles), Ocean (258× 258 ocean), Radix (1M keys,
1024 radix), Raytrace (10Mb, teapot.env scene),
Water-NSQ (512 molecules, 4 time steps), and
Water-SP (512 molecules, 4 time steps) are from the
SPLASH-2 benchmark suite. Tomcatv (256 points,
5 iterations) is a parallel version of a SPEC bench-
mark and Unstructured (Mesh.2K, 5 time steps) is a
computational fluid dynamics application.

B. Results

We have measured the execution time of DirCMP

in a fault-free scenario and compared it to Ft-

DirCMP with several message loss rates. The re-
sults are shown in figure 2. Fault rates are expressed
in number of messages discarded per million of mes-
sages that travel through the network.

barnes

cholesky fft
ocean

radix

raytra
ce

tomcatv

unstru
ctured

waternsq

watersp

Average

Applications

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

DirCMP-0
FtDirCMP-0

FtDirCMP-125
FtDirCMP-250

FtDirCMP-500
FtDirCMP-1000

FtDirCMP-2000

Fig. 2. Execution time overhead of FtDirCMP compared to
DirCMP for several fault rates.

First, we see that there is no measurable over-
head in terms of execution time for FtDirCMP

with respect to DirCMP when there are no faults
(DirCMP-0 and FtDirCMP-0 bars respectively).
This is because, when no faults occur, the main
difference between our proposal and a standard
directory-based protocol is just the extra acknowl-
edgments used to ensure reliable data transmission,
which are sent out of the critical path of misses.

As the fault rate increases, so does the execution
time. The performance degradation depends mainly
on the latency of the error detection mechanism.
Hence, shortening the fault detection timeouts can
reduce performance degradation when faults happen
but at the risk of increasing the number of false pos-
itives which could lead to performance degradation
in the fault-free case. With the timeouts used in
this work, the performance degradation is not se-
vere for most benchmarks even with fault rates which
are unrealistically high. The execution time of three
benchmarks doubles when the fault rate reaches 2000
messages lost per million (FtDirCMP-2000 bar), but
on average execution time increases less than 50%
even for the highest fault rate tested. Obviously,
DirCMP would not be able to execute correctly for
any fault rate greater than zero.

barnes

cholesky fft
ocean

radix

raytra
ce

tomcatv

unstru
ctured

waternsq

watersp

Average

Applications

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

N
et

w
or

k 
us

ag
e 

(n
or

m
al

iz
ed

 m
es

sa
ge

 c
ou

nt
 a

nd
 b

yt
es

)

control
data

ownership
reissued

Fig. 3. Network overhead of FtDirCMP compared to
DirCMP without faults.

We have also measured the network overhead of
our proposal in terms of the relative increase of both
number of messages and bytes transmitted through
the network. These results are shown in figure 3
for the fault-free scenario and categorized by type of
message. We can see that, on average, the overhead
in terms of number of messages that FtDirCMP

introduces is less than 30%. Moreover, the overhead
drops to 10% when it is measured in terms of bytes.
These overheads represent the main cost of the fault
tolerance features of our protocol. As can be seen,
the overhead comes entirely from the acknowledg-
ments used to ensure reliable ownership transference
as explained in section III-A (portion ownership of
each bar).

There is also a small hardware overhead due to
the counters that need to be added to MSHRs for
the timeouts and additional space in the MSHR (or
a separate structure) for storing the request serial
number of the transaction, the identity of the re-



6

quester currently being serviced (in the L2 cache and
memory controller), and the identity of the receiver
of owned data when transferring ownership (in the
L1 cache, to make possible to detect reissued for-
warded requests). Finally, FtDirCMP requires two
virtual channels more than DirCMP.

V. Related work

An alternative way to solve the problem of tran-
sient failures in the on-chip interconnection network
is making the network itself fault tolerant. There
are several proposals [9–12] exploring this approach.
Ensuring the reliable transmission of all messages
through the network imposes significant overheads
in latency, power consumption and area. In con-
trast, our protocol allows for more flexibility to de-
sign a high-performance on-chip network which can
be unreliable. The protocol itself ensures the reli-
able retransmission of those few messages that carry
owned data and could cause data loss.

In a previous work [6], we presented a low over-
head fault tolerant protocol based on the token co-
herence framework [4]. This work applies similar
ideas for directory-based cache coherence protocols.
Directory-based protocols are better known than
token-based ones and are actually used in commer-
cial systems. Besides the different base protocol, the
main differences between our previous fault tolerant
protocol and this one are:

• In [6], fault recovery was done by means of a cen-
tralized mechanism called the token recreation

process arbitrated by the memory controller. In
this work, fault recovery is achieved simply reis-
suing requests with a different serial number.

• The token serial numbers used in our previous
protocol serve a similar purpose to request serial

numbers, but the latter are easier to implement
and more scalable. Token serial numbers were
associated with each cache line and needed to
be updated in a coordinated fashion during the
token recreation process. Hence, they required
an additional structure in each cache to store
them (even for lines which were not currently in
the cache, but only for those hopefully few lines
that had a token serial number different than 0).
On the other hand, request serial numbers are
short-lived information stored in the MSHRs.

VI. Conclusion

In this work, we have shown how to build a fault-
tolerant directory-based coherence protocol which
can ensure the correct execution of programs even
if the interconnection network is subject to tran-
sient failures and does not correctly deliver all the
coherence messages. Our protocol uses error detec-
tion codes (CRC) to detect corrupted messages and
discard them upon reception, uses a number of time-
outs to detect faults, adds acknowledgments only for
a small number of messages, and uses request re-
tries to resolve deadlock situations caused by tran-
sient failures.

We have evaluated the overhead of our protocol
with respect to a base directory-based non fault-
tolerant coherence protocol both in terms of execu-
tion time overhead and network usage overhead. We
have found that, in absence of failures, the overhead
of our protocol is minimal: the execution time does
not increase, there is a very small hardware over-
head and the network traffic increases moderately.
We have also performed fault injection to check the
correctness of the protocol and to measure the per-
formance degradation caused by several fault rates.
We have found only a moderate performance degra-
dation for fault rates which are much higher than
what can be expected in a real scenario. Hence, we
expect that the transient faults occurring in the in-
terconnection network of a system using our protocol
would have a negligible effect in performance.

References

[1] L. A. Barroso, K. Gharachorloo, R. McNamara,
A. Nowatzyk, S. Qadeer, B. Sano, S. Smith, R. Stets, and
B. Verghese, “Piranha: A Scalable Architecture Based
on Single-Chip Multiprocessing,” in Proc. of 27th Int’l
Symp. on Computer Architecture (ISCA’00), June 2000,
pp. 282–293.

[2] L. Hammond, B. A. Hubbert, M. Siu, M. K. Prabhu,
M. Chen, and K. Olukotun, “The Stanford Hydra
CMP,” IEEE MICRO Magazine, vol. 20, no. 2, pp. 71–
84, March-April 2000.

[3] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat,
B. Greenwald, H. Hoffman, J. Lee, P. Johnson, W. Lee,
A. Ma, A. Saraf, M. Seneski, N. Shnidman, V. Strumpen,
M. Frank, S. Amarasinghe, and A. Agarwal, “The raw
microprocessor: A computational fabric for software cir-
cuits and general purpose programs,” IEEE Micro, vol.
22, no. 2, pp. 25–35, May 2002.

[4] M. M.K. Martin, M. D. Hill, and D. A. Wood, “Token
coherence: Decoupling performance and correctness,” in
The 30th Annual International Symposium on Computer
Architecture, June 2003, pp. 182–193.

[5] S. S. Mukherjee, J. Emer, and S. K. Reinhardt, “The
soft error problem: An architectural perspective,” in
11th Int’l Symposium on High-Performance Computer
Architecture (HPCA’05), February 2005.

[6] R. Fernández-Pascual, J. M. Garćıa, M. E. Acacio, and
José Duato, “A low overhead fault tolerant coher-
ence protocol for CMP architectures,” in 13th Int’l
Symposium on High-Performance Computer Architec-
ture (HPCA’07), February 2007, pp. 157–168.

[7] M. M.K. Martin, D. J. Sorin, B. M. Beckmann, M. R.
Marty, M. Xu, A. R. Alameldeen, K. E. Moore, M. D.
Hill, and D. A. Wood, “Multifacet’s general execution-
driven multiprocessor simulator (GEMS) toolset,” Com-
puter Architecture News, vol. 33, no. 4, pp. 92–99,
September 2005.

[8] P. S. Magnusson, M. Christensson, J. Eskilson, D. Fors-
gren, G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt,
and B. Werner, “Simics: A full system simulation plat-
form,” Computer, vol. 35, no. 2, pp. 50–58, 2002.

[9] D. Park, C. Nicopoulos, J. Kim, N. V., and C. R. Das,
“Exploring fault-tolerant network-on-chip architectures,”
in Proc. of the 2006 Int’l Conf. on Dependable Systems
and Networks (DSN’06), 2006, pp. 93–104.

[10] M. Pirretti, G.M. Link, R.R. Brooks, N. Vijaykrishnan,
M. Kandemir, and M.J. Irwin, “Fault tolerant algorithms
for network-on-chip interconnect,” in Proceedings of the
IEEE Computer society Annual Symposium on VLSI,
February 2004, pp. 46–51.

[11] K. Constantinides, S. Plaza, J. Blome, B. Zhang,
V. Bertacco, S. Mahlke, Todd Austin, and M. Orshan-
sky, “BulletProof: a defect-tolerant CMP switch archi-
tecture,” in 12th Int’l Symp. on High-Performance Com-
puter Architecture (HPCA’06), February 2006, pp. 3–14.

[12] S. Murali, T. Theocharides, N. Vijaykrishnan, M. Jane
Irwin, L. Benini, and G. De Micheli, “Analysis of error
recovery schemes for networks on chips,” IEEE Design
and Test of Computers, vol. 22, no. 5, pp. 434–442, 2005.


