
On the Evaluation of x86 Web Servers using Simics:
Limitations and Trade-Offs

Francisco J. Villa, Manuel E. Acacio, and José M. García

Universidad de Murcia, Departamento de Ingeniería y Tecnología de Computadores
30071 Murcia (Spain)

{fj.villa,meacacio,jmgarcia}@ditec.um.es

Abstract. In this paper, we present our first experiences using Simics, a simulator
which allows full-system simulation of multiprocessor architectures. We carry
out a detailed performance study of a static web content server, showing how
changes in some architectural parameters affect final performance. The results
we have obtained corroborate the intuition of increasing performance of a dual-
processor web server opposite to a single-processor one, and at the same time,
allow us to check out Simics limitations. Finally, we compare these results with
those that are obtained on real machines.

1 Introduction

Multiprocessor systems are increasingly being used for executing commercial applica-
tions, among which we can find web servers or On-Line Transaction Processing (OLTP)
applications. As a consequence of the use of multiprocessors in these fields, simulat-
ing multiprocessor architectures running commercial applications accurately becomes
important. Opposite to scientific applications, there are some characteristics of com-
mercial workloads that make their simulation challenging. In particular, the activity of
the operating system is very important, as well as the interaction with memory hierar-
chy, storage system and communication network. Simics [1] is a full-system simulator
which allows us to simulate all these aspects and obtain accurate simulation results.

In this paper, we use Simics to evaluate three different architectures executing a
static web content server, being Apache the web server and httperf the utility which
places the workload at the server.

2 Related work

Up to not long ago, the methodology used for evaluating commercial workloads in
multiprocessors consisted in firstly generating memory references of applications, and
then, using these references to feed a user-level simulator. For example, in [2] Ran-
ganathan et al. study the performance of OLTP and decision support systems based on
this methodology.

The appearance of full-system simulators, like SimOS [3] or Simics [1], has sig-
nificantly simplified the evaluation of commercial workloads, as these simulators al-
low modelling elements such as the operating system, the I/O subsystem and so on.

Recently, several studies have appeared in which Simics is used as the simulation tool
employed for the evaluation. In [4, 5], it is presented an exhaustive study of several com-
mercial applications, including a static content web server and the TPC-C benchmark.
The authors also identify one of the problems concerned with simulation of commercial
applications: the variability they show.

3 Simulation results and limitations

In this Section, we present the results that we have obtained using Simics and compare
them to the results obtained using real machines. In our evaluations, we have considered
three different server architectures: two single-processor architectures with L2 cache
sizes of 512 KB and 1024 KB respectively, and a dual-processor architecture in which
each processor has a L2 cache of 512 KB. In the case of real machines, the single-
processor architecture with a L2 cache of 1024 KB has not been analysed.

We measure the response time of Apache in each case as a function of the number
of requests that are received. For this, we have executed 1000 requests referred to 10
web pages with an average page size of 537 bytes. This page size has been selected in
order to avoid the influence of the interconnection network on the results.

We have carried out eight tests for each sever architecture, in which the total number
of requests that Apache must process has been set to 25, 50, 75, 100, 125, 150, 175 and
200 respectively. Starting with the results of the simulations, Figure 1(a) shows the
average response time that has been obtained in each case. This metric is provided by
httperf. As we can see, the dual-processor server has greater performance than those
that employ a single-processor, with an average response time of approximately half
the response time of the single-processor severs (which show almost the same response
time).

On the other hand, Figure 2(a) shows the evolution of the number of requests that
are dispatched as a function of the total number of requests. This metric is provided by
the Apache server. Although the dual-processor server is able to dispatch more requests
than the single-processor architectures, the performance difference is lower than the
observed for the response time.

Once we have seen how Simics can help us to analyse the behavior of a commercial
web server, we want to check how accurate are the results the simulator provides. For
this, we have repeated the experiments, but this time we have employed real computers.
Figures 1(b) and 2(b) show the results we have observed for these tests.

Comparing these results to the obtained with Simics, we find that there are notable
differences between them. In the case of the response time, it is scaled down by a factor
of almost 100. In fact, the performance difference between dual and single-processor
real servers is negligible. Something similar occurs with the number of requests that are
dispatched. Although simulation results showed that the dual-processor server could
sustain a larger request per second rate than the single-processor one, in the real envi-
ronment we find that for the experiments we have carried out, single and dual-processor
servers provide almost the same results in terms of the number of requests that are dis-
patched.

0

50

100

150

200

250

0 50 100 150 200

R
es

po
ns

e
tim

e
(m

s)

Requests/s

 512KB
 1024KB

 Dual

(a) Simulation results

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 50 100 150 200

R
es

po
ns

e
tim

e
(m

s)

Requests/s

 512KB
Dual

(b) Real results

Fig. 1. Average response time as a function of the requests received per second.

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200

D
is

pa
tc

he
d

R
eq

ue
st

s/
s

Requests/s

 512KB
 1024KB

 Dual

(a) Simulation results

 0

 50

 100

 150

 200

 0 50 100 150 200

D
is

pa
tc

he
d

R
eq

ue
st

s/
s

Requests/s

 512KB
Dual

(b) Real results

Fig. 2. Dispatched requests per second as a function of the requests received per second.

Therefore, we can conclude that the low detail level when modeling x86-like pro-
cessors prevents Simics from be able to reproduce the results that would be reached in
the real world. Specifically, Simics doesn’t implement out-of-order execution for these
processors. In this way, we think that the x86-Simics machine is appropiate as functional
simulator but not as timing simulator.

4 Additional information obtained with Simics

Using Simics we can easily obtain statistics of the processor and memory hierarchy, one
of the main advantages of the simulator compared to real machines, for which collecting
these measures is harder. In this Section, we analyse CPU and cache statistics, exploring
their influence in the performance of the architectures that are evaluated.

4.1 CPU statistics

The first important fact is that the number of instructions executed in user mode is 50
times lower than the number of instructions executed in supervisor mode. Comparing

the statistics obtained for the single-processor server with a L2 cache of 1 MB to the
dual-processor server, we notice that the number of instructions executed in user mode
is almost the same in the two cases, but it is distributed between the two processors in
the case of the dual-processor server. It does not happen the same with the instructions
executed in supervisor mode, since in this case each CPU executes the same number of
instructions than the single-processor server. These numbers corroborate the important
influence that the operating system has on the final results.

4.2 Cache statistics

The most noticeable difference is the increase in the L2 cache miss rate found for the
single-processor architecture with a L2 of 512 KB, compared to the single-processor
architecture with a L2 of 1024 KB. The increasing in the number of L1 cache invalida-
tions is also a remarkable result. This fact is a consequence of the increased number of
replacements (what is caused by the larger number of misses), which leads to invalidate
more L1 blocks in order to maintain the inclusion property.

Finally, in the case of the dual-processor server configuration, the large number of
L1 cache invalidations must be considered again, although the explanation is just as
before. Regarding miss rates, they are just like the preceding ones for the first level
caches, whereas for the second level ones this rate ranges between the values that are
obtained for the single-processor configuration with a L2 cache of 1024 KB and the
values obtained for the configuration with a L2 cache of 512 KB.

5 Conclusions

In this paper, we have introduced the evaluation of a functional simulator which allows
us to simulate all the aspects that are critical in the execution of commercial workloads,
such as the I/O subsystem and the operating system. However, we have found that the
simulator does not provide an accurate model for the x86 family of processors, which
leads to obtain different results than those that would be obtained using real computers.
We think that the impossibility of using an out-of-order execution model for this family
has a negative influence in the results that we have obtained.

References

1. Magnusson, P. S. et al.: Simics: A Full System Simulation Platform. IEEE Computer 35
(2002) 50–58

2. Ranganathan, P. et al.: Performance of Database Workloads on Shared-Memory Systems with
Out-of-Order Processors. In: ASPLOS-VIII. (1998) 307–318

3. Rosemblum, M. et al.: Complete Computer System Simulation: The SimOS Approach. IEEE
Parallel and Distributed Technology: Systems and Applications (1995) 34–43

4. Alameldeen, A.R. et al.: Simulating a $2M Commercial Server on a $2K PC. IEEE Computer
36 (2003) 50–57

5. Alameldeen, A.R. et al.: Evaluating Non-deterministic Multi-threaded Commercial Work-
loads. In: CAECW-02 (2002) 30–38

