
Guidelines to Enhance 3-D Stencil Codes on
the Intel Xeon Phi Coprocessor

Mario HERNÁNDEZ a,c,1, Juan M. CEBRIÁN a José M. CECILIA b and José M. GARCÍA a

a Dept. of Computer Engineering, University of Murcia, 30100, Murcia, Spain
b Computer Science Department, Universidad Católica San Antonio de Murcia, Spain

c Academic Unit of Engineering, Autonomous University of Guerrero, Chilpancingo, Gro., México

Abstract. Accelerators like the Intel Xeon Phi aim to fulfill the computational re-
quirements of modern applications, including stencil computations. Stencils are
finite-difference algorithms used in many scientific and engineering applications
for solving large-scale and high-dimension partial differential equations. However,
programmability on such massively parallel architectures is still a challenge for
inexperienced developers.

This paper provides firm foundations to guide developers in maximizing the ben-
efits of hardware-software co-design for computing 3-D stencil codes running on
the Intel Xeon Phi (Knights Corner) architecture. We propose a set of guidelines
to optimize stencil codes based on a C/C++ OpenMP implementation. The guide-
lines are evaluated using three kernels that are widely applied to simulate heat,
acoustic diffusion as well as isotropic seismic wave equations. Our experimental
results yield performance gains over 25x when compared to high-level sequential
implementations (e.g., Matlab).

Keywords. 3-D stencil codes, Xeon Phi, performance optimizations, 3-D finite
difference

Introduction

In the last decade, there has been a technological shift for both hardware and software towards mas-
sively parallel architectures (accelerators). Intel Many Integrated Core (MIC) [1] [2] and Graphics
Processing Units (GPUs) [3] clearly show the potential of these architectures, especially in terms of
performance and energy efficiency. The most powerful supercomputers in the world are currently
based on accelerators [4]. Concurrently, there has been a quick evolution on programming models
for co-processors and GPUs. However, porting applications to these systems is still not a straight-
forward task. In order to maximize performance and energy efficiency of their systems, software
developers need to use the latest breakthroughs in both high performance computing and the spe-
cific field of interest (e.g., image processing, modeling of acoustic or heat diffusion, etc). This verti-
cal approach enables remarkable advances in computer-driven scientific simulations (the so-called
hardware-software co-design).

As stated in [5], many applications are developed using an algorithmic method that captures a
pattern of computation and communication (so-called Dwarf ). These patterns are repeated in differ-
ent applications and thus, hardware-software solutions can be extrapolated to many scientific areas.
This is actually the case of stencils. Stencil codes comprise a family of iterative kernels that operate

1Corresponding Author: Department of Computer Engineering, University of Murcia, 30100, Murcia, Spain; E-mail:
mario.hernandez4@um.es



over an N-dimensional data structure that changes over time, given a fixed computational pattern
(stencil). Given the high level of abstraction and the wide variety of stakeholders that can bene-
fit from stencil computations, the implementation is usually developed using high level program-
ming languages such as Matlab [6]. Matlab provides an accessible entry-point for inexperienced
programmers (e.g., engineers or physicists) to create a computational approximation model of their
problem of interest. This abstraction from low level programming is achieved through a large num-
ber of complex mathematical libraries. However, this ease of programming usually compromises
performance. In addition, those programming languages are inherently sequential, leading to a lim-
ited exploitation of the available resources in modern processors and accelerators. Moreover, even
a low-level straightforward implementation of a stencil code may suffer from low performance [7].

In this paper, we compile and validate a set of optimization guidelines using three 3-D stencil
kernels from different fields of research: 1) 3-D heat diffusion stencil (11-point), 2) 3-D acoustic
diffusion stencil (7-point) and 3) 3-D isotropic seismic wave stencil (25-point). We start from a
simple sequential implementation of the code in Matlab. The first step is to port the code to C/C++
using OpenMP. This version will be the starting point of our guidelines evaluation. Our results show
substantial performance gains (over 25x) compared to a sequential high-level scientific program-
ming language implementation (e.g., Matlab), while at the same time we experience a reduction in
the energy consumption at a board level. The aim of this paper is to guide inexperienced software
developers to optimize stencil computations for the Intel Xeon Phi architecture, although some of
our conclusions are also applicable to other massively parallel architectures (e.g., GPUs).

The paper is structured as follows. The next section gives some fundamentals and related work
about stencil computations and the MIC architecture. Guidelines for improving the parallel perfor-
mance for 3-D stencil codes are introduced in Section 2. Section 3 shows our evaluation results.
Finally, we summarize our conclusions in Section 4.

1. Background and Related Work

1.1. 3-D Stencil Computations

Stencil codes [7,8,9] are a type of iterative kernels which update data elements according to some
fixed predetermined set or pattern. The stencil can be used to compute the value of several ele-
ments in an array at a given time-step based on its neighbour values. This may include values com-
puted in previous time-steps (including the element itself). Stencils are the base of finite-difference
algorithms used for solving large-scale and high-dimension partial differential equations (PDEs).
PDEs provide numerical approximations to computational expensive problems, being widely used
in many scientific and engineering fields. This allows scientists to accurately model phenomena
such as scalar-wave propagation, heat conduction, acoustic diffusion, etc.

Algorithm 1 shows the pseudo-code of a generic three-dimension (3-D) stencil solver kernel.
It is implemented as a triple nested loop traversing the complete data structure while updating each
grid point. The computation of every output element usually requires: a) the weighted contribution
of some near neighbors in each direction defined by the physics of the problem, b) the previous
value of that element in a time t-1 (for second order in-time stencils) and, c) a single corresponding
point from other input arrays. The code normally uses two copies of the spatial grid swapping their
roles as source and destination on alternate time steps as shown in the Algorithm 1.

An important feature of these algorithms is that 3-D stencil kernels usually suffer from a high
cache miss rate and poor data locality. The reason is that, for input sizes that exceed the cache
capacity, by the time we reuse an entry from the dataset it has already been replaced from the cache.
Moreover, the non-linear memory access pattern of 3D based implementations creates additional
memory stalls. As a result, standard implementations of the 3D stencil solvers typically reach a
small fraction of the hardware’s peak performance [10].



Algorithm 1 The 3-D stencil solver kernel. width, height, depth are the dimensions of the data set
including border (halo) points.

1: for time = 0; time < TimeMax; time++ do
2: for z = 1;z < depth−BorderSize;z++ do
3: for y = 1;y < height −BorderSize;y++ do
4: for x = 1;x < width−BorderSize;x++ do
5: stencil solver kernel();
6: end for
7: end for
8: end for
9: tmp = Input Grid; Input Grid = Out put Grid;Out put Grid = tmp;

10: end for

1.2. Intel Xeon Phi Architecture

The Intel Xeon Phi (Knights Corner) coprocessor [1,2] is the first commercial product of the Intel
MIC family. The design is purely throughput oriented, featuring a high number of simple cores
(60+) with support for 512-bit wide vector processing units (VPU). The VPU can be used to pro-
cess 16 single-precision or 8 double-precision elements per instruction. To keep power dissipation
per unit area under control, these cores execute instructions in-order and run at a low frequency
(<1.2Ghz). The architecture is backed by large caches and high memory bandwidth. Xeon Phi is
based on the x86 ISA, allowing a certain degree of compatibility with conventional x86 processors
(but not binary).

The architecture is tailored to run four independent threads per core, where each in-order core
can execute up to two instructions per cycle. Unlike latency oriented architectures, the MIC ar-
chitecture assumes that applications running on the system will be highly parallel and scalable. In
order to hide the cache/memory latency caused by the in-order nature of the cores, the scheduling
policy swaps threads on each cycle. When an application runs a single thread per core, the scheduler
switches to a special null thread before going back to the application thread. Suffice it to say, Intel
recommends at least two threads per core, although the optimal may range from 2 to 4. Running a
single thread per core will reduce the peak capacity of the system by half.

1.3. Related Work

Multi-core architectures provide good opportunities for parallelizing stencil applications. Authors
in [11] present a thorough methodology to evaluate and predict stencil code performance on com-
plex HPC architectures. The authors in [12] introduce a methodology that directs programmer ef-
forts toward the regions of code most likely to benefit from porting to the Xeon Phi as well as
providing speedup estimates. Other researchers [13,14] investigate the porting and optimization
of the test problem basic N-body simulation for the Intel Xeon Phi coprocessor, which is too the
foundation of a number of applications in computational astrophysics and biophysics.

Many proposals have been focused on improving cache reuse. Tiling is a program transforma-
tion that can be applied to capture this data reuse when data does not fit in cache. In [15,16] au-
thors focus on exploiting data locality applying tiling techniques. On the other hand, several works
like [17,18] consider locality and parallelism issues. Kamil et al. [17] examine several optimiza-
tions targeted to improve cache reuse across stencil sweeps. Their work includes both an implicit
cache oblivious approach and a cache-aware algorithm blocked to match the cache structure. This
enables multiple iterations of the stencil to be performed on each cache-resident portion of the grid.
Authors in [18] develop an approach for automatic parallelization of stencil codes that explicitly
addresses the issue of load-balanced execution of tiles.



2. Guidelines to Optimize Stencil Codes

This section focuses on key design decisions that should be considered to exploit massively parallel
architectures at maximum. The main tradeoffs between the different optimization strategies are
discussed to help designers in making an informed decision. Performance evaluation and energy
results are shown in the Section 3.

2.1. Parallelization Strategies

The parallelization process consists of dividing an application in different ”threads” or ”tasks” that
run in parallel on the target architecture. Libraries like Boost or OpenMP allow software developers
to easily write parallel applications and orchestrate a parallel run. OpenMP development is based
on #pragma statements that are captured by the compiler, validated and translated to the appropriate
function calls to the OpenMP library and runtime system. For instance, the directive #pragma omp
parallel for private(i) before a for loop instructs the compiler to parallelize the for loop using all
available cores and that each core holds a private instance of variable i. Additional requirements for
using OpenMP include the declaration of the OMP header file in the source code, and the compiler
flag -openmp to link with the OpenMP libraries. The collapse clause is useful in stencils to merge
loop iterations, increasing the total work units that will be partitioned across the available threads.

In this paper, we have parallelized the outer two loops using the OMP parallel for pragma
with the collapse construct, as shown in Figure 2. The inner loop is left unchanged to be vectorized
(described in Section 2.3). We have set the KMP AFFINITY to scatter to distribute the threads
across the Xeon Phi cores, maximizing the usage of the cache storage space.

Algorithm 2 The 3-D stencil solver kernel parallelized with OpenMP.
1: for time = 0; time < TimeMax; time++ do
2: #pragma omp for collapse (2);
3: for z = 1;z < depth−BorderSize;z++ do
4: for y = 1;y < height −BorderSize;y++ do
5: for x = 1;x < width−BorderSize;x++ do
6: stencil solver kernel();
7: end for
8: end for
9: end for

10: tmp = Input Grid; Input Grid = Out put Grid;Out put Grid = tmp;
11: end for

2.2. Memory Guidelines

3-D stencils operate over an input data represented as a three-dimensional array of elements (sin-
gle/double floating point precision). Next we summarize the best practices we have followed to
improve the performance related to memory allocation and usage.

Data Allocation. Our first recommendation is related to the way data is allocated in memory.
We advise to allocate all rows of the 3-D arrays consecutively in memory (i.e., row major order).
This way of allocating memory follows the convention for n-dimensional arrays in C/C++, meaning
that the right-most index of the array has an access pattern of stride one. Therefore, mapping the
unit stride dimension to the inner loop in nested loop iterations produces a better use of cache lines.
The dataset is thus accessed in order of planes (layers), columns, and finally rows from outer to
inner level.

Data Alignment. Another key factor that can limit performance in the Xeon Phi architecture is
the use of unaligned loads and stores. To perform data alignment correctly, the traditional memory



allocation function calls in C/C++ (i.e. malloc() and free()) are replaced by an alternative imple-
mentations that support data alignment (i.e. mm malloc() and mm free()).

For the Xeon Phi we select an alignment factor of 64 bytes, which is passed as a parameter
to the mm malloc() routine. For example, to allocate the Input Grid float data structure aligned to
64-bytes we can use float Input Grid = mm malloc(Input Grid Size, 64). Additionally,
we have used the clause assume aligned (Input Grid, 64) to provide the compiler with additional
information regarding the alignment of the Input Grid in vectorized loops. Without this information,
the compiler may not be able to correctly identify the alignment used by the data structure.

Padding. Padding is an interesting technique that rearranges data in cache memory by allo-
cating extra unused ”dummy” information in data structures. In our case, padding has been a very
convenient technique to be applied in stencil codes for two main reasons:

1. To avoid the misalignment among rows. As the dataset structure is allocated in memory as
a whole, i.e. by using a single mm malloc() instruction, this may lead to a misalignment of
the data between rows depending on the width of the x dimension. Thus, we use a new width
adding some elements (if needed) to ensure that the first element of each row is on the de-
sired address boundary (64 bytes in Xeon Phi). The new width with padding is calculated as
width PADD = ((((width∗sizeo f (REAL))+63)/64)∗(64/sizeo f (REAL))). REAL stands
for the data type used (float or double) in the kernel.

2. Avoiding pathological conflict misses. Conflict misses2 may appear under certain combina-
tions of blocking size, input size, etc. In some unlikely scenarios, several cache lines map-
ping to the same cache set may cause a low cache hit rate. For the Xeon Phi this happens
when a kernel accesses data with a 4KB stride (L1) or a 64KB stride (L2). In our kernels, we
have experienced this problem in the seismic kernel when accessing data in the Z dimension
in some specific input grid sizes. Our recommendation is to use padding in the problematic
dimension to change the access stride.

Blocking. Stencil codes with an input size that does not fit on the higher cache levels of the
processor will experience a significant performance degradation due to cache capacity misses. Code
transformations that improve data locality can be useful to hide the complexities of the memory
hierarchy, improving overall performance of 3-D stencil codes. Basic transformations include loop
transformations3 and data transformations4 (e.g., blocking).

Blocking is a transformation which groups loop iterations into subsets (or tiles) of size N. The
size of the tiles needs to be adjusted to fit in the cache in order to obtain maximum performance
gains by exploiting data locality. In this way, cache misses can be minimized by bringing a data
block into cache once for all necessary accesses.

In 3-D stencil codes our goal is to exploit data locality, focusing on increasing the reuse of the
elements of the plane (X-Y) for some layers. The first step is to create tiles of size bz, by and bx.
Next, three additional loops are created over the three existing loops to traverse the dataset in tiles
of the selected sizes. A blocking version of a generic 3-D stencil is shown in algorithm 3. After an
analysis of different block sizes we empirically found that width TBlock=width, height TBlock=4
and depth TBlock=4 offer good results for all the evaluated kernels, that is, blocking four rows over
four Z planes while keeping all columns.

2.3. Vectorization

One of the key design features of the Xeon Phi architecture is the use of wide SIMD registers
and vector functional units to improve performance. The MIC Knights Corner (KNC) architecture

2Misses caused by cache lines that map to the same cache set.
3Loop rearrange.
4Changing the layout of data.



Algorithm 3 Blocking technique applied to the 3-D stencil solver.
1: for bz = 1;bz < depth−BorderSize;bz+= depth T block do
2: for by = 1;by < height −BorderSize;by+= height T block do
3: for bx = 1;bx < width−BorderSize;bx+= width T block do
4: for z = bz;z < MIN(bz+depth T block,depth−BorderSize);z++ do
5: for y = by;y < MIN(by+height T block,height −BorderSize);y++ do
6: for x = 1;x < MIN(width T block,width−BorderSize−bx);x++ do
7: stencil solver kernel();
8: end for
9: end for

10: end for
11: end for
12: end for
13: end for

implements a subset of the AVX512 instruction set that operates over 512-bit wide registers. It is
crucial to make use of SIMD features in order to get the best performance out of this architecture.

There are several issues that need to be addressed to achieve the automatic vectorization of the
code. The first one is data alignment. Unaligned loads are not available on the KNC architecture,
but will be in the upcoming Knights Landing (KNL). Therefore, data accesses must start with an
address aligned to 64 bytes (as discussed previously). The second issue is remainders. Vectorizing
a loop requires to handle the remainder data items when the number of iterations is not a multiple
of the vector length (peeling the loop). Nevertheless, this is handled automatically by the compiler
in our evaluation.

The ICC compiler checks for vectorization opportunities whenever the code is compiled us-
ing -O2 or higher. Developers can help the compiler to face loop dependencies by providing addi-
tional information to guide the vectorization process. By using the #pragma simd sentence before
the inner most loop the programmer instructs the compiler to vectorize without performing any
dependency, aliasing or performance analysis. This pragma is designed to minimize the amount
of source code changes required to vectorize the code. In addition, the restrict keyword before a
pointer variable informs ICC that the memory referenced by that pointer is not accessed in any other
way (avoiding pointer aliasing), and may be necessary in the vectorization process (requires the
-restrict compiler flag). Alternatively, the -fargumentnoalias compiler flag would instruct
the compiler that function arguments cannot alias each other along the whole program. End users
can get a detailed report of the vectorization process using the -vec-report3 flag. This can give
useful insights about obstacles found in the vectorization process, such as non-contiguous memory
accesses and loop data dependencies.

2.4. Other Easy-to-Use Low-Level Optimizations

We have restricted ourselves to easy-to-use low level hardware optimizations that can be used by
non-experienced programmers. Other optimization techniques, such as the use of intrinsics, FMA
instructions, or prefetching are therefore out of scope of this paper.

Streaming stores. When an application writes its output in a memory location, the destination
data block is loaded from memory and moved along the memory hierarchy until it reaches the L1
and thus it can be written. However, if the data block is not required for any computation other
than storing the output, this operation can seriously pollute the memory hierarchy. Streaming stores
address this problem by storing a continuous stream of output data without gaps between data
items directly into memory, skipping the intermediate levels of the memory hierarchy. This method
stores data using a non temporal buffer, improving memory bandwidth utilization and potentially
performance. We have used non-temporal stores in the 3-D stencils by putting a #pragma vector



non temporal directive before the inner-most loop. Alternatively, the developer can use the compiler
flag -opt-streaming-stores to control the generation of streaming stores.

Huge page size. The Xeon Phi architecture can be configured to run using either 4KB or 2MB
page sizes (aka huge pages). This configuration allows the Xeon Phi architecture TLB to map 128
MB of memory, as compared to the 256KB mapped by default. This might reduce page faults
significantly (up to 15%) in certain applications. The allocation of huge pages is done by replacing
the mm malloc() calls with the mmap() function.

ECC Memory and Turbo. Error-Correcting Code (ECC) is used to provide error detection
and correction in case of hardware memory errors. On Xeon Phi, it is possible to enable/disable
ECC, slightly increasing performance. Turbo mode is another feature of the Xeon Phi KNC to allow
overclocking based on the current power usage and temperature. ECC can be enabled/disabled using
the command micsmc –ecc disable/enable mic0, whereas micsmc –turbo enable/disable mic0 can
be used to enable/disable the Turbo mode.

3. Evaluation

3.1. Target Platforms

Our evaluation uses the Intel’s ICC compiler (version 14.0.2), running on CentOS 6.5 with kernel
2.6.32 and Intel’s MPSS 3.4.3. The target system contains two Ivy Bridge-EP Intel Xeon E5-2650v2
CPUs (2x8 cores in total) running at 2.6 GHz and 32GB of DDR3-1600 main memory. The eval-
uated Intel Xeon Phi coprocessor is the 7120P model. The 7120P has 61 cores working at 1.238
GHz, 32KB of the L1 data and instruction caches and 512 KB of L2 cache per core. The archi-
tecture provides a theoretical peak computation of 2420 gigaflop per second (GFlop/s) for single
precision variables (32 bits). In addition, another important feature of Intel Xeon Phi coprocessors
is the high memory bandwidth. The 7120P has 16 memory channels, each 32-bits wide, adding up
to a theoretical bandwidth of 352 GB/s (transfer speeds of 5.5 GT/s).

With these features, the theoretical arithmetic intensity5 (AI) to exploit the full performance of
the Xeon Phi 7120P is around 10.9 Flop/Byte. Considering the true achievable maximum memory
bandwidth is limited to 50-60% of the peak memory bandwidth, the feasible AI is around 6.8
Flop/Byte. This means that, for this architecture, we can characterize a given compute kernel as
compute bounded if its AI is greater that 6.8 Flop/Byte, or memory bounded in the opposite case.

3.2. Target Codes

We have evaluated three different stencil solvers to test our approach. These solves cover a wide re-
search area and have distinct computational features. The most common stencil code is represented
by the 3-D acoustic diffusion stencil, which uses a stencil of 7-point spatial neighbors and second
order in time. It uses three different matrices of the same size for the kernel calculation and has a
low AI (slightly more than 1). Our second kernel is the 3-D isotropic seismic wave stencil of 25-
point spatial neighbors and also second order in time. This solver has greater AI than the previous
one (slightly greater than 2), although it uses an additional matrix for storing physical characteris-
tics (four matrices in total). Finally, we have evaluated our simplest solver, the 3-D heat diffusion
stencil of 11-point spatial neighbors and first order in time, which only uses two matrices for the
stencil calculation and has an AI close to 3. As we can observe, all codes are memory-bounded and
thus, they could only achieve a small fraction of the peak performance of the Xeon Phi.

5Number of floating point operations per byte of data [10].



Related the shape of the grid, as it dictates the memory access patterns, rectangular cuboid
shapes of width x height x depth have been chosen for the experiments. Finally, two sizes of the
input grid of the kernels have been considered: small one (grid of 400x300x200 and 92 MB of size)
and large one (400x600x1000 grid, 916 MB size). Note that these sizes are referred as to the size of
only one of the input matrices of the kernels.

3.3. Experimental Performance Evaluation

The base implementations of our kernels are developed using C and OpenMP. The C versions out-
perform the equivalent Matlab codes by a factor of ∼5× when running on a single thread. Addition-
ally, we validate our results by performing a performance profile using both Intel VTune Amplifier
XE 2015 (for detailed code analysis) and PAPI (for power measurements and L1 cache analysis).

Figure 1 shows the performance and speedup (secondary Y axis) for the two analyzed ma-
trix sizes and for the different optimizations we have presented along the paper. We have set four
threads per core and the KMP AFFINITY to scatter, and the block size used in the graphs are
width TBlock=width, height TBlock=4 and depth TBlock=4. The labels of the plots mean the fol-
lowing: base) stands for unvectorized code, B-Block) for unvectorized code with blocking, Vectoriz)
for vectorized code, V-Block) for vectorized code with blocking, V-H-Block) for vectorized code
with blocking and huge pages, V-S-Block) for vectorized code with blocking and sstores and, finally,
oth(t-ECC)) for vectorized code with blocking, sstores, turbo and ECC disabled.

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

10

30

50

70

90

110

130

150

170

190

210

230

250

270

290

B
as
e

B
-B
lo
ck

V
e
ct
o
ri
z

V
-B
lo
ck

V
-H
-B
lo
ck

V
-S
-B
lo
ck

O
th
(t
-e
cc
)

B
as
e

B
-B
lo
ck

V
e
ct
o
ri
z

V
-B
lo
ck

V
-H
-B
lo
ck

V
-S
-B
lo
ck

O
th
(t
-e
cc
)

B
as
e

B
-B
lo
ck

V
e
ct
o
ri
z

V
-B
lo
ck

V
-H
-B
lo
ck

V
-S
-B
lo
ck

O
th
(t
-e
cc
)

Acoustic Seismic Heat

Sp
e

e
d

u
p

 

G
Fl

o
p

/s
 

GFlops

Speedup

(a) Small size (92 MB)

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

10,0

10

30

50

70

90

110

130

150

170

190

210

230

250

270

290

B
as
e

B
-B
lo
ck

V
e
ct
o
ri
z

V
-B
lo
ck

V
-H
-B
lo
ck

V
-S
-B
lo
ck

O
th
(t
-e
cc
)

B
as
e

B
-B
lo
ck

V
e
ct
o
ri
z

V
-B
lo
ck

V
-H
-B
lo
ck

V
-S
-B
lo
ck

O
th
(t
-e
cc
)

B
as
e

B
-B
lo
ck

V
e
ct
o
ri
z

V
-B
lo
ck

V
-H
-B
lo
ck

V
-S
-B
lo
ck

O
th
(t
-e
cc
)

Acoustic Seismic Heat

Sp
e

e
d

u
p

 

G
Fl

o
p

/s
 

GFlops

Speed-up

(b) Large size (916 MB)

Figure 1. Performance (Gflops) and speedup (secondary Y) of different optimization strategies for the 7120P.

The use of blocking on the parallel base code offers little to none performance improvement
in both sizes and for all kernels. This suggests that the Xeon Phi is able to significantly hide the
memory latency by switching threads during cache misses. On the other hand, when vectorization
is enabled, data elements from matrices are consumed much faster by the VPU, and blocking mech-
anisms start to pay off. Vectorization shows a substantial performance improvement for all kernels
and sizes, but is far from the ideal 16× speedup expected from the 512-bit registers. Checking at
the VTune profile we notice that the memory-boundedness nature of the kernels is severely limiting
the performance of the vector units. As a consequence, blocking obtains a clear improvement when
applied to the vectorized version.

We have also tested our kernels using huge pages and sstores but found no performance im-
provement but for heat stencil kernel, specially for big matrix sizes. Again, we attribute this be-
havior to the low AI of the kernels and the way that the Xeon Phi hides latency by constantly con-
text switching between execution threads. Finally, disabling ECC and overclocking the board yields



substantial performance improvements for all kernels (although most of the performance benefit
comes from disabling ECC).

Figure 2 shows the energy profile and the average power (secondary Y axis) for the two ana-
lyzed matrix sizes. Energy measurements show a similar trend to that of performance. The greatest
energy saving comes from vectorization, showing a slight increase in the average power consumed
by the board for big matrix sizes. This gives an idea on how beneficial is this technique to improve
energy efficiency. Moreover, for small matrix sizes, both acoustic and heat kernels show a reduction
on the average power dissipated by the board. This can only mean that the cores spend more time
idle waiting for data, and power saving mechanisms remain active for longer periods of time.

150

155

160

165

170

175

180

185

190

195

200

205

210

215

220

10

100

1000

10000

B
A

SE

B
-B

LO
C

K

V
EC

TO
R

IZ

V
-B

LO
C

K

V
-H

-B
LO

C
K

V
-S

-B
LO

C
K

O
th

(t
-e

cc
)

B
A

SE

B
-B

LO
C

K

V
EC

TO
R

IZ

V
-B

LO
C

K

V
-H

-B
LO

C
K

V
-S

-B
LO

C
K

O
th

(t
-e

cc
)

B
A

SE

B
-B

LO
C

K

V
EC

TO
R

IZ

V
-B

LO
C

K

V
-H

-B
LO

C
K

V
-S

-B
LO

C
K

O
th

(t
-e

cc
)

Acoustic Seismic Heat

A
vg

. 
P

o
w

e
r 

(W
at

ts
) 

En
e

rg
y 

(K
ilo

 J
o

u
le

s)
 

ENERGY

AVG. POWER

(a) Small size (92 MB)

150

160

170

180

190

200

210

220

230

240

250

10

100

1000

10000

100000

B
A

SE

B
-B

LO
C

K

V
EC

TO
R

IZ

V
-B

LO
C

K

V
-H

-B
LO

C
K

V
-S

-B
LO

C
K

O
th

(t
-e

cc
)

B
A

SE

B
-B

LO
C

K

V
EC

TO
R

IZ

V
-B

LO
C

K

V
-H

-B
LO

C
K

V
-S

-B
LO

C
K

O
th

(t
-e

cc
)

B
A

SE

B
-B

LO
C

K

V
EC

TO
R

IZ

V
-B

LO
C

K

V
-H

-B
LO

C
K

V
-S

-B
LO

C
K

O
th

(t
-e

cc
)

Acoustic Seismic Heat

A
vg

. 
P

o
w

e
r 

(W
at

ts
) 

En
e

rg
y 

(K
ilo

 J
o

u
le

s)
 

ENERGY

AVG. POWER

(b) Large size (916 MB)

Figure 2. Energy and average power (secondary Y) of different optimization strategies for the 7120P.

The average power remains barely unchanged for both acoustic and seismic kernels when using
other optimizations rather than vectorization. This suggests that the core activity remains relatively
unchanged, something that does not happen with the heat kernel. This could be attributed to its
higher AI, meaning that code changes have a greater impact on the computations performed by this
kernel, even if they do not translate into a noticeable speedup. Finally, when ECC is disabled and
the cores are overclocked, we see a substantial increment on the average power dissipated by the
board. There is a direct relationship between power and frequency, when overclocking the cores the
power dissipated by the board increases accordingly.

4. Conclusions and Future Work

This paper presents a set of guidelines to help developers in maximizing the benefits of hardware-
software co-design for computing 3-D stencil codes running on the Intel Xeon Phi (Knights Corner)
architecture. Programmability on massively parallel architectures can be a challenge for inexperi-
enced developers, but the proposed guidelines will ease the porting of any stencil-based application
to these architectures. Real world applications based on Stencil computations can take great advan-
tage of the proposed optimizations, not only providing faster results, but also improving accuracy
by allowing more detailed simulations of different phenomena. This has a real impact on the society
enabling scientists to overcome emerging challenges.

We have used the C/C++ language with OpenMP extensions to code the three stencils kernels
evaluated in this work. Experimental results show the performance evolution for different kernels
through the optimization process. Vectorization is the key strategy from our results, from both per-
formance and energy points of view. In addition, the application of blocking techniques improves



memory locality for these kernels, and thus performance and energy. Finally, the use of overclocking
and non-ECC memory improves the performance but expending more energy at the board level.

As for future work, we are interesting to extend our evaluation to larger datasets using also
double data types. To properly handle big sizes, we plan to split input data among different Xeon
Phi cards, analyzing the communication effects on the performance.

Acknowledgements

This work is jointly supported by the Fundación Séneca under grant 15290/PI/2010, and the Span-
ish MINECO as well as EC FEDER funds under grant TIN2012-31345 and CAPAP-H5 NoE
(TIN2014-53522-REDT). In addition, to Nils Coordinated Mobility under grant 012-ABEL-CM-
2014A (partly financed by the ERDF). Mario Hernández was supported by the PROMEP under the
Teacher Improvement Program (UAGro-197) - México.

References

[1] Jim Jeffers and James Reinders. Intel Xeon Phi coprocessor high-performance programming. Elsevier Waltham
(Mass.), Amsterdam, Boston, 2013.

[2] Rezaur Rahman. Intel Xeon Phi Coprocessor Architecture and Tools: The Guide for Application Developers. Apress,
Berkely, CA, USA, 1st edition, 2013.

[3] M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton, E. Phillips, Yao Zhang, and V. Volkov.
Parallel Computing Experiences with CUDA. IEEE, Micro, 28(4):13–27, July 2008.

[4] Top 500 supercomputer site, [last access 15 June 2015]. http://www.top500.org/.
[5] Krste Asanovic and et al. The landscape of parallel computing research: A view from berkeley. Technical Report

UCB/EECS-2006-183, Berkeley, Dec 2006.
[6] Timmy Siauw and A. M. Bayen. An introduction to MATLAB programming and numerical methods. Elsevier, 2015.
[7] Ulrich Trottenberg, Cornelius W Oosterlee, and Anton Schuller. Multigrid. Academic press, 2000.
[8] Matteo Frigo and Volker Strumpen. Cache Oblivious Stencil Computations. In Proc. of the 19th Annual International

Conference on Supercomputing, ICS ’05, pages 361–366, New York, USA, 2005. ACM.
[9] V.T. Zhukov, M.M. Krasnov, N.D. Novikova, and O.B. Feodoritova. Multigrid effectiveness on modern computing

architectures. Programming and Computer Software, 41(1):14–22, 2015.
[10] Jim Reinders and James Jeffers. High Performance Parallelism Pearls, Multicore and Many-core Programming

Approaches, chapter Characterization and Auto-tuning of 3DFD, pages 377–396. Morgan Kaufmann, 2014.
[11] Raúl de la Cruz and Mauricio Araya-Polo. Modeling stencil computations on modern HPC architectures. In 5th Int.

Workshop (PMBS14) held as part of SC14. Springer, 2014.
[12] J. Peraza, A. Tiwari, M. Laurenzano, L. Carrington, W.A. Ward, and R. Campbell. Understanding the performance of

stencil computations on Intel’s Xeon Phi. In Int. Conf. on Cluster Computing (CLUSTER), pages 1–5, Sept 2013.
[13] Jianbin Fang, Henk Sips, LiLun Zhang, Chuanfu Xu, Yonggang Che, and Ana Lucia Varbanescu. Test-driving Intel

Xeon Phi. In Proc. of the 5th ACM/SPEC Int. Conf. on Performance Engineering, pages 137–148. ACM, 2014.
[14] Karpusenko Vadim Vladimirov Andrey. Test-driving Intel Xeon Phi coprocessors with a basic N-body simulation.

Coflax International, 2013.
[15] G. Rivera and Chau-Wen Tseng. Tiling Optimizations for 3D Scientific Computations. In Supercomputing,

ACM/IEEE Conference, pages 32–32, Nov 2000.
[16] Yonghong Song, Rong Xu, Cheng Wang, and Zhiyuan Li. Data locality enhancement by memory reduction. In Proc.

of the 15th int. conf. on Supercomputing, pages 50–64. ACM, 2001.
[17] Shoaib Kamil, Kaushik Datta, Samuel Williams, Leonid Oliker, John Shalf, and Katherine Yelick. Implicit and

Explicit Optimizations for Stencil Computations. In Proc. of the Workshop on Memory System Performance and
Correctness, MSPC ’06, pages 51–60, New York, USA, 2006. ACM.

[18] Sriram Krishnamoorthy, Muthu Baskaran, Uday Bondhugula, J. Ramanujam, Atanas Rountev, and P Sadayappan.
Effective Automatic Parallelization of Stencil Computations. In Proc. of the ACM SIGPLAN Conf. on Programming
Language Design and Implementation, PLDI ’07, pages 235–244, New York, USA, 2007. ACM.

http://www.top500.org/

