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Abstract. Topology changes, such as switches being turned on/off, hot
expansion, hot replacement or link re-mapping, are very likely to occur in
NOWs and clusters. Moreover, topology changes are much more frequent
than faults. However, their impact on real-time communications has not
been considered a major problem up to now, mostly because they are not
feasible in traditional environments, such as massive parallel processors
(MPPs), which have fixed topologies. Topology changes are supported
and handled by some current and future interconnects, such as Myrinet
or Infiniband. Unfortunately, they do not include support for real-time
communications in the presence of topology changes.

In this paper, we evaluate a previously proposed protocol, called Dy-
namically Re-established Real-Time Channels (DRRTC) protocol, that
provides topology change- and fault-tolerant real-time communication
services on NOWs. We present and analyze the performance evaluation
results when a single switch or a single link is deactivated/activated for
different topologies and workloads. The simulation results suggest that
topology change tolerance is only limited by the resources available to
establish real-time channels as well as by the topology connectivity.

1 Introduction

In the past few years, networks of workstations (NOWs) and clusters, based on
off-the-shelf commodity components like workstations, PCs and high-speed local
area networks (LANSs), have emerged as a serious alternative to massive parallel
processors (MPPs) and are the most cost-effective platform for high-performance
servers. However, distributed real-time processing on NOWSs and clusters is still
a pending issue.

Distributed real-time applications impose strict conditions on traffic such
as bounded delivery time (deadline) or guaranteed bandwidth [1]. In order to
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provide real-time communications, real-time channels [2] establish unidirectional
connections among source and destination hosts. Once a real-time channel has
been established, that is, resource reservation has finished, maximum delivery
time and bandwidth are guaranteed.

Faults have been traditionally considered a major problem in distributed
real-time processing since they may interrupt real-time communications. Thus,
several researchers have proposed efficient solutions to this problem. The backup
channel protocol (BCP), developed by Shin et al. [3] and based on real-time
channels [2], performs recovery from faults by means of additional resources
(backup channels).

On the other hand, topology changes, such as switches being turned on/off,
hot expansion, hot replacement or link re-mapping, are very likely to occur in
NOWs and clusters. Moreover, topology changes are much more frequent than
faults. However, their impact on real-time communications has not been consid-
ered a major problem up to now, mostly because they are not feasible in tra-
ditional environments, such as massive parallel processors (MPPs), which have
fixed topologies. Topology changes degrade network ability to establish new real-
time channels because the routing tables are not up-to-date. Therefore, not all
the available resources can be fully exploited. To make the best use of resources,
every time a topology change or fault occurs, routing tables must be updated
to reflect the new configuration. Dynamic reconfiguration, recently proposed by
Duato et al. [4, 5], assimilates topology changes by updating routing tables with-
out stopping traffic. Note that dynamic reconfiguration by itself provides neither
quality of service nor real-time services, but it provides support for an additional
mechanism designed to meet real-time requirements. Finally, topology changes
are supported and handled by some current and future interconnects, such as
Myrinet [6] or Infiniband [7]. Unfortunately, they do not include support for
real-time communications in the presence of topology changes.

In this paper, we evaluate a previously proposed protocol [8], called Dynam-
ically Re-established Real-Time Channels (DRRTC) protocol, to provide topol-
ogy change- and fault-tolerant real-time communication services on NOWs. The
novelty of this protocol primarily relies on the ability to assimilate hot topology
changes and faults while still providing real-time communication services as well
as best-effort ones. To do this, our protocol is based on real-time channels with
single backup channels and dynamic reconfiguration. Real-time channels provide
real-time communications, single backup channels provide single-fault tolerance,
and dynamic reconfiguration provides topology change tolerance and tolerance
to additional faults. We present and analyze the performance evaluation results
when a single switch or a single link is deactivated/activated for different topolo-
gies and workloads. All interrupted real-time channels are re-established after
a topology change when two real-time connections per host are established. As
the workload increases, channel recovery guarantees decrease. In this way, the
simulation results suggest that topology change tolerance is only limited by the
resources available to establish channels as well as by topology connectivity.



The rest of this paper is organized as follows. Next section presents our
protocol. Network model is depicted in Sect. 3. In Sect. 4, the performance
evaluation results are shown. Sect. 5 describes related work. Finally, we present
our conclusions and feasible ways of future work.

2 Dynamically Re-established Real-Time Channels

This section describes the protocol previously proposed in [8] in an informal way.
In order to support real-time communications, we set up a primary channel and
a single secondary channel® for each real-time channel. Once a real-time chan-
nel has been established, real-time messages flow through the primary channel
from source host to destination host until the real-time channel is closed or the
primary channel is broken down. When either a hot topology change or a fault
breaks down a primary channel, real-time messages are redirected through its
secondary channel. At the same time, the dynamic reconfiguration algorithm
described in [4, 5] is triggered. The dynamic reconfiguration process updates
routing tables in such a way that secondary channels could be re-established for
the affected real-time channels as long as the network topology still provides an
alternative physical path. The dynamic reconfiguration process does not affect
the deadline of real-time messages flowing through real-time channels because
traffic is allowed during reconfiguration. After reconfiguration, a new secondary
channel is allocated for each affected real-time channel regardless of whether the
old secondary channel has become the new primary channel or the old secondary
channel was broken down. The procedure for interrupted secondary channels is
the same as for primary ones. However, in this case, real-time traffic is not af-
fected. On the other hand, if several topology changes or faults concurrently
occur, the dynamic reconfiguration protocol combines them in a single process
[5], and so, our protocol remains valid. Next, we are going to describe the differ-
ent stages of our protocol.

2.1 Real-time Channel Establishment

A real-time channel is a unidirectional connection between a pair of hosts H;
and H,. A real-time channel consists of a primary channel and a single secondary
one. Each of them is a set {Hy, Hs, B, D, T} where H; is the source host, H,
is the destination host, B is the required bandwidth, D is the maximum admis-
sible latency or deadline for real-time messages, and T is the type of channel,
that is, primary or secondary. Enough resources (a virtual channel and enough
bandwidth) are assigned to each channel in each switch along its path to meet
its bandwidth and deadline requirements before real-time messages are trans-
mitted. Real-time messages flow through the primary channel from H; to Ha
until the real-time channel is closed or the primary channel is broken down. In
the meantime, the secondary channel remains idle and does not consume link
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bandwidth but just a virtual channel in each switch. In order to maximize topol-
ogy change tolerance, the primary and the secondary channels must not share
physical resources. In this way, disjoint physical paths are essential.

Before transmitting real-time messages, H; must reserve the necessary re-
sources for both the primary and the secondary channels. A best-effort message,
called RTC_REQUEST, is sent from H; to Hs to set up the primary channel.
In each switch, the request message is processed to check for the the availability
of resources and to reserve them as we will see later. If there are not enough
resources, a best-effort message, called RTC_ RESPONSE(False), is returned to
H;. When a request message arrives at Hs, the primary channel is accepted if,
and only if, latency of request message is shorter than channel deadline. Then,
H, sends a best-effort message, called RTC_RESPONSE(True), back to Hj.
The path followed by the response messages may not be the same used by the
request to establish the channel. If H; receives a false response message or chan-
nel timeout expires, resources are released by means of a RTC_MSG(Release)
message that flows through the channel. Channel timeout allows H; to release
resources when no response message is received. After a few cycles, H; will try to
establish the primary channel again until it is established or a maximum num-
ber of attempts is reached. If H; receives a true response message, the secondary
channel will be established likewise. A request is sent from H; to Hy to set up
the secondary channel. In each switch, the request message is processed to check
for the the availability of resources, to reserve them, and also to verify that the
primary channel does not go through that switch. This is because the primary
and the secondary channels must not share resources in order to maximize fault
tolerance.?2 Once both the primary and the secondary channels have been suc-
cessfully established, the real-time channel establishment process has finished.
Otherwise, resources are released, and the real-time channel is rejected. Note
that several channels could be concurrently established.

Finally, we are going to analyze the processing of requests in detail. First,
for each possible output port provided by the routing function for a request
message, we check for the availability of resources, that is, a free virtual channel
and enough bandwidth. Output ports without enough resources are no longer
considered. If the request corresponds to the secondary channel, it must be also
verified that the primary channel does not go through the switch. To do this,
each switch has a channel table that keeps track of all channels that go through
it. If there are not enough resources or the primary channel goes through the
switch, a false response message is returned to H;. Once an appropriate output
port has been found, the channel is added to the channel table, resources are
reserved (a virtual channel and enough bandwidth), and the request is forwarded
to the next switch. Note that selection of channel routes is distributed among
all switches, that is, global information is not necessary to establish channels.

2 Initially, two NICs per host are assumed so that the primary and the secondary
channels have to share neither switches nor links.



2.2 Real-time Channel Operation

After a real-time channel has been successfully established, H; begins to inject
real-time messages, called RTC_MSG messages, through the primary channel.
Real-time messages flow from H; to Hy through the primary channel until the
real-time channel is closed or the primary channel is broken down. In the former
case, resources are released by means of two release messages. In the latter
case, real-time messages are redirected through the secondary channel and a
new secondary channel will be allocated if possible. Note that if the secondary
channel is broken down, real-time traffic is not affected.

2.3 Real-time Channel Recovery

Once a real-time channel has been set up and is transmitting real-time messages,
we have to deal with the problem of channel recovery while still satisfying real-
time requirements. Let us assume that a single link fails or is turned off. Next, the
two adjacent switches detect the fault and determine the broken channels looking
up their real-time channel tables. For each channel whose output port matches
with the broken link, a best-effort message, called RTC_REPORT, is sent to its
corresponding source host. The switch remains in the releasing state until the
corresponding release message is received. For each channel whose input port
matches with the broken link, a release message is sent to the destination host
through the channel. Every time a report arrives at a source host for the primary
or the secondary channels, a release message releases resources from that source
host up to the previous switch. In the former case, real-time traffic is redirected
through the secondary channel, that is, the secondary channel becomes the new
primary channel. In the latter case, real-time messages continue flowing through
the primary channel. In any case, after reconfiguration, the secondary channel
will be re-established if possible.

At the same time that the adjacent switches detect the fault, the dynamic
reconfiguration protocol described in [4, 5] is triggered. This process performs
sequences of partial routing table updates to avoid stopping traffic, and try-
ing to update routing tables in such a way that a secondary channel could be
re-established for each affected real-time channel. After reconfiguration, a new
secondary channel is allocated, if possible, for each affected real-time channel
regardless of whether the old secondary channel has become the new primary
channel or the old secondary channel was broken down.

2.4 Modified Switch Architecture

Although a detailed hardware design is out of the scope of this paper, switch
architecture is depicted to help readers to understand our proposal (see [8]).
As shown in Fig. 1, our approach uses an input-buffered switch with virtual
channels. Virtual cut-through is used because it may replace wormhole in the
near future in NOWs [9]. Physical link bandwidth is 1.24 Gbps, and links are
8-bit wide. Each output port has sixteen virtual channels: thirteen RTC virtual
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Fig. 1. Modified Switch Architecture

channels that can be reserved for real-time channels, Min and UD (Up*/Down*
routing) virtual channels that are used by best-effort traffic, and C/RTC that
is used by DRRTC control messages and all control messages generated by re-
configuration. To build a deadlock-free routing function we use the methodology
described in [10]. Primary and Secondary store the amount of bandwidth re-
served by primary and secondary channels respectively. RVC stores the reserved
virtual channels. Virtual Channel Arbiter implements the link scheduling algo-
rithm used to forward messages. The scheduling algorithm is based on that of
Infiniband [7]. The control unit processes requests and all control messages gen-
erated by reconfiguration. The Channel Table keeps track of all channels that
go through the switch. The Control Port allows switch to inject messages.

3 Network Model

Network is composed of a set of switches connected by point-to-point links and
hosts attached to switches through two network interface cards (NICs). In this
way, we eliminate single points of failure. Network topologies were randomly
generated and are completely irregular. However, some restrictions were applied
for the sake of simplicity. First, all switches have eight ports, four ports connected
to other switches and four ports connected to hosts. Therefore, the number of
hosts is two times the number of switches. Second, two switches are not connected
by more than one link. Finally, the assignment of hosts to switches was made so
that the intersection of the sets of hosts connected to two switches is one host
maximum. This is because we want to avoid bottlenecks when re-establishing
channels after reconfiguration.

Simulation was used instead of analytical modeling. Our simulator models
the network at the packet level. Simulation results were generated from three
irregular topologies (T1, T2 and T3) consisting of 64 switches and 128 hosts each
other (2 NICs per host). Workload is composed of CBR real-time channels of
1 Mbps and deadline is equal to inter-arrival time (IAT). Packet length of real-



time messages is 16 Bytes and packet length of best-effort messages is 256 Bytes.
All hosts try to establish the same number of real-time channels. Nevertheless,
the number of real-time channels per host varies between two and four (2RTC,
3RTC and 4RTC). Therefore, the total number of real-time channels is 256, 384
or 512 according to the number of real-time channels per host. Destinations of
channels are randomly chosen among all hosts in the network. Real-time channels
are initially established during an interval of time proportional to the number
of real-time channels per host.

4 Simulation Results and Analysis

4.1 Switch Deactivation and Activation

In Fig. 2(a), we show the evolution of real-time channels for different config-
urations when a single switch is turned off. Each column represents the total
number of real-time channels that hosts are trying to establish, that is, 256, 384
and 512 for 2RTC, 3RTC and 4RTC respectively. NE corresponds to initially
non-established real-time channels and the rest corresponds to successfully es-
tablished real-time channels. As illustrated in Fig. 2(a), for all topologies, as the
number of channels per host increases, the number of initially non-established
channels increases too. Whereas 100% of channels are established for 2RTC per
host, the percentage of non-established channels varies varies from 1.3% (T1) to
1.8% (T3) for 3RTC per host, and from 16.2% (T1) to 20.3% (T3) for 4RTC
per host. For each topology, we successively simulate the deactivation of eight
switches, one by one, that is, each switch is deactivated while the rest remain ac-
tivated. Switches are randomly chosen among all switches in the network. Next,
mean values are represented. NA corresponds to the average of non-affected real-
time channels, and the rest corresponds to the average of interrupted real-time
channels. RE is the average of re-established real-time channels after reconfigu-
ration, and NRE is the average of non re-established real-time channels because
a new secondary channel could not be allocated after reconfiguration. The av-
erage of affected real-time channels by switch deactivation is very similar for all
configurations (it varies from 13% for T1/3RTC to 15% for T3/4RTC). How-
ever, the averages of re-established channels differ considerably from each other
according to the number of real-time channels that hosts are trying to estab-
lish. As shown in Fig. 2(a), while all interrupted channels are re-established for
2RTC, the average of re-established channels varies from 81% (T3) to 94% (T1)
for 3RTC per host, and from 61% (T1) to 66% (T2) for 4ARTC per host. Finally,
note that switch activation does not affect any already established real-time
channel. Consequently, no further analysis is needed.

Now, we analyze why results get worse when increasing the number of real-
time channels per host. In Fig. 3(a) and Fig. 3(b) we show the reserved virtual
channels for all switch-to-switch links before reconfiguration for 2RTC and 4RTC
per host respectively. For each switch, four bars represent the reserved virtual
channels of its four ports connected to other switches. As we can observe, for
2RTC per host, only a few ports have no free virtual channels (only 47% of
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Fig. 2. Evolution of real-time channels for different configurations when a single
switch/link is turned off. Configurations correspond to topologies T1, T2 and T3 when
hosts try to establish 2RTC, 3RTC and 4RTC per host

virtual channels are reserved). However, for 4RTC per host, most ports have
consumed all its virtual channels (87% of virtual channels are reserved). Hence,
the average of established channels decreases as the channels per host increase
because free virtual channels are used up in most ports. After reconfiguration,
the reasoning is same as the previous one (49% versus 87% of reserved virtual
channels for 2RTC and 4RTC respectively).?

4.2 Link Deactivation and Activation

In Fig. 2(b), we show the evolution of real-time channels for different config-
urations when a single link is turned off. For each topology, we simulate the
deactivation of the four switch-to-switch links, one by one, of the same switches
used to generate the results in Fig. 2(a). As expected, the average of affected
real-time channels by link deactivation is very similar for all configurations (it
varies from 4% for T1/3RTC to 5% for T1/3RTC) but lower than the one by
switch deactivation. Apart from that, results keep the same proportions as in
the case of switch deactivation. Finally, note that link activation does not affect
any already established real-time channel so that no further analysis is needed.

5 Related Work

Shin et al. have proposed the Backup Channel Protocol (BCP) [3] to achieve
fault-tolerant real-time communications. In this approach, the maximum num-
ber of admissible faults depends on the maximum number of alternative paths
provided by the routing function to establish the backup channels. Moreover,
topology change tolerance is not provided.

3 Figures have been omitted for the sake of brevity.
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Static reconfiguration techniques (Autonet [11] and Myrinet with GM [12])
stop user traffic to update routing tables. Although reconfigurations are not fre-
quent, they can degrade performance considerably [11] and real-time constraints
can not be met because of traffic disruption. Duato et al. [4, 5] have proposed a
dynamic reconfiguration algorithm, called Partial Progressive Reconfiguration, to
minimize the negative effects of static reconfiguration on network performance.
The protocol guarantees that the global routing algorithm remains deadlock-free
at any time. Pinkston et al. [13] have developed a simple but effective strategy
for dynamic reconfiguration in networks with virtual channels. Lysne et al. [14]
aim at reducing the scope of reconfiguration identifying a restricted part of the
network, the skyline, as the only part where a full reconfiguration is necessary.
Avresky et al. have recently presented a new dynamic reconfiguration protocol,
called NetRec, for high-speed LANs using wormbhole routing [15].

6 Conclusions and future work

In this paper, the DRRTC protocol has been evaluated. The novelty of this
protocol primarily relies on the ability to assimilate hot topology changes and
faults while still providing real-time communication services. We have evaluated
its behavior when a single switch or a single link is turned on/off for different
topologies and workloads. Simulation results suggest that the DRRTC protocol
provides topology change tolerance that is only limited by the resources available
to establish real-time channels as well as by the topology connectivity.

Using the ideas presented in this paper, future work involves: a quantita-
tive characterization of the DRRTC protocol under multiple topology changes,
an analysis of the optimal assignment of hosts to switches within a bounded
distance, and identifying of an upper bound to the protocol in order to ensure

channel recovery. We are also planning to develop an InfiniBand [7] version of
DRRTC.
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