
Simulation of P Systems with Active Membranes on CUDA

Jose M. Cecilia, Ginés D. Guerrero,
José M. Garcı́a

Grupo de Arquitectura y Computación Paralela
Dpto. Ingenierı́a y Tecnologı́a de Computadores

Universidad de Murcia
Campus de Espinardo, 30100 Murcia, Spain

Email: {chema, gines.guerrero, jmgarcia}@ditec.um.es

Miguel A. Martı́nez–del–Amor, Ignacio Pérez–Hurtado,
Mario J. Pérez–Jiménez

Research Group on Natural Computing
Dpt. of Computer Science and Artificial Intelligence

University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

Email: {mdelamor, perezh, marper}@us.es

Abstract—P systems or membrane systems provide a high
level computational modeling framework that combines the
structural and dynamic aspects of biological systems in a
relevant and understandable way. P systems are massively
parallel distributed, and non-deterministic systems. In this
paper, we describe the implementation of a simulator for the
class of recognizer P systems with active membranes by using
the GPU (Graphics Processing Unit). We compare the high-
performance parallel simulator for the GPU to the simulator
developed on a single CPU (Central Processing Unit), and we
show that the GPU is better suited than the CPU to simulate
P systems due to its highly parallel nature.

I. INTRODUCTION

Membrane computing (or cellular computing) is an
emerging branch within Natural Computing. The main idea
is to consider biochemical processes taking place inside
living cells from a computational point of view, in a way that
gives us a new non-deterministic model of computation by
using cellular machines. The devices of this model are called
P systems [38], and they consist of a cell-like membrane
structure, where in the compartments are multisets of objects
which evolve according to given rules in a synchronous non-
deterministic maximally parallel manner.

There are different computing models that have been
investigated in this area: transition P system, P system
with active membranes, probabilistic P system, stochastic P
system, etc. All of these models are theoretically designed
to solve diverse problems.

Most researches in membrane computing [6] concentrate
on the computational power and efficiency of the devices
involved, but lately they have been focused on modeling bi-
ological phenomena within the framework of computational
systems biology being complementary and an alternative to
more classical approaches (i.e. ODEs, Petri Nets, etc) [29].

Moreover, P systems have been successfully used as a
computational modeling tool for diverse biological processes
[29]. For instance, assuming that this paradigm is based in
the structure and functioning of living cells, several models
and simulators have been developed for apoptotic processes
[5], communication among bacteria [30], etc. Furthermore,

P systems have been also successfully applied as a tool for
macroscopic level processes, as the computational modeling
of ecosystems [3], [4].

Up to now, there have been no in vivo nor in vitro
implementations of P systems, so computation and analysis
of these devices is currently performed by simulators. There-
fore, P systems simulators are tools that help the researchers
to extract results from a model. These simulators have to be
as efficient as possible when handling large problem sizes.
This is one of the main problems with current simulators
for P systems.

Software applications for membrane computing normally
implement sequential (or parallel with few threads) algo-
rithms simulation [7] adapted to common CPU architectures.
These kinds of algorithms do not get performance when the
problem size increases. In this sense, the simulation of P
systems capable of constructing an exponential workspace
(expressed by the number of membranes and objects) in
linear time is especially critical.

One such widely used model is P systems with active
membranes (that is membrane division and polarization),
these abstract the biological process of mitosis to obtain new
membranes. This model has been successfully used to design
(uniform) solutions to well-known NP-complete problems,
such as SAT [27] and Subset Sum [25] problems. We deal
with this model because of the difficulty and low perfor-
mance it presents when simulate in conventional computers.
Our aim is to analyze the efficiency of a simulator based
in a massively parallel architecture by using this P system
model. This will help to develop efficient simulators for the
study of biological processes with P systems in future.

The massively parallel nature of a P system computation
leads us to look for a massively-parallel technology where
the simulator can run efficiently. The newest generation
of graphics processor units (GPUs) are massively parallel
processors which can support several thousand of concur-
rent threads. Many general purpose applications have been
designed on these platforms due to its high performance
[31], [34]. Current NVIDIA GPUs, for example, contain up
to 240 scalar processing elements per chip [17], and they

are programmed using C and CUDA [20], [35].
In this paper, we present a massively parallel simulator for

the class of recognizer P systems with active membranes us-
ing CUDA. The simulator receives as input a P system which
is defined by using the P-Lingua [7] programing language.
The simulator is divided in two main stages: Selection stage
and Execution stage. Both phases are implemented on the
GPU, so the simulator is executing in parallel.

We test the simulator with a P system which exploits
the intrinsic parallelism that P systems naturally have and
demonstrate that a GPU is better suited than a CPU to
simulate those P system as long as the problem size increase.

The rest of the paper is structured as follows. In Section
2 we describe the model of recognizer P systems with
active membranes. Section 3 introduces the Compute Unified
Device Architecture (CUDA), and some concepts of pro-
gramming on GPUs are specified. In Section 4 we explain
the design of the simulator. In Section 5 we implement the
P system for testing our simulator, and we explain the tool
used for its definition. Finally, Section 6 shows some results
and compare them to sequential version of the simulator.
The paper ends with some conclusions and ideas for future
work in Section 7.

II. RECOGNIZER MEMBRANE SYSTEMS

A. Membrane Computing background

Membrane Computing is a vivid research area initiated in
1998 by Gh. Păun [23]. In October 2003, the Institute of
Scientific Information (ISI) designed Membrane Computing
as a Fast Emerging Research Front in Computer Science
[39]. Also, the foundational paper [23] was nominated by
the ISI as the Fast Breaking Paper of February 2003.

The main idea was to abstract the structure and function-
ing of a cell in order to extract computing models. Many
of them have been proved to be computational complete
(they are equivalent in power to Turing machines), and
other higher-order structures as the organization of cells
into tissues, organs and neural networks have been also
considered and used to abstract other computing models (see
[24] for details).

A large variety of cell-like computing models, called P
systems, were considered in this framework based on the fun-
damental concept of biological membranes; the respective
models are distributed (compartmentalized) parallel com-
puting devices, processing multisets of abstract objects by
means of various types of rules. Parallelism, communication,
non-determinism, synchronization, dynamic architecture of
the model, etc, are aspects of the theory, with biological,
mathematical and computer science sources of inspiration
[13].

A P system consists of a set of syntactic components: a
membrane structure (it is formed by a rooted tree of mem-
branes arranged hierarchically inside a root membrane called
skin, delimiting regions), multiset of objects (corresponding

to chemical substances present in the compartments of a
cell), and evolution rules (corresponding to chemical reac-
tions that can take place inside the cell).

A computation of a P system is a (finite or infinite) se-
quence of instantaneous transitions between configurations,
assuming a global clock that synchronize the execution. The
computation starts always with a initial configuration of the
system, where the input data is encoded. The transition from
one configuration to the next one is performed by applying
rules to the objects placed inside the regions. Whenever it is
not possible to apply more rules to the existing objects and
membranes of a given configuration, the computation halts
(then, the configuration is called a halting computation). The
result of a computation of the system is encoded by the
multiset associated with a specific output membrane (or the
environment) in a halting configuration of the computation.

Non-determinism is presented in a P system when there
are more than one possible transition from one configuration,
resulting in a tree of computations with several of possible
paths. That is, more than one rule can be selected in a given
configuration, but only one of them can be executed (which
leads to different configurations). Thus, a non-deterministic
P system has many possible computations, where some of
them are halting computations, and others are infinite.

Furthermore, a P system is confluent when all the com-
putations (that is, every path of the computation tree), with
the same initial configuration, sends out the same answer.
Therefore, we have only to look at one computation in order
to know the answer when using confluent P systems, since
the rest of computations will send the same output.

Finally, P systems can be used for addressing the efficient
resolution of decision problems. These kinds of problems
require either a yes or no answer. In this sense, we consider
recognizer P systems [26] as P systems with external output
(the results of halting computations are encoded in the
environment) such that:

1) the working alphabet of objects contains two distin-
guished elements yes and no.

2) all computations halt; and
3) if C is a computation of the system, then either object

yes or object no (but not both) must have been released
into the environment, and only in the last step of the
computation.

B. P systems with active membranes, membrane division
and polarization

Polynomial time solutions to NP-complete problems in
membrane computing are achieved by trading time for
space. This is inspired by the ability of cells to produce
an exponential number of new membranes in polynomial
time. There are many ways a living cell can produce new
membranes: mitosis (cell division), autopoiesis (membrane
creation), gemmation, etc. Following these inspirations a
number of different models of P systems has arisen [7].

In this paper we focus on the model of P systems with
active membranes. It is one of the most studied models in
Membrane Computing, very well-known by the P system
community, and one of the first models presented by Gh.
Păun [24]. P systems with active membranes is formed by a
membrane structure, where a label and a polarization is as-
sociated to each membrane. In this model, every elementary
membrane is able to divide itself by reproducing its content
into a new membrane.

Here we provide a short recall of its features (see [24]
for details). The model of P system with active membranes
is a construct of the form Π = (O,H, μ, ω1, . . . , ωm, R),
where m ≥ 1 is the initial degree of the system; O is
the alphabet of objects, H is a finite set of labels for
membranes; μ is a membrane structure (a rooted tree),
consisting of m membranes injectively labeled with elements
of H , ω1, . . . , ωm are strings over O, describing the multisets
of objects placed in the m regions of μ; and R is a finite set
of rules, where each rule is of one of the following forms:

(a) [a → v]αh where h ∈ H , α ∈ {+,−, 0} (electrical
charges), a ∈ O and v is a string over O describing
a multiset of objects associated with membranes
and depending on the label and the charge of the
membranes (evolution rules).

(b) a []αh → [b]βh where h ∈ H , α, β ∈ {+,−, 0},
a, b ∈ O (send-in communication rules). An object
is introduced in the membrane, possibly modified,
and the initial charge α is changed to β.

(c) [a]αh → []βhb where h ∈ H , α, β ∈ {+,−, 0},
a, b ∈ O (send-out communication rules). An ob-
ject is sent out of the membrane, possibly modified,
and the initial charge α is changed to β.

(d) [a]αh → b where h ∈ H , α ∈ {+,−, 0}, a, b ∈ O
(dissolution rules). A membrane with a specific
charge is dissolved in reaction with a (possibly
modified) object.

(e) [a]αh → [b]βh [c]γh where h ∈ H ,α, β, γ ∈ {+,−, 0},
a, b, c ∈ O (division rules). A membrane is di-
vided into two membranes. The objects inside the
membrane are replicated, except for a, that may be
modified in each membrane.

Rules are applied according to the following principles:

• All the elements which are not involved in any of the
operations to be applied remain unchanged.

• Rules associated with label h are used for all mem-
branes with this label, no matter whether the membrane
is an initial one or it was generated by division during
the computation.

• Rules from (a) to (e) are used as usual in the framework
of membrane computing, i.e. in a maximal parallel way.
In one step, each object in a membrane can only be used
by at most one rule (non-deterministically chosen), but
any object which can evolve by a rule must do it (with

the restrictions indicated below).
• Rules (b) to (e) cannot be applied simultaneously in a

membrane in one computation step.
• An object a in a membrane labeled with h and with

charge α can trigger a division, yielding two mem-
branes with label h, one of them having charge β and
the other one having charge γ. Note that all the contents
present before the division, except for object a, can
be the subject of rules in parallel with the division.
In this case we consider that in a single step two
processes take place: “first” the contents are affected
by the rules applied to them, and “after that” the results
are replicated into the two new membranes.

• If a membrane is dissolved, its content (multiset and
interior membranes) becomes part of the immediately
external one. The skin is never dissolved neither di-
vided.

In the literature, recognizer P systems are associated in a
natural way with P systems with input. The data representing
an instance of the decision problem has to be provided to the
P system to compute the appropriate answer. This is done
by codifying each instance as a multiset placed in an input
membrane. The output of the computation, yes or no, is sent
to the environment [26].

Note that P systems with active membranes can be seen
as devices with two levels of parallelism: among membranes
(every membrane works independently, with the exception
of when there are communication across them) and among
objects inside a membrane (the rules are applied to the
existing multiset of objects in a maximal parallel way).
This characteristic is used in order to quickly solve NP-
complete problems, as mentioned so far, by trading time for
space. The main idea is to encode each possible instance in
a distinguished membrane, and select the membranes that
encode a solution to the problem in a parallel manner.

III. PARALLEL COMPUTING ON THE GPU

Before discussing the design of our simulator for P
systems with active membranes, we briefly introduce the
NVIDIA’s GPU used in our tests and CUDA programing
model. GPUs (Graphic Processing Units) were designed to
accelerate graphics applications, using for this task pro-
graming interfaces such as OpenGL and DirectX. Due to
its tremendous parallelism and arithmetic intensity, GPUs
have became a massively parallel processor very attractive
to develop scientific applications. NVIDIA consolidated
this trend launching a line of GPUs optimized for general
purpose computations called TESLA [17].

A. Hardware Background

Figure 1 shows the Tesla architecture. Particularly, the
Tesla C1060 [17] is based on scalable processor array
which has 240 streaming-processor (SP) cores organized

GPU

host CPU

system memory

host interface

GDDR3 GDDR3 GDDR3 GDDR3 GDDR3 GDDR3 GDDR3 GDDR3

Off-chip Memory

Interconnection Netwrok

Shared Memory

(16 KB)

SM

SP SP SP SP

SPSPSPSP

Figure 1. Tesla C1060 GPU with 240 SPs:Streaming Processors. Organized in 30 SMs: Streaming Multiprocessors

as 30 streaming multiprocessor (SMs) and 4GB of off-
chip GDDR3 memory called device memory or global
memory. The applications start at host side (CPU side) which
communicates with device side (GPU side) through PCI
Express x16 bus (PCI Express delivers up to 4 GB/sec of
peak bandwidth per direction, and up to 8 GB/s concurrent
bandwidth). The SM is the processing unit and it is an
unified graphics and computing multiprocessor. Every SM
contains eight SPs arithmetic cores, a set of 16384 32-bit
registers, a 16-Kbyte read/write on-chip shared memory that
has very low access latency, and access to the global memory
(the video memory tied to the graphics card, whose latency
is around 400-600 cycles). The SM also has two SFUs
that execute more complex FP operations such as reciprocal
square root, sine or cosine with low latency. The arithmetic
units are capable to execute three instructions per clock
cycle, and they are fully pipelined, running at 1,296 GHz,
yielding 933 GFLOPS (240 SP * 3 instructions *1,296GHZ)
of peak theoretical for the GPU. Table I shows the major
hardware constraints on Tesla C1060.

A SM is a hardware device specifically designed with
multithreaded capabilities. It manages and executes up to
1024 threads in hardware with zero scheduling overhead.
Each thread has its own thread execution state and can
execute an independent code path. SMs execute threads
in Single-Instruction Multiple-Thread (SIMT) fashion [17].
SMs create, manage, schedule and execute threads in groups
of 32 threads. This set of 32 threads is called Warp. Each SM
can handle up to 32 Warps (1024 threads in total). Individual

threads of the same Warp must be of the same type and start
together at the same program address, but they are free to
branch and execute independently.
The execution flow begins with a set of Warps ready to be
selected. The instruction unit, which is ready for issue and
executing instructions, selects one of them. The SM maps all
the threads in an active Warp to the SP cores, and each thread
executes independently with its own instructions and register
state. Some threads of the active Warp can be inactivated
due to branching or predication, and this is a critical point
in the optimization process. The maximum performance is
achieved when all the threads in an active Warp takes the
same path. If the threads of a Warp diverge, the Warp serially
executes each branch path taken, disabling threads that are
not in that path, and when all the paths complete, threads
reconverge to the original execution path [17].

Table I
MAJOR HARDWARE AND SOFTWARE CONSTRAINTS ON TESLA C1060

Hardware Parameters Limitation
Streaming Multiprocessor (SM) 30
Streaming Processor/SM (SP) 8

32-bit Registers/SM 16384
Shared Memory/SM 16KB

Threads/SM 1024
Threads/Block 512
Threads/Warp 32

Device Memory 4GB

Figure 2. CUDA programming model

B. Software Background

Parallel computing programs on GPUs are programed us-
ing the C and C++ programing language along with CUDA
extensions (Compute Unified Device Architecture)[37]. In
CUDA parallel programing [20], [35], an application con-
sists of a sequential code (host code) that may execute
parallel programs known as kernels on a parallel device. The
host program executes on the CPU and the kernels execute
on the GPU (see figure 2).

A kernel is a SPMD (Single Program, Multiple Data)
computation executed by large number of threads running in
parallel. The programer organizes these threads into a grid of
thread blocks. A thread block in CUDA is a set of threads
that execute the same program (kernel) and cooperate to
obtain a result through barrier synchronization and a per-
block shared memory space (private to that block).

The programer declares the number of threads block per
grid and also the number of threads per thread block (see
figure 2). Blocks in a grid are declared in one or two
dimensions, and all of them have their own and unique
identifier. Similarly, threads in a block can be declared in
one, two or three dimensions, having their own and unique
identifier too. Besides, the maximum number of threads in
a block is 512. Using a combination of thread id and block
id, threads can access to different data addresses and also to
select the program code that they run.

Thread blocks in the CUDA programing model are seen
as virtual multiprocessors, since they have a fixed allocation
of per-block shared memory and each thread in a block has

a fixed register footprint [34]. The communication between
thread blocks is performed through global memory and the
synchronization among them is only obtained whenever the
kernel ends.

C. CUDA tools support

There are several tools that makes easier the task of
programing in the CUDA development cycle. Firstly, the
nvcc compiler handles all parts of the compilation flow,
trying to hide the compilation details from developers and
giving a wide range of compiler options. There are several
compiler flags that are really useful in certain parts of the
development process. For the debug purpose there is an
emulation mode which is enabled with the compiler flag
-g (this flag generates debuggable code). Furthermore, the
compiler has other flags which are focused on optimizing
the CUDA code. These flags are -ptx -cubin.

The Parallel Thread Execution (PTX) code is an
assembly-like representation which is produced by the nvcc
compiler, whenever a CUDA code is compiled with the
-ptx flag enabled, and it is optimized by the CUDA runtime
to get hardware-specific binaries for execution. Notice that
PTX code is not the code which executes on the GPU, but
it gives an approximated idea of the execution.

Besides, the nvcc compiler has the -cubin flag which
produces a .cubin file. This file contains information about
occupancy of each SM. It also shows the number of registers
per thread, the amount of shared memory used by a thread
block, whether the kernel is using local memory or not, and
finally, the binary code of the application. This information
can be used to obtain the maximum occupancy of the SM
depending on the resources used by each thread block.

Other software tools have been created to support the
CUDA programers and ease the CUDA development cycle,
such as CudaVisualProfiler or decuda [37]. The former is a
quite useful tool to profile your CUDA code. The latter is
a disassembler for the Nvidia CUDA binary (.cubin) format
and it helps to identify bottlenecks showing the internal
instructions generated for the G8x and G9x architectures.

IV. SIMULATOR FOR P SYSTEMS WITH ACTIVE
MEMBRANES

In this section we briefly describe the simulator of rec-
ognizer P systems with active membranes that we have
designed.

Figure 3 shows the basic design of the simulator. We
identify each membrane as a thread block where each thread
represents an element of the alphabet O. Each thread block
runs in parallel looking for the set of rules that has to select
for its membrane, and each individual thread is responsible
for identifying if there are some rules associated with the
object that it represents (each thread select the rules that
need to be executed by using the represented object).

P system

Threads

Thread Block n

................

Membrane n

0 1 2

2
5
4

2
5
5

0 1 2 n

Objects

Threads

Thread Block 1

Membrane 0

0 1 2

2
5

4

2
5
5

0 1 2 n

Objects

................

GPU

Figure 3. Design of the simulator: mapping membranes and objects with
thread blocks and threads

The simulator is executed into two stages: selection stage
and execution stage. This is based on the simulator for P
systems with active membranes developed in PLinguaCore
by I. Pérez–Hurtado et al [8]. The selection stage consists of
the search for the rules to be executed in each membrane. At
this stage, non-determinism is presented when it is possible
to select several rules, but only one of them can be executed.
For example, two evolution rules that can be executed using
the same object, a division rule and a send-in rule that can
be selected in the same membrane at the same time, etc.

We assume that the input P system is confluent (see
section II-A) in order to avoid non-determinism. So, instead
of working with the entire tree of possible computations, the
simulator selects and simulates only one path. Since all paths
are guaranteed to give the same answer. The computation
path can be selected by choosing one set of rules to be
executed with the lowest cost. We measure the cost in
number of membranes and synchronizations. These are the
conditions that damage the simulation performance the most.
In this context, we introduce the following priorities among
rules in our simulator:

1) Dissolution rules decrease the number of membranes
(highest priority);

2) Evolution rules do not need any communication
among membranes (which avoids synchronization);

3) Send-out rules do need communication between the
given membrane and its parent (adding one object to
its parent);

4) Send-in rules do need communication between the
given membrane and its parent (reserving one object
from its parent and adding the object to itself);

5) Division rules increase the number of membranes
(lowest priority).

Once the rules have been selected, the execution stage
consists of the execution of these rules. Both stages have
been parallelized on the GPU as several different kernels
due to the need of global synchronization among each stage.

The input data for the selection kernel consists of the
description of the membranes with their multisets (strings
over the working alphabet O, labels associated with the
membrane in H , etc...), and the set of rules R to be selected.
The output data of this kernel is the set of selected rules,
and also the modified description of the membranes where
the evolution rules have been applied. We decide to execute
evolution rules in this kernel due to two main reasons:
the evolution rules do not implies communication (and so
synchronization) among membranes, and they are executed
in a maximal manner. Moreover, this decision allow to use
less global memory because it does not store the selected
evolution rules for the execution stage.

Besides, the rest of the rules to be applied are executed
in different kernels, one kernel per each kind of rule (send-
in communication, send-out communication, dissolution and
division), giving a result of the execution stage. We design
the execution kernel in this way because, otherwise, we
should implement a bigger kernel with branches to identify
each kind of rule to be applied, and this model decreases the
performance of our application. As result of the execution
kernel, the membranes can vary including new objects,
dissolving membranes, dividing membranes, etc. Therefore,
we modify the input data for the next execution of selection
kernel with the newest structure of membranes. It is an
iterative process until a halting configuration or a system
response is reached.

Our simulator presents two restrictions, constrained by
some peculiarities in CUDA programming model: it can
handle only two levels of membrane hierarchy for simplicity
(the skin and the rest of elementary membranes), which is
enough for solving many NP-complete problems; moreover,
the number of objects in the alphabet must be divisible by a
number smaller than 512 (the maximum number of threads
per thread block), in order to distribute the objects among
the threads equally.

V. TEST P SYSTEM DESIGNED FOR PERFORMANCE
ANALYSIS

In this section, we design a test P system that extracts
parallelism among objects and membranes to study the
performance of the simulator. This P system is based on
evolution rules and one division rule to create new mem-
branes in every step, with no communication (without send-
out/send-in rules) and no dissolution. The rooted membrane

tree has only two levels: the skin (with label 1) and the
elementary membranes (with label 2).

We define the following rules:
(a) Evolution rules: [oi → oi]02, 0 <= i < n
(b) Division rule: [d]02 → [d]02 [d]02
This P system allow us to take control of the number

of objects in the system by modifying the n parameter.
Furthermore, the number of rules changes along with the
number of objects, and the number of membranes in every
step is defined by 2s, where s is the step number. Lastly,
the number of evolution rules selected and executed per
membrane in every step is invariable, since one object
evolves always to the same.

We encoded the test P system by using P-Lingua [7],
which is a programing language useful for defining P system
models with active membranes. In this work, we use the new
version, P-Lingua 2.0 [8], to generate a binary file that our
simulator can use as input. This binary file is easy-to-read
by a C++ program, containing all the information of the P
system (Alphabet, Labels, Rules, . . .).

VI. EXPERIMENTS

This section presents the results of the simulator making
a comparison between a sequential simulator developed
in C++ language and the simulator developed in CUDA.
For our tests, we use two benchmarks based on the P
system explained in section V. These benchmarks cover both
ways of parallelism that P systems naturally have by its
definition. The first benchmark tests the parallelism between
membranes, increasing the number of membranes expo-
nentially, and the second benchmark tests the parallelism
between objects increasing the number of objects within
each membrane exponentially.

We use CUDA version 2.1 in our experiments and Tesla
C1060 GPU. GPU experiments we performed on a computer
with an Intel core2 Quad Q9550 system running at 2.83GHz
with 4GB of main memory. The performance of the CPU
simulator used as comparison was measured with single-
thread code executing on the same CPU of the CUDA
simulator. The CPU simulator was compiled with gcc and
the -O3 option, and the CUDA simulator was compiled and
debugged by using the tools explained in section III-C. The
performance for the CUDA simulator includes the cost of
transferring input data from host CPU memory across the
PCI-Express bus to the GPU’s on board memory.

Figure 4 shows the performance between the sequential
version of the simulation of P systems with active mem-
branes and the CUDA version of this simulation in a log
scale. Specifically, figure 4(a) shows the behaviour of both
simulators executing the benchmark which increases the
number of membranes exponentially (2n), having a fixed
number of objects per membrane (2560 objects).

On one hand, the CPU simulator increases its time from
the beginning (with 4 membranes) until reaching the final

configuration (with 32768 membranes) along with the prob-
lem size.

On the other hand, the CUDA simulator assigns 256
threads per block (each thread handles 10 elements per
membrane). 256-thread blocks provide the overall best per-
formance in our experiments. Figure 4(a) shows that the
CUDA code increases its performance compared with the
sequential code when the number of membranes increases,
obtaining the overall best performance when the resources
of the GPU are fully utilized (whenever the simulator has
enough blocks and threads to fully utilized all the GPU
cores). The difference of performance between both sim-
ulators is maintained from this point.

Figure 4(b) shows the behaviour of both simulators exe-
cuting the benchmark which increases the number of objects
per membrane. In this case, the number of membranes
is fixed to 1024 which implies to have enough blocks to
distribute the work among multiprocessors. Our simulations
starts with only few objects per membrane, which implies
just few threads per block in the CUDA code. In this case,
figure 4(b) shows that the sequential code obtains better
performance than the CUDA code until the simulations
reach 32-elements per membrane. Less than 32-elements per
membrane implies less than 32-threads per blocks in the
CUDA code which avoid even fulfills a Warp, hence GPU
resources are badly used.

The sequential code increases its simulation time along
with the number of objects. In the sequential code just one
thread has to deal with all the objects in each membrane, one
by one, hence the simulation time increases as much as the
number of objects also increases. However, the simulation
time is maintained by the CUDA code until reaching 256-
objects configuration. The simulation time increases a little
bit faster from this configuration because the following con-
figurations have more objects per membranes than threads
per block (uses 256-thread blocks). Therefore, objects in a
membrane are equally distributed across all the threads in
a block: 512-object per membrane implies 2 objects per
thread, 1024-object per membrane implies 4 objects per
thread, and so on. Otherwise it implies to have an overloaded
thread which reduce the performance of our simulator, and
leads us to conclude to have lightweight threads.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have introduced the design of a simulator
for the class of recognizer P systems with active membranes
on the GPU. Our experimental results demonstrate that
GPUs are good platforms to simulate membrane systems
due to the double parallel nature that they present. The first
level of parallelism is presented by the objects inside the
membranes which fits with the parallelism among threads
exposed on GPUs, and the second one is presented between
membranes which we represent with the thread blocks on
CUDA programing model.

�
�

��
��

��
���

���
���

�	��
�	��

�	
�
��
�

�����
�����

	��		

��			

�	�			

�		�			

�			�			

�				�			

�					�			

�						�			

��������������

���������

����� ��!����� ���"

#
$
�
%
�
��
�
�
�&

��
�
�'
"
�
%
(

(a) Varying the number of membranes

�
�

��
��

��
���

���
���

�	��
�	��

�	
�
��
�

�����
�����

	��		

��			

�	�			

�		�			

�			�			

�				�			

�					�			

�						�			

�������	
�	������������������

�
�
�
�
�
�
	
�
��

��
�
��
�
�
�
�

�����������	��

��)*��	��

(b) Varying the number of objects per membrane

Figure 4. P system simulation performance for both sequential and CUDA simulator

Using the power and parallelism that provides GPUs to
simulate P systems with active membranes is a new concept
in the development of applications for membrane computing.
Although GPUs are not a cellular machine, their features
help the researches to accelerate their simulations allowing
the consolidation of the cellular machines as an alternative
to traditional machines.

P systems are very interesting tools to deal with NP-
complete problems, by taking as inspiration the operation
of living cells and cell reproduction (creating an exponential
number of new membranes in polynomial time). Moreover,
membrane computing has been used recently to model many
biological systems and to complement other classical ap-
proaches, i.e. to simulate the behaviour of some ecosystems
or certain processes inside cells like apoptosis. Hence, we
consider that obtaining efficient simulations of P systems is
really interesting for scientific research.

In forthcoming versions, we will adapt our simulator to
simulate specific problems at maximum performance. We
are also working to obtain fully simulation of P systems
with active membranes, deleting the limitations showed in
section IV. Furthermore, we need to include the possibility
to simulate other kind of P systems in our simulator, such as
probabilistic P system model or stochastic P system model,
which are used to attack other kind of problems within the
framework of computational systems biology.

It is also important to remark that this simulator is limited
by the available resources on the GPU as well as the CPU
(RAM, Device Memory, CPU, GPU). They limit the size of
the instances of NP-complete problems whose solutions can
be successfully simulated. In the following versions, we will
reduce the memory requirements in order to handle bigger
instances of NP-complete problems.

Although the massively parallel environment that provides
GPUs is good enough for the simulator, we need to go
beyond. The newest cluster of GPUs provides a higher mas-
sively parallel environment, so we will attempt to scale to
those systems to obtain better performance in our simulated
codes and also more memory space for our simulations.

ACKNOWLEDGMENTS

The first three authors acknowledge the support of the
project from the Fundación Séneca (Agencia Regional de
Ciencia y Tecnologı́a, Región de Murcia) under grant
00001/CS/2007, and also by the Spanish MEC and European
Commission FEDER. The last three authors acknowledge
the support of the project TIN2006–13425 of the Ministerio
de Educación y Ciencia of Spain, cofinanced by FEDER
funds, and the support of the “Proyecto de Excelencia con
Investigador de Reconocida Valı́a” of the Junta de Andalucı́a
under grant TIC04200.

REFERENCES

[1] A. Alhazov and M.J. Pérez–Jiménez, “Uniform solution of
QSAT using polarizationless active membranes,” in Machines,
Computations, and Universality, J. Durand-Lose and M. Mar-
genstern, Eds. Lecture Notes in Computer Science, 4664, 2007,
pp. 122-133.

[2] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M.
Houston, and P. Hanrahan, “Brook for GPUs: stream comput-
ing on graphics hardware,” in SIGGRAPH ’04, ACM Press,
2004, pp. 777-786.

[3] M. Cardona, M. Angels Colomer, M.J. Pérez–Jiménez, D.
Sanuy, and A. Margalida, “Modeling ecosystems using P
systems: the bearded vulture, a case study,” in Proceedings of
Workshop on Membrane Computing, Edinburgh, UK, 2008,
pp. 137-156.

[4] M. Cardona, M.A. Colomer, A. Margalida, I. Pérez–Hurtado,
M.J. Pérez–Jiménez, and D. Sanuy, “P system based model of
an ecosystem of the scavenger birds,” in Proceedings of the 7th
Brainstorming Week on Membrane Computing, vol. I, 2009,
pp. 65-80.

[5] S. Cheruku, A. Paun, F.J. Romero–Campero, M.J. Pérez–
Jiménez, and O.H. Ibarra, “Simulating FAS-induced apoptosis
by using P systems,” Progress in Natural Science, vol. 17 (4),
2007, 424-431.

[6] G. Ciobanu, M.J. Pérez–Jiménez, and G. Păun. Applications
of membrane computing. Natural Computing Series, Springer,
2006.

[7] D. Dı́az–Pernil, I. Pérez–Hurtado, M.J. Pérez–Jiménez, and
A. Riscos–Núñez, “A P-Lingua programming environment
for Membrane Computing,” in Membrane Computing: 9th
International Workshop (WMC08), Lecture Notes in Computer
Science, 2009, 187-203.

[8] M. Garcı́a–Quismondo, R. Gutiérrez–Escudero, M.A.
Martı́nez–del–Amor, E. Orejuela, and I. Pérez–Hurtado,
“P-Lingua 2.0: A software framework for cell-like P systems,”
International Journal of Computers, Communications and
Control, vol. IV (3), 2009, 234-243.

[9] M. Garland, S.L. Grand, J. Nickolls, J. Anderson, J. Hardwick,
S. Morton, E. Phillips, Y. Zhang, and V. Volkov, “Parallel
computing experiences with CUDA,” IEEE Micro, vol. 28 (4),
2008, 13-27.

[10] N.K. Govindaraju and D. Manocha, “Cache–efficient numeri-
cal algorithms using graphics hardware,” Parallel Comput., vol.
33 (10-11), 2007, 663-684.

[11] M.A. Gutiérrez–Naranjo, M.J. Pérez–Jiménez, and A. Riscos–
Núñez, “Available membrane computing software,” in Appli-
cations of Membrane Computing, G. Ciobau, Gh. Păun, M.J.
Pérez–Jiménez, Eds. Natural Computing Series, 2006, pp. 411-
436.

[12] M.A. Gutiérrez–Naranjo, M.J. Pérez–Jiménez, and A. Riscos–
Núñez, “Towards a programming language in cellular comput-
ing,” Electronic Notes in Theoretical Computer Science, vol.
123, 2005, 93-110.

[13] M.A. Gutiérrez–Naranjo, M.J. Pérez–Jiménez, A. Riscos–
Núñez, and F.J. Romero–Campero, “Computational efficiency
of dissolution rules in membrane systems,” International Jour-
nal of Computer Mathematics, vol. 83 (7), 2006, 593-611.

[14] M. Harris, S. Sengupta, and J.D. Owens, “Parallel prefix sum
(Scan) with CUDA,” GPU Gems 3, 2007.

[15] T.D. Hartley, U. Catalyurek, A. Ruiz, F. Igual, R. Mayo,
and M. Ujaldon, “Biomedical image analysis on a cooperative
cluster of GPUs and multicores,” in Proceedings of the 22nd
annual international conference on Supercomputing (ICS ’08),
ACM, 2008, pp. 15-25.

[16] M.D. Lam, E.E. Rothberg, and M.E. Wolf, “The cache
performance and optimizations of blocked algorithms,” in Pro-
ceedings of the fourth international conference on Architectural
support for programming languages and operating systems
(ASPLOS-IV), ACM, 1991, pp. 63-74.

[17] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym,
“NVIDIA Tesla: A unified graphics and computing architec-
ture,” IEEE Micro, vol. 28 (2), 2008, 39-55.

[18] W.R. Mark, R.S. Glanville, K. Akeley, and M.J. Kilgard,
“Cg: a system for programming graphics hardware in a C–
like language,” SIGGRAPH ’03, ACM, 2003, pp. 896-907.

[19] J. Michalakes and M. Vachharajani, “GPU acceleration of
numerical weather prediction,” IPDPS, 2008, pp. 1-7.

[20] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable
parallel programming with CUDA,” Queue, vol. 6 (2), 2008,
40-53.

[21] J. D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone,
and J.C. Phillips, “Gpu computing,” in Proceedings of the
IEEE, vol. 96 (5), 2008, 879-899.

[22] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger,
A.E. Lefohn, and T.J. Purcell, “A survey of general–purpose
computation on graphics hardware,” Computer Graphics Fo-
rum, vol. 26 (1), 2007, 80-113.

[23] G. Păun, “Computing with membranes,” Journal of Computer
and System Sciences, vol. 61 (1), 2000, pp. 108-143, and Turku
Center for Computer Science-TUCS Report No 208.

[24] G. Păun, Membrane Computing, an introduction. Springer-
Verlag, Berlin, 2002.

[25] M.J. Pérez–Jiménez and A. Riscos–Núñez, “Solving the
Subset–Sum problem by active membranes,” New Generation
Computing, vol. 23, 2005, 367-384.

[26] M.J. Pérez–Jiménez and F.J. Romero–Campero, “An efficient
family of P systems for packing items into bins,” Journal of
Universal Computer Science, vol. 10 (5) 2004, 650-670.

[27] M.J. Pérez–Jiménez, A. Romero–Jiménez, and F. Sancho–
Caparrinini, “A polynomial complexity class in P systems
using membrane division,” Journal of Automata, Languages
and Combinatorics, vol. 11 (4), 2006, 423-434.

[28] M.J. Pérez–Jiménez, A. Romero–Jiménez, and F. Sancho–
Caparrini, “Complexity classes in models of cellular computing
with membranes,” Natural Computing, vol. 2 (3), 2003, 265-
285.

[29] F.J. Romero-Campero, “P Systems, a Computational Mod-
elling Framework for Systems Biology,” Doctoral Thesis,
University of Seville, Department of Computer Science and
Artificial Intelligence, 2008.

[30] F.J. Romero-Campero and M.J. Pérez–Jiménez, “A model
of the Quorum Sensing system in Vibrio Fischeri using P
systems,” Artificial Life, vol. 14 (1), 2008, 95-109.

[31] A. Ruiz, M. Ujaldon, J.A. Andrades, J. Becerra, K. Huang, T.
Pan, and J.H. Saltz, “The GPU on biomedical image processing
for color and phenotype analysis,” BIBE, 2007, pp. 1124-1128.

[32] S. Ryoo, C. Rodrigues, S. Baghsorkhi, S. Stone, D. Kirk,
and W. mei Hwu, “Optimization principles and application
performance evaluation of a multithreaded GPU using CUDA,”
in Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 2008, pp. 73-
82.

[33] S. Ryoo, C.I. Rodrigues, S.S. Stone, J.A. Stratton, Sain-Zee
Ueng, S.S. Baghsorkhi, and W.W. Hwu, “Program optimization
carving for GPU computing,” J. Parallel Distrib. Comput., vol.
68 (10), 2008, 1389-1401.

[34] N. Satish, M. Harris, and M. Garland, “Designing Efficient
Sorting Algorithms for Manycore GPUs,” in Proceedings of
the 23rd IEEE International Parallel and Distributed Processing
Symposium, May 2009, unpublished.

[35] NVIDIA CUDA Programming Guide 2.0, 2008:
http://developer.download.nvidia.com/compute/cuda/2 0/
docs/NVIDIA CUDA Programming Guide 2.0.pdf

[36] GPGPU organization. World Wide Web electronic publica-
tion: www.gpgpu.org

[37] NVIDIA CUDA. World Wide Web electronic publication:
www.nvidia.com/cuda

[38] The P systems Webpage: http://ppage.psystems.eu

[39] Institute of Scientific Information, Philadelphia PA, USA:
http://esi-topics.com/erf/october2003.html

