
L. Fernández and J. M. García
Department of Informática y Sistemas, Universidad de Murcia,
Campus de Espinardo s/n, 30080 Murcia, Spain
EMail: {lfmaimo, jmgarcia}@dif.um.es

Abstract

In this paper, issues related to implementing an MPI version of the fast Givens rotations
problem are investigated. We have chosen this algorithm because it has the feature of having no
predictable communication pattern. Message Passing Interface (MPI) is an attempt to
standardise the communication library for distributed memory computing systems. The
message-passing paradigm is attractive because of its wide portability and scalability. It is
easily compatible with both distributed-memory multicomputers and shared-memory
multiprocessors, with NOWs and also combinations of these elements. Currently, there are
several commercial and free, public-domain, implementations of MPI. We have chosen the
most common implementation of MPI called MPICH. In this paper we show the MPI algorithm
of the fast Givens rotations and give some preliminary results about the performance in a
network of personal computers. Our results will also point out the strength and weakness of the
implementation.

1 Introduction

Many numeric calculation problems need to be solved in the shortest possible
time, therefore requiring the availability of computers with high calculation
power. In this sense, massively parallel computers have become the best
alternative to achieve this objective. Their high processing speed is based on
parallel execution of different processes which, properly combined, will
produce the solution required. Parallel algorithm implementation is not
immediate, as a great programming effort is often necessary, specially when
these problems are specifically of sequential type. Another problem related to
the parallel implementation is the election of the best parallel algorithm.
Sometimes, the sequential and parallel behaviour is different. So, it is necessary
to choose the algorithm with the best parallel execution.

This is the case of Givens and Householder transformations [4]. They are
frequently used in many scientific applications, as lineal system resolution or
eigenvalue problems. Among QR decompositions, Householder
transformations are usually preferred when programming a serial computer, due

The performance of fast Givens rotations
problem implemented with MPI extensions in
multicomputers

to their higher speed. However, Givens rotations are very well suited for
parallel computers, because they exhibit a great potential parallelism.
Moreover, there is an improved version of Givens rotations, known as fast
Givens rotations [4].

In this paper, we focus on the fast Givens rotations problem. A Givens
rotation can be defined by a transformation matrix G(i,k,θ) where θ is the
rotation angle. The application of an m×n transformation matrix G(i,k,θ) to an
m×n matrix A, annihilates the element Aki, choosing the appropriate value of θ.
We have implemented this problem using the official standard in parallel
computers, that is, the MPI extensions.

The goal of the Message Passing Interface is to offer a widely used
standard for writing message-passing programs. The interface establishes a
practical, portable, efficient, and flexible standard for message passing. MPI
provides a wide variety of point-to-point and collective communication
routines [1] [5]. Support is provided for process groups, so that a particular
communication operation can be restricted to involve only a given set of
processes. In MPI, a process is identified by a group and its rank within that
group. A process may belong to several groups. In point-to-point
communication, messages are regarded as labelled by a communication context,
and a tag on that context. Communication contexts are means within MPI of
ensuring that messages intended for receipt in one phase of an application
cannot be incorrectly received in another phase. Communication contexts are
managed by MPI and are not visible at the application level. Messages in MPI
are typed, and general datatypes are supported. These may be used for
communication array sections and irregular data structures.

Nowadays, the research community has a lot of interest in solving
numerical problems using the MPI libraries. Moreover, it is necessary to
evaluate the performance of the different MPI implementations. The most usual
environments to implement the MPI paradigm are massive parallel machines
(MPP) and networks of workstations (NOWs). In [3], we can see the
performance of Householder and Givens transformations over a cluster of
workstations. The performance of Givens and Householder transformations on
vector computers is analysed in [7]. Also, we can find an MPI version of the
BLACS routines with a deep explanation of the major changes in [9]. Finally,
the issues of performance of some MPI implementations on workstation
clusters can be seen in [8].

The goal of this paper is to code the fast Givens rotations algorithm with
MPI extensions and to study the performance of a parallel implementation of
this algorithm by using MPICH, a portable implementation of MPI. Our work
environment is a network of personal computers communicating via Ethernet
cards.

The next section gives a brief overview of the classic and parallel
algorithms to triangularizate a matrix by fast Givens rotations. The
implementation of the algorithm with MPI extensions is discussed. In section 3

we present our execution environment. In section 4 we show our experimental
results we have obtained, and we analyse these results. Finally, some
concluding remarks and future works are made in section 5.

2 The fast Givens rotation algorithm

2.1 The classic algorithm

A Givens rotation can be defined by a transformation matrix:

where c=cos(θ) and s=sin(θ) for some θ. Givens rotations are clearly
orthogonal.

Premultiplication by G(i,k, θ)T amounts to a counterclockwise rotation of
θ radians in the (i,k) coordinate plane. Indeed, if x∈ℜ n and y=G(i,k, θ)Tx, then

y

cx sx j i

sx cx j k

x j i k
i

i k

i k

j

=
− =
+ =

≠

 ,

From these formulas it is clear that we can force yk to be zero by setting

c
x

x x
i

i k

=
+2 2

s
x

x x
k

i k

= −
+2 2

Thus, it is a simple matter to zero a specified entry in a vector by using a
Givens rotation.

2.2 The parallel algorithm of fast Givens rotations.

Fast Givens transformations allow for each rotation to be performed using
fewer multiplications than the classic algorithm. To do this, the current matrix

G i k

c s

s c

i

k

(, ,)

...

.

...

. .

...

.

...

θ =
−

1 0 0 0

0 0

0 0

0 0 0 1

i k

is kept in a factored form as DA where D is an m × m diagonal matrix. (In our
implementation D is stored as a vector.)

Figure 1. Basic parallel algorithm with MPI extensions.

To obtain a parallel implementation of the algorithm, we must take into
account that the rotations of rows from A are totally independent and can be
applied in any order. The only requirement for applying rotation to a pair of
rows is that the first non zero elements of both rows occupy the same column
position. So, any pair of rows of the same type can be processed in parallel with
any other pair. Processes do not need to communicate during the rotation
process. However, a row must be transferred to another process after each
rotation in most cases.

The algorithm to triangularizate a matrix A and its associated coefficient
vector b, based on fast Givens rotations, the theoretical proof of the algorithm
and more information about Givens rotations can be found in [4]. We have
followed the studies developed by Duato [2] in order to apply fast Givens
rotations in a distributed-memory system.

start_time=MPI_WTime();
if (my_process_number == 0)
{

load matrix
for(i=1;i<number_of_processes;++i)

MPI_Send(rows type i to process i);
}
else

MPI_Recv(my type rows);

MPI_Barrier();
do
{ MPI_IProbe(&received)

if (received)
{

MPI_Recv(row from other process)
insert row in local matrix

}
if (rows_counter>1)
{

extract two rows from local matrix
calculate and apply a rotation
insert the first row in the local matrix
calculate destination process of second row
MPI_Send(second row to destination process)

}
} while not finished
MPI_Barrier()
end_time=MPI_WTime()

The parallel implementation of the algorithm requires as many processes
as columns the sparse matrix has. If we define the type of row as the column
position occupied by its leftmost non zero element, then it is well known that
only rows of the same type can be rotated together. Then we distribute the rows
among processes so that each process stores all the rows of the same type. After
a pair of rows have been rotated, one of them increases its type, being sent to
the corresponding process to be rotated again. Empty rows are discarded and
the algorithm finishes when there is almost a single row in each process. As the
rotation of a pair of rows cannot produce a row of a lower type, a token is
passed through all the processes to determine when the triangularization
program has finished.

Our programming model allows that the communication is carried out
asynchronously and in parallel with the processing. Figure 1 shows the basic
algorithm with the MPI extensions.

It is interesting to note here that the algorithm has not a regular
communication pattern. The communication pattern is not fixed and is varying
throughout the time.

2.3 MPI extensions used in the algorithm.

In the former parallel algorithm, we use several MPI functions. Next, we are
going to describe them briefly.

• MPI_WTime: This function returns a floating-point number of
seconds, representing elapsed wall-clock time since time in the past.
The returned times are local to the node that called the function. We
use this function to calculate the execution time of the algorithm.

• MPI_Send and MPI_Recv: These functions allow communication of
the processes. MPI provides blocking and non-blocking send and
receive functions. Non-blocking functions allow the overlap of
message transmittal with computation. Moreover, there are several
modes for point-to-point communication. The mode allows the user to
choose the semantics of communication and to influence in the
underlying protocol for the transfer of data. We use a blocking
communication with the standard mode. In this mode, MPI decides
whether outgoing messages will be buffered. In such a case, the send
call may complete before a matching receive is invoked. On the other
hand, buffer space may be unavailable, or MPI may choose not to
buffer outgoing messages, for performance reasons.

• MPI_Barrier: This function blocks the caller until all group members
have called it. The call returns at any process only after all group
members have entered the call. We use this function in our algorithm
with synchronization purposes across all processes.

• MPI_IProbe: This function allows incoming messages to be checked
for, without actually receiving them. We use this function to select
either to receive a new row or to rotate a pair of rows.

3 Description of our implementation.

3.1 Testing environment

The algorithm was executed on a cluster of PC 486DX4 at 133 Mhz. with 8Mb
RAM and 1 Gb. of HD running LINUX. We used a public domain distribution
of MPI, named MPICH which make use of sockets for communications.

The matrices used belong to the Harwell-Boeing library. This library
consists of a lot of matrices used on the resolution of real problems in all
sciences [6]. These matrices have the characteristic of being sparse.

3.2 Some features in the implementation of the algorithm.

To measure the throughput of the algorithm, initially we assigned each process
a row type, that is, a process per column. Because of the size of the matrices we
have worked with (squared of 512-1856 rows), we decided to represent them
internally in a way that made good use of the memory.

The size of the matrices caused a great generation of processes. Since
each process was assigned to a column, either each processor was busy only on
context exchange, or the local memory was quickly consumed.

Because of this, we decided to assign more than one row type to each
process, in order to simulate whichever of the processes having one from those
row types.

In addition to this, we have exploited the matrix dispersion by
implementing the sparse matrix abstract data type by means of linked lists, so
the amount of memory used by the matrices is dramatically reduced. This
causes an increment of the access time to an element (O(n) vs. O(1)).

The communication between processes is carried out by sending a row of
the matrix. Because we use sparse matrices, each process only sends those
elements distinct from zero in the message. In this way, we have a reduced
communication time.

4 Experimental results

In this section, we show some preliminary results from the tests we have
carried out. We have evaluated the fast Givens rotations algorithm with square
matrices of several sizes, from 512 rows up to 1856 rows. Also, we have
evaluated the sequential algorithm. In the following figures we plot the results
for several processors (from 2 to 10) and also plot the result for the sequential
execution (plotted for the one processor). However, it must be noted that we
use two different algorithms for the sequential case and for the parallel case.

Figure 2. Execution time vs. processors with a 512×512 matrix.

Figure 3. Execution time vs. processors with a 1374×1374 matrix.

Processors

0

50

100

150

200

250

300

350

400

450

1 2 4 6 8 10

Processors

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 4 6 8 10

Figure 4. Execution time vs. processors with a 1856×1856 matrix.

We can notice that the performance of the parallel algorithm is better than the
sequential one from four processors or more. The main reason for this
improvement is the partitioning made : columnwise block striping, where each
processor is assigned a rank of adjacent row types. So when a row changes its
type to another one that belongs to the same rank, it is not sent through the
network but internally stored into the local memory of the processor. In this
way, the communication time dramatically decreases.

Table 1. Theoretical and real communications with a 512×512 matrix.

Processors

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

1 2 4 6 8 10

Processors. Theor. communic. Real communic.
2 8711 23
4 8711 62
6 8710 99
8 8708 134
10 8710 166

Table 2. Theoretical and real communications with a 1374×1374 matrix.

In Table 1 and Table 2 we can see an example of the great difference
between the theoretical and real communications made during the algorithm
execution. With this partitioning mode, we reduce the computation cost of the
sequential algorithm by the number of processors without increasing the
communication cost.

The mean length of the sent rows varies from 63 elements (512×512
matrix) to 120 elements (1856×1856 matrix) for the matrices used. This gives
us a mean message length that varies from 252 to 480 bytes for the array of
indexes and from 504 to 960 bytes for the array of values. By sending these two
messages, we spend less time than by sending one message where the two
arrays are joined.

Finally, we can observe that from a certain number of processors, the
execution time is higher than the sequential case. This is caused by the increase
of communications. In our tests, we have found that from 14 processors the
parallel algorithm begins to get worse.

5 Conclusions and future works.

In this paper we have presented the MPI version of the fast Givens rotations
problem. We have used this algorithm to the resolution of the matrix
triangularization problem. We have implemented this algorithm with a few
MPI extensions. We have used a standard blocking made to communicate the
processes.

In this paper we evaluated the performance of the fast Givens rotations
problem over MPICH, the most usual implementation of MPI.

Despite the high cost that involves the communication time in an
ordinary network (Ethernet) using sockets, the computational cost of the
algorithm (O(mn2)) makes its parallel execution profitable.

Instead of using Ethernet, we plan to conduct our next tests in two ways:
on a NOW using Fast Ethernet and on a parallel computer (IBM-SP2) which
has a fast interconnection network.

Besides, we want to generalise the results to matrix sets with similar sizes
and to study higher and non-squared matrices.

Processors. Theor. communic. Real communic.
2 43622 38
4 43468 123
6 44075 211
8 43405 287
10 43562 373

References

[1] Dongarra, J. J., Otto, S. W., Snir, M. & Walker, D. A Message Passing
Standard for MPP and Workstations. Communications of the ACM. July
1996, Vol. 39, No. 7, pp. 84-90.

[2] Duato, J. Parallel triangularization of a sparse matrix on a distributed-
memory multiprocessor using fast Givens rotations. Linear Algebra and its
Applications, 1989, 121, 582-592.

[3] Egecioglu, Ö. & Srinivasan, A. Givens and Householder Reductions for
Lineal Least Squares on a Cluster of Workstations. Tech. Rep. TRCS95-
10, Department of Computer Science, University of California, Santa
Barbara, 1995.

[4] Golub, G.H. & Van Loan, C.F. Matrix computations, 2nd edition, The Johns
Hopkins University Press, Baltimore, 1990.

[5] Gropp, W., Lusk, E. & Skjellum, A. Using MPI: Portable Parallel
Programming with the Message-Passing Interface. MIT Press, Cambridge,
Mass., 1994.

[6] Harwell-Boeing library. URL: ftp://ftp.cerfacs.fr/pub/harwell_boeing/
[7] Mattingly, R. B., Meyer, C.D. & Ortega, J. M. Orthogonal Reduction on

Vector Computers. SIAM J. Sci. Statist. Comput., 1989, 10, 372-381.
[8] Nupairoj, N. & Ni, L. M. Performance Evaluation of Some MPI

Implementations on Workstation Clusters, Procc. of the 1994 Scalable
Parallel Libraries Conference, October 1994, 98-105.

[9] Walker, D. W. An MPI version of the BLACS. Procc. of the 1994 Scalable
Parallel Libraries Conference, October 1994.

