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ABSTRACT

Network performance in multiprocessors degrades dra-
matically when the network is beyond saturation. Vir-
tual channels and adaptive routing soften this effect,
but they cannot eliminate it. Moreover, close to sat-
uration, packets become blocked faster than deadlock
avoidance or recovering mechanisms can manage. In
the latter case, the deadlock frequency becomes so high
that it makes recovery solutions inacceptable. Network
congestion effects include performance breakdown, ex-
ponential augment of packet latency and asymmetries
in the use of buffers in symmetric networks, making
the network inappropriate for providing QoS. Conges-
tion control has been widely discussed in literature in
wormhole contexts. However, due to the ease of in-
tegrating large buffers in switches, cut-through is be-
coming popular, opening a new branch of study.

To be able to deal with network congestion some
global network information would be necessary. How-
ever, for propagating such information, additional re-
sources must be used. In this paper, a congestion
control technique for k-ary n-cubes with virtual cut-
through is proposed. This technique uses local in-
formation for congestion detection, provided by the
number of occupied buffers, to estimate the conges-
tion level. When congestion is detected, it acts by
limiting the injection of new messages in the source of
the problem. This source is deduced by looking into
the headers of the buffered and recently routed mes-
sages.

KEY WORDS
Network congestion control, high-performance net-
works, virtual cut-through

1 Introduction

Nowadays, processors are increasing their clock rate
in such a way that soon the interconnection network
will become the system’s bottleneck. Moreover, we
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Figure 1. Effect of the congestion in the network.

can connect more than one host/processor per router
to make the best use of the network. In this way, the
injected load increases and, as a consequence, the net-
work can reach saturation, greatly degrading the sys-
tem’s performance. A mechanism that avoids reach-
ing the saturation point would help to improve the
system’s throughput. Figure 1 shows how delivered
load dramatically falls when the network enters in the
saturation zone.

Deadlocks have been well studied in literature
[1, 2], leading to the conclusion that they have great
influence in the performance of the network when it is
saturated. On the other hand, nowadays virtual cut-
through has became popular in multicomputer envi-
ronments owing to the ease of integrating large buffers
in switches. It offers as an advantage versus wormhole
that a blocked message can be buffered in the router,
releasing the resources occupied by its tail. Virtual
channels can help us to postpone the apparition of con-
gestion, by allowing other messages to advance despite
some of them remaining stopped. An adaptive routing
algorithm can also help, by trying to avoid the con-
gested zones. But this just shifts the saturation point,
thus, delaying the moment the network gets saturated,
but not avoiding it, leading to an unbalanced virtual
channel utilization. Furthermore, the point this occurs
will depend on the message destination distribution



(for example, with bit-reversal or shuffle distributions
it will be reached sooner than using a uniform one).

1.1 Congestion avoidance vs. conges-
tion control

There exists a point in the applied load vs. time graph
at which the network performance begins to decrease.
This point is close to the knee of the latency curve that
starts to show a slight increase. When the applied
load is increased even more, the network gets satu-
rated, and the delivered load falls sharply. This point
coincides with an exponential augment of latency.

The congestion problem may be handled by
avoiding the congestion or controlling it. Congestion
avoidance tries not to exceed the performance knee
associated with the sharp increase of the latency. On
the other hand, congestion control avoids the satura-
tion of the network by keeping the delivered load at
its maximum level but suffering greater latencies.

Several methods have been proposed in literature
for congestion controlling in high performance inter-
connection networks, but all of them are based on
wormhole. The characteristics of this switching tech-
nique make it difficult to find heuristics which provide
a local estimation of the congestion [3, 4, 5]. However,
virtual cut-through offers new possibilities for detect-
ing the apparition of congestion.

In this paper we present two new congestion con-
trol techniques to prevent a virtual cut-through net-
work from reaching saturation using local information
for detection purposes. These techniques work well
with several destination distributions.

2 Background and related work

In wormhole contexts, several congestion control mech-
anisms can be found in literature. Their approaches
are diverse, but we can mainly classify them in two
types: those based on local information and those
based on global information

The former ones use the congestion side effects
in the nodes for congestion detection purposes. Usu-
ally, these methods use message throttling in the node
that detected the congestion as a way of handling it,
because they try to act locally as well. This has as a
disadvantage that we are not acting on the responsi-
ble node, furthermore, the detecting node is penalized
without cause. Lopez et al. [4, 5] measure the amount
of output virtual channels occupied in the node to es-
timate the congestion. However, it is very difficult, if
not impossible, to adjust its parameters for working
well in all cases. Baydal et al. [3] suggest injecting
new messages only if at least one virtual channel into
each useful physical channel is free, or at least there
is one physical channel with all their virtual channels

free. An advantage of this method is that there is
no threshold to adjust and it behaves quite well with
different traffic patterns. The main drawback of the
methods based on local information is that they work
almost in "open-loop", getting slow and indirect feed-
back.

The latter ones, explicitly propagate congestion
information that can be complex enough to indicate
that congestion is starting in some zone of the net-
work. Namely, in [6] a timeout-based method is de-
scribed. The timeouts are used to measure how long
a message head is stopped in the input buffers. If this
time exceeds a threshold, congestion is assumed and
some dedicated lines are used for propagating this in-
formation to the other nodes. A node that receives
that signal reduces its injection rate. A drawback of
this method is the adjustment of the timeouts. The
technique proposed by Kim et al [7] allows the sender
to kill any packet with a delay greater than a given
threshold. In this approach, short packets are padded
in order to assure that the sender can kill them be-
fore they reach their destination. This may produce
network overload if messages are sent to distant nodes.

In [8], a mechanism that uses global information
about the network is shown. In this case it takes a
sole measure: the amount of occupied buffers in the
whole network. In this way, the information about
which nodes are responsible for the congestion, or
which zones are more congested, is lost. The authors
argue that this problem is solved with a mechanism
for threshold self-tuning. They claim that with this
mechanism, the thresholds reach different values de-
pending on whether the congesting nodes are dispersed
or grouped. However, this is just claimed, not shown
in the paper. Moreover, some bandwidth is reserved
to transmit this information. Bandwidth is a valuable
resource and they should have analyzed what level of
congestion the network would reach if the whole band-
width had been used for sending user packets.

The main problem of the congestion control tech-
niques based on global information lies in the resources
needed for propagating such information to the nodes,
leading to a traffic overload.

3 General approach

The general idea can be summarized as follows. First,
detect congestion. Second, select the responsible
node/s. Third, restrict message injection in some
sources, by requiring the selected node to suspend in-
jecting new messages into the network for a certain
period of time. From here, a few questions need to be
answered.



3.1 What is the criterion to detect the
start of congestion?

The congestion detection can be carried out in each
node by means of local or global information. In the
local approach, a node detects congestion by itself, us-
ing its own buffers’ occupancy, timeouts, etc. In the
global approach, congestion is detected by using in-
formation about the whole network, which must be
gathered from the other nodes. We are interested in
the local approach because there is always a first node
that detects the congestion locally.

Jain [9] already proposed to use the amount of
packets in the input queues of routers, as a con-
gestion indicator for the store-and-forward switching
technique. Congestion is detected if there is more than
one packet on average stored in the input queue. This
measure is obtained by computing the average queue
occupation for a given period.

Virtual cut-through offers the same advantages
as wormbhole at low load, namely, low message latency.
However, it also offers the chance to use the fact that
at high load, messages tend to occupy buffers in the
same way as they do with store-and-forward.

Each buffer can store one or more messages. We
can obtain a congestion indicator by taking the num-
ber of queued messages per physical channel. Initially,
messages will not be queued, because they will be im-
mediately routed as in wormhole. As congestion is
appearing, messages tend to occupy the virtual chan-
nels buffers. In a few cycles, the amount of queued
messages will cross a threshold and we will determine
that congestion is present. Another possibility is to
detect congestion when any buffer stores more than
one packet.

Jain also suggests to calculate the mean queue
length by sampling from the time that a queue be-
comes empty. However, in this particular context
this might not happen, thus sampling the instanta-
eous queue lengths with a certain degree of skepticism
is chosen. We are going to require the number of oc-
cupied buffers to exceed a threshold for a given period
of time, in order to start to believe that congestion
exists.

Summarizing, our approach consists of measuring
the number of occupied buffers in each virtual chan-
nel of a node. This quantity is used to determine the
presence of congestion in a local way. However, we can
manage this indicator in several ways. For example, we
can take the buffer occupancy in each routing, or the
average buffer occupancy for a given period, or we can
sample every given amount of cycles and decide that
congestion is starting when that instantaneous value
exceeds a threshold.

3.2 Which sources should be informed?

A first approach could be to act in the node that de-
tected the congestion by limiting its message injection.
However this can lead to an unfair situation, because
while a node is throttling, its neighbours may be tak-
ing advantage of this, sending messages at the same
rate without detecting congestion. Without enough
care, some nodes might reach a state of starvation.
Therefore, it is very important to be able to esti-
mate which nodes are responsible for the congestion.
This can be done in several ways. One of them could
be by propagating information about the congested
zones and leaving each source to decide whether or not
it must reduce its injection rate. Another one would
be to use a received messages history and to extract
from it the node that is sending more packets towards
this zone. The chosen approach has been the latter.

3.3 How is injection controlled and by
how much?

An easy method to control the injection of new mes-
sages is message throttling that delays in some cycles
the injection of each new message. This reduces the
applied load and allows the network to return to a
normal working point.

We have decided to use global message throttling,
that is, to apply message throttling in source nodes
that are not necessarily the congestion detector. In
this case, we need to inform about the congestion to
that nodes.

However, to send congestion control packets
through the normal lines when the network is in sat-
uration is dangerous. Our control packet may arrive
too late. A suitable solution is to use a virtual channel
for control purposes. This virtual channel would have
more priority that the rest and because of our network
being based on virtual cut-through, this kind of con-
trol messages would arrive at its destination through
a decongested path. It is important to note that in
wormbhole this technique would leave a fraction of our
bandwidth not in use, but as we are using virtual cut-
through, we can multiplex at packet level and do not
waste bandwidth when there is no control packet to
send. Nowadays, integrating a new buffer in our switch
is not a problem.

Thus, when congestion is detected, a congestion
control message will be sent to the node that we have
estimated as responsible. When the source receives
this control message, it delays in an initial number of
cycles the injection of new messages. Next, the mech-
anism can behave by following two approaches,

1. If, after a given period of time, the switch contin-
ues detecting congestion, then it will send another



control message to the new responsible node (be-
cause now it may not be the same one). If a source
that is limiting its injection rate does not receive
a new congestion message, then it will reduce the
delay until it reaches zero again. On the other
hand, if it receives such a message, the delay will
be increased as in the first case.

2. If, after a given period of time, the limited source
has not received a "non-congestion" control mes-
sage, it increases the message injection delay. This
can be done following a linear or a geometric pro-
gression. When such a message is received, the
delay is progressively decreased until it reaches
zero again.

In order to reduce the number of control messages
sent when the network is saturated, it would be prefer-
able the second approach. However both of them have
been tested to obtain a comparison.

3.4 How can we detect that congestion
is about to disappear?

When the number of occupied buffers falls below the
congestion threshold, we can affirm that congestion is
disappearing. However, if there is only one threshold,
the mechanism may be very sensitive to little interfer-
ences. Therefore, it may be convenient to use an upper
and a lower threshold in order to have some hysteresys.
However, due to the reasons exposed in subsec. 3.1, a
sole threshold is used in this first approach. It may be
necessary to check if the condition is kept for a certain
number of cycles in order to believe it or to check it
every given amount of cycles.

3.5 When and how can we restore the
injection rate in the sources?

Let’s assume that congestion is disappearing. Source
nodes must act depending on the approach followed
according to those described in subsec. 3.3. If the se-
lected approach was the second one, each switch must
remember at which nodes the congestion message was
sent in order to send them the non congestion message.
On the other hand, if the chosen approach was the first
one, each source will stop limiting after a given period
of time without receiving a new congestion message.
The way in each source reduces its delay may be lin-
ear, geometric, logaritmic or a mixture of them. The
linear way has been chosen for our first tests.

3.6 Is the congestion control mecha-
nism fair?

A congestion control mechanism is said to be fair if
only those nodes that are using more bandwidth than
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Figure 2. Delivered load vs. time when congestion is
checked every 128, 64, 32, 16 and 8 routings. Message
size of 64 bytes, timeout of 64 cycles in the source and
4 headers in the history. Uniform, bit-reversal and
shuffle distributions.
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Figure 3. Delivered load with different sizes of history.
Congestion is checked every 16 routings, message size
of 64 bytes and timeout in source of 64 cycles. Uni-
form, bit-reversal and shuffle distributions.

they should, react by limiting their injection rate. If
this does not happen, we can find some network con-
figuration with a good performance, but with unfair
behaviour. For example, two nodes sending packets
by a common path may be transmitting at very differ-
ent rates. Our approach aims to reach an efficient and
fair solution.

4 Experimental results

We are interested in a global congestion control mecha-
nism based on local detection. Our mechanism uses as
a congestion estimator the number of occupied buffers
in each virtual channel. A unique threshold with a
value of two buffers, indicates when congestion is ap-
pearing and when it is disappearing. When the estima-
tor exceeds the threshold, the headers of the buffered
messages and a number of headers belonging to the
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Figure 4. Delivered load with several timeouts. Con-
gestion is checked every 16 routings, message size of
64 bytes and 4 headers in the history. Distributions:
uniform, bit-reversal and shuffle.

most recently routed messages are checked. The most
frequent source is taken as responsible for the conges-
tion and a control message is sent to it.

Actually, in our simulations the congestion mes-
sage is not sent to the source, the chosen source re-
ceives that information instantaneously. This is not
the actual behaviour, but it provides an upper bound-
ary of the performance of this method. The injec-
tion limitation is carried out by delaying in a num-
ber of cycles the injection of each new message. The
load applied has been square pulses with a maxi-
mum of 0.8 flits/cycle/node and a minimum of 0.05
flits/cycle/node with message size of 64 bytes. The two
approaches suggested in subsec. 3.3 have been used.

4.1 Our first implementation

Several simulations have been realized in order to show
the behavior of the proposed method for congestion
controlling. The network chosen was a k-ary n-cube
with 512 nodes forming a 3D torus. The switching
technique is virtual cut-through and there is only one
host per switch. Three diferent destination distribu-
tions have been used: uniform, bit-reversal and shuffle.
Every given period the virtual channels occupancy is
checked in order to detect congestion. The injection
is controlled by following the first approach shown in
subsect. 3.3. The initial delay chosen was 32 cycles,
and each new message adds 32 cycles to the delay.
Every triggered timeout substracts 32 cycles.

There are several questions to be answered in this
model.

e How frequently must the router check the conges-
tion estimator? We have chosen to check the
number of occupied buffers every given amount of
routings because in this way it is easy to stop the
routings for a while and then to send the control
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Figure 5. Latency vs. time with several timeouts, from
8 to 128 cycles. Distributions: uniform, bit-reversal
and shuffle.

0.9 T T
every injected message
every 2 injected messages -------
08 | every 3 injected messages -------- |

Applied Load ——-—

Normalized load (flits/cycle/node)

. . . . .
1.80+06 2e+06 2.2e+06 2.4e+06 2.6e+06
Time (cycles)

Figure 6. Load vs. time with the new approach.

message if necessary. Figure 2 shows the network
performance when different sampling frequencies
are applied. The chosen frequency was every 16
routings.

o What values must be assigned to the thresholds?
The value chosen has been two occupied buffers.
The reason is that when the network is working
normally, every received message is routed again
without delay, occuping only one buffer. How-
ever it would be necessary to make a comparison
among different threshold values.

e How many headers must be stored in the history?
If the number is not big enough, the estimation
of the responsible node could be erroneous and
innocent nodes will be penalized. However, fig. 3
shows that the history size does not seem to be
very important. This may be due to the fact that
the headers of the stored packets are also used in
the estimation.

o What value of timeout is necessary to decide when
to reduce the limitation? This is a parameter
which is difficult to adjust. Probably, it will de-
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Figure 7. Latency vs. time with the new approach.

pend on the network size, the message length and
the applied load. If we choose too low a value,
the source will decrease the delay and after a few
cycles it will receive a new congestion message,
leading to the same delay as before. On the other
hand, if the value is too big, the network will not
react fast enough to adapt itself to the new situ-
ation, leading to delays in the messages. Figure 4
shows the delivered load versus simulation time
with different timeouts.

Figure 5 shows message latency versus time with
several timeouts. It can be noted that with a low
timeout the latency behaves in the same way as
it did without congestion control when the distri-
bution is bit-reversal and shuffle. Uniform distri-
bution has almost always good behavior.

5 Our second implementation

A drawback of our first implementation was the great
number of parameters to adjust. In this implementa-
tion we have started from the same premises than our
first one including the following changes.

The injection control mechanism is the second one
proposed in subsec. 3.3. Every time a new message is
received, the switch checks the congestion level. This
is done by testing if the number of occupied buffers
in that virtual channel exceeds two. In that case, a
congestion control message is sent to the responsible
node and its identifier is stored.

In each routing, the number of occupied buffers
in the virtual channel is checked. If it is below two
buffers, a "non-congestion" control message is sent to
the responsible node, whose identifier was stored when
the congestion was detected. If congestion is detected
several times and the responsible node is different that
the old one, a "non-congestion" control message is sent
to the old source and a congestion one is sent to the
new source of congestion. If, after a given number of
injected messages, the limited source has not received
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Figure 8. Comparison between the first and the second
approach.

a "non-congestion" control message, it increases the
message injection delay. This is done following a lin-
ear progression, starting from 32 cycles and adding
32 cycles each time. When a "non-congestion" con-
trol message is received, the injection delay is progres-
sively decreased in the same way until it reaches zero
again. This approach has as an advantage that we
must adjust just the number of injected messages be-
fore testing congestion in the source. Figures 6 and 7
show the admitted load and message latency respec-
tively for different values of that parameter. As can
be seen, the better performance is reached by increas-
ing/decreasing the injection delay after every message.

6 Conclusions and Future Work

In this paper two new congestion control mechanisms
have been proposed. Both of them are based on lo-
cal detection of the congestion with message throttling
in the sources that are estimated as causing the con-
gestion. This estimation is made by means of a his-
tory containing the headers of the most recently sent
messages. Figure 8 shows a comparison between the
two approaches. The first method shows a better be-
haviour than the second one, however its main draw-
backs are the bandwidth wasted in control messages
and the difficulty in adjusting its parameters. The
second method is easier to adjust but it offers a worse
performance. Nevertheless, we have not taken into ac-
count the propagation delay of the control messages,
hence obtaining an upper bound of the performance
that each method can achieve. Both approaches show
a good behaviour with uniform, bit-reversal and shuffe
destination distributions.

Our future work includes: to reach a good adjust-
ment of the parameters, to really send the congestion
control messages in order to study the propagation ef-
fects in the performance and to use a more realistic
distribution, perhaps by using real traces or autosim-
ilar distributions.
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