
Improving the GPU-based Collision Check Procedure for
Distributed Crowd Simulations∗

Guillermo Vigueras, Juan M. Orduña,
Miguel Lozano

Departamento de Informática
Universidad de Valencia

Spain
juan.orduna@uv.es

José M. Cecilia, José M. García
Dpto. Ingenería y Tecnología de Computadores

Universidad de Murcia
Spain

{chema, jmgarcia}@ditec.um.es

ABSTRACT
The computing capabilites of current Graphics Processor
Units (GPUs) have been used by many distributed appli-
cations for performing general purpose computations. In
particular, the capabilites of many-core GPUs have been
used in crowd simulations not only for enhancing the crowd
rendering, but also for performing collision check and even
for simulating the whole crowd. Nevertheless, these applica-
tions can still significantly increase their throughput if the
GPU capabilities are fully exploited.

In this paper, we propose a new algorithm for GPU-based
collision check in distributed crowd simulations. Unlike other
collision check algorithms in the literature, the absence of
both sorting procedures and atomic operations in the pro-
posed method significantly reduces the computing workload
of the collision check procedure, while keeping the crowd
simulation consistent. The performance evaluation results
show that the execution time required for the proposed method
is significantly lower than previous methods based on sort-
ing, increasing the crowd simulation throughput accordingly.

1. INTRODUCTION
The computing capabilites of current Graphics Processor
Units (GPUs) have been used by many distributed applica-
tions for performing general purpose computations [11]. In
particular, these capabilites have been used in crowd sim-
ulations, a special case of Virtual Environments where the
avatars are autonomous agents instead of user-driven enti-
ties. Each of these agent-based entities can have its own
goals, knowledge and behavior [14]. The computational cost
of multiagent crowd simulations exponentially increases with

∗This work has been jointly supported by the Spanish
MICINN and the European Commission FEDER funds
under grants Consolider-Ingenio 2010 CSD2006-00046 and
TIN2009-14475-C04.

the number of agents in the system, requiring a scalable de-
sign that can support huge amounts of agents (of different
orders of magnitude) by simply adding more hardware. A
distributed system architecture has been proposed to tackle
these requirements [7, 17, 16]. That architecture consists
of a distributed system where some of the computing nodes
contain a distributed Action Server controlling the simula-
tion. The rest of the computers host a set of agents imple-
mented as threads of a single process. That architecture was
shown efficient enough to support simulations up to tens of
thousands of complex agents with plausible graphic quality.
However, this distributed scheme can be still improved by
fully exploiting the potential of new many-core architectures
like GPUs.

Since the processing of the collision checks submitted by
agents represents the most time consuming task in the dis-
tributed action server [17], in a previous work we imple-
mented a basic distributed server for crowd simulations us-
ing an on-board GPU [18]. That GPU-based basic imple-
mentation used the particle algorithm [10] for performing
parallel collision checks. Nevertheless, crowd simulations
can still significantly increase their throughput if the GPU
capabilities are fully exploited. In this paper, we propose
a new GPU-based algorithm to perform the collision check
procedure in distributed crowd simulations. Unlike other
collision check procedures in the literature, the absence of
both sorting procedures and atomic operations in the pro-
posed method significantly reduces the computing workload
of the collision check procedure, while keeping the consis-
tency of the crowd simulation. The performance evaluation
results show that the execution time required for the pro-
posed method is significantly lower than previous methods
based on sorting, increasing the system throughput accord-
ingly.

The rest of the paper is organized as follows: Section 2 de-
scribes the distributed system for crowd simulation where
the proposed GPU-based algorithm would be integrated.
Section 3 briefly describes the related work about parallel ar-
chitectures for crowd simulation. Section 4 gives an overview
of the CUDA programming model. Next, Section 5 shows
the proposed algorithm, as well as other improvements of ex-
isting methods for comparison purposes. Section 6 shows the
performance evaluation results for the different approaches
considered. Finally, section 7 shows some conclusion re-
marks.

2. A DISTRIBUTED SYSTEM FOR CROWD
SIMULATION

In previous works, we proposed an architecture that can
simulate large crowds of autonomous agents at interactive
rates [7, 17, 16]. In that architecture, the crowd system is
composed of many Client Computers, that host agents im-
plemented as threads of a Client Process, and one Action
Server (AS). The AS is executed in one computer and is re-
sponsible for checking the actions (eg. collision detection)
sent by agents [7]. In order to avoid server bottleneck, the
simulation world was partitioned into subregions and each
one assigned to one parallel AS [17]. A scheme of this archi-
tecture is shown in Figure 1. This figure shows how the 2D
virtual world occupied by agents (black dots) is partitioned
into three subregions, and each one managed by one parallel
AS (labeled in the figure as ASx). Each AS is hosted by a
different computer. Agents are execution threads of a Client
Process (labeled in the figure as Clientx) that is hosted on
one Client Computer. The computers hosting client and
server processes are interconnected. Each AS process hosts
a copy of the Semantic Database (SDB) that contains infor-
mation about the simulated world. However, each AS ex-
clusively manages the part of the database representing its
region. In order to guarantee the consistency of the actions
near the border of the different regions (see agentk in figure
1), the ASs can collect information about the surrounding
regions by querying the servers managing the adjacent re-
gions. Additionally, the associated Clients are notified about
the changes produced by the agents located near the adja-
cent regions by the ASs managing those regions.

Each action requested by an agent requires a collision test
in the corresponding AS. This test is computed based on
the Area of Interest (AOI) of the agent. If the AOI of the
considered agent does not intersect with the region border
(eg. agent1 in Figure 1), the corresponding AS updates the
semantic database with the new location and notifies all the
local CPs about that change. If, on the contrary, the AOI of
the considered agent intersects with the region border (eg.
agentk in Figure 1), then the adjacent servers are queried.
Only if all the servers answer positively the requested ac-
tion is allowed, and the semantic database is updated. In
this case the queried adjacent servers are also notified about
the change, in order to guarantee the consistency among all
the SDB copies. The architecture shown in Figure 1 allows
to simulate large crowds of autonomous agents providing a
good scalability. However, this architecture can also benefit
from the GPU capabilities for simultaneously checking the
collision requests received from agents [18].

3. RELATED WORK
Some proposals have been made last year for exploiting
the capabilities of multi-core and many-core architectures
in crowd simulations. In this sense, a new approach has
been presented for the CellBe processor to distribute the
load among the processing elements [13]. Other work uses
graphics hardware to simulate crowds of thousands of indi-
viduals using models designed for gaseous phenomena [2].
Recently, some authors have started to use GPU in an ani-
mation context (particle engine) [5], and there are also some
proposals for running simple stochastic agent simulations
on GPUs [8, 12]. However, these proposals are not suitable

Figure 1: General scheme of the distributed archi-

tecture for crowd simulation

to simulate complex agents, including a cognitive model, at
interactive rates.

Other proposals show efficient GPU implementations of par-
ticle simulations [10] or parallel global pathfinding [1] using
the CUDA programming environment. These works propose
efficient models for a single GPU. On the contrary, this paper
proposes a distributed implementation that can use as many
GPUs as necessary, each one hosted by an Action Server, to
perform the collision check process. In order to solve the
GPU-based collision check problem, different implementa-
tions have been proposed [6, 20], based on hierarchical data
structures and sorting. However, the computational cost of
these proposals were shown efficient to solve problems like
ray tracing but not for agent based simulation. Finally, an-
other work proposes a GPU implementation for searching
the k nearest neighbors in order to solve the collision check
problem [4]. Nevertheless, this work does not assess the scal-
ability of the method with the number of entities considered
in the neighbors search.

4. CUDA PROGRAMMING MODEL
The Compute Unified Device Architecture (CUDA) pro-
gramming model for GPU architectures covers both hard-
ware and software features for performing computations on
the GPU as a data-parallel computing device without the
need of mapping them to a graphics API [9]. The hardware
interface of CUDA consists of a parallel SIMD architecture,
where thousands of threads run in parallel. These cores are
organized as a given number of multiprocessors (SMs), each
one having a set of 32-bit registers, constants and texture
caches, and 16 KB of on-chip shared memory as fast as local
registers (one cycle latency). At any given cycle, each core
executes the same instruction on different data (SIMD), and
communication among multiprocessors is performed through
global memory.

CUDA consists of a set of C language library functions that
the programmer can use to specify the structure of a CUDA

program. A CUDA program consists of two subprograms:
The CPU (or host) subprogram and the GPU (or device)
subprogram. The former prepares the execution on the
GPU, moving data from main memory to the GPU memory,
setting up all the parameters involved in the execution, and
launching the code that is executed on the GPU by each
thread.

The GPU subprogram consists of a set of kernels. Ker-
nel execution is decomposed into blocks that run logically
in parallel (they are physically executed only if there are re-
sources available on the GPU). A block is a group of threads
assembled by the developer which is mapped to a single mul-
tiprocessor. This group of threads can share 16 KB of mem-
ory and they can synchronize among them through barrier
primitives. However, the communication among threads of
different blocks is only performed through global memory,
and the traditional way to synchronize them is terminating
a kernel launch. All the threads are internally grouped into
warps. A warp is a collection of threads that can run concur-
rently (with no time sharing) on all of the multiprocessors.
The developer can determine the number of threads to be
executed (up to a limit intrinsic to CUDA), but if there
are more threads than the warp size, then they are time-
shared on the actual hardware resources. Any thread can
have access to all the GPU memory in the CUDA program-
ming model, but there is a performance boost when threads
access data located in shared memory, which is explicitly
managed. Therefore, large data structures must be stored
in the global memory and often-used data structures must
be stored in the shared memory, in order to efficiently use
the GPU’s computational resources. This issue is particu-
larly important in the collision check algorithms for crowd
simulations.

5. COLLISION CHECK ALGORITHMS
The collision detection problem has been addressed in many
areas like Computer Graphics, Computer Animation, Agent
based Simulation, etc. A collision among agents within a
crowd simulation occurs when the volume occupied by one
agent intersects with the one occupied by other agent (this
problem can be reduced to a two dimensional environment
considering the 2D shape that represents each agent instead
of its volume). Usually, the simulated scenario is divided by
means of a n-dimensional grid in order to efficiently solve
the collision check problem. In this way, only the agents
contained in a given grid cell and the agents contained in
the neighboring cells are checked. A naive GPU implemen-
tation of this grid (called collision grid) consists of defining
a static array and assigning each grid cell to each position
of this array. The mapping of agents to grid cells is per-
formed by a spatial hashing method, depending on the cell
size and the position of agents. Since many agents can fall
within the same cell and GPU threads can simultaneously
update the same memory address, atomic operations are
needed in order to keep consistency [9]. However, atomic
operations cause a performance penalty, increasing the ex-
ecution time of the collision check procedure. Due to this
penalty, other approaches based on sorting have been shown
to obtain better performance than static approaches based
on atomic operations [10, 3].

In a previous work, we implemented a collision check pro-

cedure for crowd simulations using an on-board GPU [18].
This algorithm consists of five steps, each one implemented
as a GPU kernel. Figure 2 shows a scheme of the five steps
and the data structures involved in this algorithm, as well
as the input and output of each step. The upper part of
Figure 2 shows a snapshot of a 2D grid, composed of six-
teen cells containing six agents. In the lower part, this Fig-
ure shows the values of the data structures corresponding
to that snapshot for each step of the algorithm. First, the
hashing of the agents within the collision grid is performed,
determining on which cell is located each agent (more than
one agent can be assigned to the same cell). The result is an
array containing the cell identifier assigned to each agent.
Second, the sorting of the previous array based on the cell
identifier (in increasing order) is performed, in order to al-
low the GPU threads to efficiently access to this grid. Third,
the data structure containing the agents positions are also
sorted to match the same cell order established in the sec-
ond step. As a result, all the agents located in the same cell
are in adjacent positions of the data structure. Fourth, a
data structure representing the collision grid is computed.
This structure allows a fast access to the agents located in
each grid cell, and it consists of a sparse array. Finally, the
last kernel is the collision check algorithm. This algorithm
finds in which cell is located each agent and which other
agents are located in the same or the neighboring cells (that
is, the possible collisions are checked). In order to perform
this task, it uses the data structure computed in the fourth
step. The result is an array whose elements are a collision
flag for each agent. We have denoted this algorithm as the
Baseline implementation. Since this implementation is the
basic translation of a GPU-based method for collision tests
[10, 3], we have developed an improved implementation of
that algorithm as a reference for comparison purposes.

5.1 Improved Baseline Algorithm
The Baseline algorithm is composed by five kernels. In order
to improve the baseline algorithm, the first step is to deter-
mine which kernels are the most time consuming. We have
measured the percentage of the global execution time con-
sumed by each kernel for a simulation of one million agents.
These measurements are shown in Figure 3. This figure
shows that the most time consuming kernel is the one per-
forming the collision check, consuming 63% of the total time.
That is, this kernel does not take advantage of the GPU
memory hierarchy in the Baseline version, since it only ac-
cesses the global memory.

Each agent checks its neighborhood in the collision check
kernel. This data locality can be exploited by using the on-
chip GPU memories. Concretely, the input arrays of the
kernel performing the collision check can be bound to the
texture memory. Hence, neighbor cells are cached and they
can be fetched from the texture memory instead of the de-
vice memory, increasing the memory bandwidth. We have
considered this as the first improvement of the baseline al-
gorithm, and we have denoted it as the texture memory op-
timization. On other hand, data locality can be exploited
by using the shared memory along with a tiling technique
[19]. We define tiles within the collision grid in such a way
that collisions can be independently checked by each GPU
block, avoiding inter-block synchronization. We propose the
ordering of the collision grid cells in global memory based on

Figure 2: Baseline algorithm for GPU-based colli-

sion check

2%

7%

2%

63%

27%
calcHash

radixSort

reorderData

findCellStart

collisionCheck

Figure 3: Percentage of execution time required by

the kernels for the baseline version.

Figure 4: Grid mapping to global memory in the

baseline version

the tile organization. In this way, all threads in a GPU block
collaborate in loading the assigned tile from global memory
to shared memory, obtaining a coalesced access and reduc-
ing the number of accesses to device memory. This mem-
ory layout also avoids bank conflicts in the access to shared
memory. In order to illustrate this improvement, Figure 4
shows the memory access pattern of the baseline algorithm,
while Figure 5 shows the memory access pattern of the im-
proved baseline algorithm. Both figures show a collision grid
with sixteen cells. Figure 4 shows how a given tile consisting
of 3x3 cells (from cell 5 to cell 15 except cells 8 and 12) is
stored in global memory. It can be seen that the neighbor-
ing cells are stored in non-adjacent memory segments (cells
8 and 12 are interleaved within the tile segments) preventing
coalesced accesses to global memory.

A tile in the improved algorithm consists of 3x3 cells, as
in the case of the baseline algorithm. Figure 5 shows how
the improved algorithm replicates those cells that are in the
border of a tile. In this figure, the numbers in the middle of
each cell denotes the cell number in the collision grid, while
the small numbers in the corners of each cell denote the
replicas of that cell in each tile. For example, the cell number
3 is replicated as cell 4 in the first tile, cell 12 in the second
tile, cell 19 in the third tile, and cell 27 in the fourth tile.
The advantage of this data replication consists of having all
the cells belonging to a given tile linearly ordered in the
same global memory segment, as shown in the lower part of
Figure 5. Therefore, all threads in a warp (half-warp) can
linearly access to the same global memory segment and load
the data into shared memory obtaining a coalesced access.
We have denoted this improved organization along with the
use of shared memory as the shared memory optimization. A
key parameter in the shared memory optimization is the tile
size, since it determines the number of threads in each block.
In turn, this number of threads must be an entire multiple
of the warp size in order to obtain a good performance. The
tuning of the tile size should be experimentally performed.
Concretely, a tile size of 16x16 (256 threads per block) has
provided the best result for populations ranging from 10.000
to 1.000.000 agents.

Figure 5: Grid mapping to global memory in the

improved version

Besides the collision check kernel, the kernel performing the
radix sort is the second most time consuming kernel in the
baseline algorithm (see Figure 3). In order to improve the
performance, the radix sort procedure used in the baseline
algorithm can be replaced by the fastest published version
of this sorting algorithm [15]. Finally, although the execu-
tion time for the rest of the kernels are less significant than
the previous ones, some optimizations can be performed on
them. The kernels corresponding to the third and fourth
steps in the Baseline algorithm can be merged into a sin-
gle one, as there are no global synchronization requirements
between them. Therefore, the cost of synchronization can
be saved. Furthermore, the shared memory can be used by
the fourth kernel, taking advantage of the data locality and
improving the global memory bandwidth.

In order to show the improvements achieved by the opti-
mized version of the Baseline algorithm, Figure 6 shows the
impact of the optimizations in terms of percentages of the
execution time (being 100% the total execution time of the
Baseline algorithm on the left bar). This bar shows that the
effect of the optimizations represents a reduction of a 70%
in the global execution time respect to the Baseline version.
The right bar in Figure 6 zooms in the results obtained for
the improved version. In this version, the most time con-
suming kernel is the radixSort, with a 54% of the global
execution time for the optimized version. For this reason,
we propose a new algorithm to perform the collision check
that is not based on sorting.

5.2 A New GPU-Based Algorithm for Colli-
sion Check

We propose an algorithm that avoids the sorting step in the
collision check procedure. In order to achieve this goal, we
use a static grid. Nevertheless, if many agents fall within the
same grid cell and they try to write into the same memory
address, atomic operations are needed. In order to avoid
the performance penalty caused by atomic operations, we
propose a different approach in which the size of each grid
cell is fixed in such a way that the simulation consistency is

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Opt. version respect baseline

version

Opt. version kernel consumption

Saved Time

collisionCheck

reorder&FindCS

radixSort

calcHash

Figure 6: Percentage of execution times required by

the kernels in the baseline optimized version.

guaranteed. Concretely, the consistency is guaranteed if

p

L2 + L2 = D = 2R (1)

where L is the size of the side of a grid cell, D is the diagonal
of a grid cell and R is the radius of the agents. When the
distance between two agents is less or equal to twice the
agent radius (2R) a collision occurs. For that reason the
condition in Equation 1 establishes that all the agents falling
in the same cell will collide since the maximum distance
within a cell is the diagonal of the cell (i.e. D = 2R). In
this way the condition in Equation 1 implicitly performs the
collision detection for agents trying to move to the same
cell. In that situation the consistency can be guaranteed by
allowing the movement of one agent and forbidding the rest
of the movements. It must be noticed that the selection of
the agent to perform the movement can be done in a non-
deterministic fashion since agent-based simulations evolve in
this way.

As a result of using the condition in Equation 1 to define the
cell size, more neighbor cells will have to be queried during
the collision check. Since the side of a cell can be shorter
than 2R, not only the closest neighbor cells must be queried
but also those cells that are one cell distant. We denote
this set of cells as extended neighbor cells. Nevertheless, in
spite of the higher number of neighbor cells accessed, the
performance can be improved by loading these cells from
global memory only once and store them on shared memory.

Using the consistency condition (equation 1), we have de-
fined a new collision check algorithm consisting of four steps,
each one containing one GPU kernel call. In this new algo-
rithm there is an array (denoted as CollisionResponseArray)
containing a pair (collision flag, agent identifier) in each po-
sition. Another array called ObjectPositionsArray contains
the agents positions, and the array collisionGrid contains in
each position three elements. The first element indicates the
current step of the simulation. The second element stores
an agent id indicating which is the target cell for that agent.
The third element stores an agent id indicating which is the
source cell for that agent. Agents positions are copied by the
CPU onto device memory and then the collision check test
is launched. Once the test is finished the result is returned
back to the CPU by copying the CollisionResponseArray.
The actions performed in each step of the new algorithm

are illustrated in Figure 7. This figure shows an example
of the whole process, including the data structures involved
as both input and output of each step. The upper part of
this figure shows a snapshot of a 2D grid, composed of six-
teen cells containing four agents at given locations. In the
lower part, this figure shows the data structures with the
values corresponding to that snapshot for each step of the
algorithm described above. The actions performed in each
step are the following ones:

Figure 7: New algorithm for collisions check on the

GPU

1. In the first step, the collisionResponse array is initial-
ized indicating that there are collisions for all agents
(see Figure 7). This initialization is necessary because
one agent can overwrite other agent when falling in the
same cell. Overwritten agents can detect the collision
by means of this initialization step.

2. In the second step, the hashing to determine the target
and the source cell for each agent position stored in Ob-
jectPositionsArray is performed. Each thread writes
a step identifier and the agent identifier in both the
source and target cells. Since agents move at the same
time in a simulation cycle of our tests, all the move-
ments in the same cycle share a common step identi-
fier. This identifier allows to determine whether the

information within a cell is correct or it contains ob-
solete data. We use this step identifier to avoid using
the function cudaMemset(). The execution time of
this function significantly increases the global execu-
tion time, specially when the size of the array to be
cleared grows. The hashing performed in this step by
the calcHash kernel is shown in Figure 7. Since cell 1
is the previous one for Agent 0 and it wants to move
to cell 3, Agent 0 writes its identifier in these cells
in the corresponding slot. Agent 2 moving from cell
11 to cell 8 and Agent 3 moving from cell 12 to cell
11, write their identifiers in the corresponding slots in
these cells. Also Agent 1 writes its identifier in the
proper slot of cell 8 (the source cell of Agent 1) but
the value for the target cell (cell 3) is overwritten with
the value stored by Agent 0 when the kernel calcHash
finishes. All agents share the step identifier 0, since
this is the first movement of each agent.

3. The third step of the new algorithm consists of agents
detecting whether their desired movements are possi-
ble or not. If the desired movement of an agent was
overwritten in the previous kernel or generates a colli-
sion, it means that the desired position is not possible.
In this case, the collision grid is updated in the follow-
ing way. Agents which desired movement was finally
written, clean their identifier from their source cell.
However if the movement of an agent is not possible it
checks whether its source cell is the target cell of other
agent. In such case the overwritten agent notifies that
the desired movement is not possible. It must be no-
ticed that restoring the previous position cannot lead
to an inconsistent situation, since the initial scenario
is collision free (i.e. position restore is possible), and
for each cycle the agents positions are updated keeping
the consistency. In Figure 7, Agent 0 cleans its identi-
fier from its source position, cell 1. On the other hand,
Agent 1 notifies to Agent 2 that its desired movement
to cell 8 is not possible. Also Agent 2 notifies to Agent
3 that the desired position of the latter agent generates
a collision.

4. Finally, the collision check is performed in the fourth
step. For each grid cell, if the agent identifier stored
in that cell is written in the Desired Cell slot then its
extended neighbor cells are queried to detect a colli-
sion. If no collision is detected, then the collision flag
in collisionResponse array is set to 0, indicating that
there is no collision. If the movement is the previous
one, then the collision flag is not overwritten, since the
desired position generates a collision. Figure 7 shows
that the collision for agent 1 is detected. The collision
for agent 2 and agent 3 are also detected, since they
are notified about it.

The algorithm described above performs global synchroniza-
tion through finishing the second kernel launch. In this way,
in the third kernel the overwritten agents are restored to
their previous positions and the consistency of the simu-
lation is kept. We have implemented a version of this al-
gorithm using atomic operations for comparison purposes.
This new version consists of merging the second and third
steps in a single kernel. In order to merge these two steps,

atomic operations are needed (the global synchronization
achieved through the second kernel termination should be
performed by using atomic operations). However, the ad-
vantage of saving one kernel launch at the cost of using
atomic operations should be analyzed.

6. PERFORMANCE EVALUATION
This section shows the performance evaluation of the GPU
algorithms for collision check described in section 5. Our
performance tests are based on different configurations of
the simulated scenario, varying the number of agents, in
order to evaluate the scalability of each algorithm version.
We use random agent movements for evaluation purposes.
Concretely, one hundred random movements are computed
per agent, using the agent identifiers as the seed for the
random generation, in order to obtain reproducible results.
The execution times reported below are the aggregated time
obtained for all the movements performed by all the agents
considered for each simulation. Since the considered algo-
rithm should scale up with the physical parallelism available
on the GPU, we have considered different NVIDIA Tesla
GPUs: the Tesla C870 (16 SMs) and Tesla C1060 (30 SMs).

Figure 8 and Figure 9 shows the overall execution time
for the different collision check implementations on differ-
ent graphic cards. These figures show on the X-axis the
number of agents considered for the simulations. The Y-
axis shows the aggregated execution time obtained for each
collision check method. Figure 8 shows the results for the
Tesla C870 platform. The new version using atomic opera-
tions has not been tested for this platform, since it does not
support this kind of operations. As it could be expected,
the greatest differences arise for the largest population size,
that is, one million agents. We use the texture memory
to decrease the use of the device memory in the first opti-
mization, obtaining 50% of reduction in the execution time
respect to the Baseline version. In the second optimization,
the shared memory is used along with the new organization
of the collision grid in global memory, in such a way that a
coalesced access to device memory is guaranteed. This op-
timization obtains 70% of reduction in the execution time
with respect to the Baseline version. Nevertheless, the pro-
posed technique achieves the best results, obtaining 85% of
reduction in the execution time.

0

1000

2000

3000

4000

5000

6000

7000

8000

1000 10000 100000 1000000

agents

E
x

e
c

.
T

im
e

 (
m

s
.)

Baseline

Opt. 1: Text. Mem.

Opt. 2: Shared Mem.

New Approach

Figure 8: Execution times on Tesla C870 card

Figure 9 shows the execution times obtained for the Tesla
C1060 card. In this case, the effects of the texture memory
optimization hardly arise. The reason is that for this card
the global memory access algorithm has been improved re-
spect to the C870 platform [9], allowing to obtain more co-
alesced accesses. Therefore, the baseline algorithm requires
much shorter execution times than for the case of the C870
card. The optimization that uses shared memory allows a
decrease in the execution time of 53% with respect to the
baseline version for a crowd size of one million agents. Never-
theless, the proposed algorithm achieves the best execution
times, with a reduction of 65% when using atomic opera-
tions and around 75% without using atomic operations. If
Figure 8 and Figure 9 are compared, then it can be seen
that the execution times are inversely related to the number
of SMs available on the cards.

0

500

1000

1500

2000

2500

3000

1000 10000 100000 1000000

agents

E
x
e
c
.
T

im
e
 (

m
s
.)

Baseline

Opt. 1: Text. Mem.

Opt. 2: Shared Mem.

New App. Atomic Ops.

New Approach

Figure 9: Execution times on Tesla C1060 card

In order to show that these execution times are directly re-
lated to the workload generated by each method, we have
measured the throughput of the different versions in terms of
number of collisions checked per second. Figures 10 and 11
show the collisions check rates obtained when increasing the
number of agents for both the Tesla C870 and C1060 cards.
Figure 10 and Figure 11 show that the proposed method
without atomic operations performs the highest numbers of
collision checks per second for all the population sizes. These
figures also show that the collisions check rate performed by
the proposed method significantly increases with the num-
ber of available SMs on the GPU, assessing the scalability
of this method.

7. CONCLUSIONS
In this paper, we have proposed a new algorithm for GPU-
based collision check in distributed crowd simulations. Un-
like other collision check algorithms in the literature, the
absence of both sorting procedures and atomic operations
in the proposed method significantly reduces the comput-
ing workload of the collision check procedure while keeping
the consistency of the crowd simulation. The performance
evaluation results show that the execution times required
for the proposed method are significantly lower than the
ones of the methods used for comparison purposes, since
the latter ones are based on sorting. Also, the results show
that the number of collision checks per second achieved by
the proposed method are the highest ones, showing that

0

20

40

60

80

100

120

1000 10000 100000 1000000

agents

C
o

ll
is

io
n

s
 c

h
e

c
k

e
d

 /
 s

.
Baseline

Opt. 1: Text. Mem.

Opt. 2: Shared Mem.

New Approach

Figure 10: Collisions rate on Tesla C870 card

0

20

40

60

80

100

120

140

160

180

1000 10000 100000 1000000

agents

C
o

ll
is

io
n

 c
h

e
c
k
e
d

 /
 s

.

Baseline

Opt. 1: Text. Mem.

Opt. 2: Shared Mem.

New App. Atomic ops.

New Approach

Figure 11: Collisions rate on Tesla C1060 card

the proposed method allows a higher throughput. Finally,
the performance evaluation results show that the proposed
method properly scales up with the number of multiproces-
sors available in the GPU.

8. REFERENCES
[1] A. Bleiweiss. Gpu accelerated pathfinding. In GH ’08:

Proceedings of the 23rd ACM
SIGGRAPH/EUROGRAPHICS symposium on
Graphics hardware, pages 65–74, 2008.

[2] N. Courty and S. R. Musse. Simulation of large
crowds in emergency situations including gaseous
phenomena. In CGI ’05: Proceedings of the Computer
Graphics International 2005, pages 206–212, 2005.

[3] U. Erra, B. Frola, V. Scarano, and I. Couzin. An
efficient gpu implementation for large scale
individual-based simulation of collective behavior. In
Proceedings of HiBi 2009, pages 51–58, Oct. 2009.

[4] V. Garcia, E. Debreuve, and M. Barlaud. Fast k
nearest neighbor search using gpu. In CVPR
Workshop on Computer Vision on GPU, Anchorage,
Alaska, USA, June 2008.

[5] L. Latta. Building a million particle system. In In
Proc. of Game Developers Conference(GDC-04), 2004.

[6] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke,

and D. Manocha. Fast bvh construction on gpus.
Comput. Graph. Forum, 28(2):375–384, 2009.

[7] M. Lozano, P. Morillo, J. M. Orduña, V. Cavero, and
G. Vigueras. A new system architecture for crowd
simulation. J. Netw. Comput. Appl., 32(2):474–482,
2009.

[8] M. Lysenko and R. M. D’Souza. A framework for
megascale agent based model simulations on graphics
processing units. Journal of Artificial Societies and
Social Simulation, 11(4):10, 2008.

[9] NVIDIA. NVIDIA CUDA Programming Guide 2.0.
2008.

[10] NVIDIA Corporation. Particles Example. NVIDIA
CUDA SDK, 2008. Ver. 2.1.

[11] Owens, D. John, Luebke, David, Govindaraju, Naga,
Harris, Mark, Kruger, Jens, Lefohn, E. Aaron, Purcell,
and J. Timothy. A survey of general-purpose
computation on graphics hardware. Computer
Graphics Forum, 26(1):80–113, March 2007.

[12] K. S. Perumalla and B. G. Aaby. Data parallel
execution challenges and runtime performance of agent
simulations on gpus. In SpringSim ’08: Proceedings of
the 2008 Spring simulation multiconference, pages
116–123, New York, NY, USA, 2008. ACM.

[13] C. Reynolds. Big fast crowds on ps3. In Proceedings of
the ACM SIGGRAPH symposium on Videogames,
pages 113–121, New York, NY, USA, 2006. ACM.

[14] C. W. Reynolds. Flocks, herds and schools: A
distributed behavioral model. In SIGGRAPH ’87:
Proceedings of the 14th annual conference on
Computer graphics and interactive techniques, pages
25–34, New York, NY, USA, 1987. ACM.

[15] N. Satish, M. Harris, and M. Garland. Designing
efficient sorting algorithms for manycore gpus. In
Proceedings of IEEE IPDPS ’09, pages 1–10, 2009.

[16] G. Vigueras, M. Lozano, J. M. Orduña, and
F. Grimaldo. A comparative study of partitioning
methods for crowd simulations. Journal of Applied
Soft Computing, 10(1):225 – 235, 2010.

[17] G. Vigueras, M. Lozano, C. Perez, and J. Orduña. A
scalable architecture for crowd simulation:
Implementing a parallel action server. In Proceedings
of the 37th International Conference on Parallel
Processing (ICPP-08), pages 430–437, Sept. 2008.

[18] G. Vigueras, J. Orduña, and M. Lozano. Advances in
Practical Applications of Agents and Multiagent
Systems, chapter A GPU-Based Multi-Agent System
for Real-Time Simulations, pages 15 – 25. Springer,
April 2010.

[19] C. Xu, S. R. Kirk, and S. Jenkins. Tiling for
performance tuning on different models of gpus. In
Proceedings of ISISE ’09 : Int. Symp. on Information
Science and Engineering, 2009.

[20] K. Zhou, Q. Hou, R. Wang, and B. Guo. Real-time
kd-tree construction on graphics hardware. ACM
Trans. Graph., 27(5):1–11, 2008.

