
Eager meets Lazy: the Impact of Write-Buffering
on Hardware Transactional Memory

Anurag Negi⋆ Rubén Titos-Gil† Manuel E. Acacio† José M. Garcı́a† Per Stenstrom⋆

Chalmers University of Technology⋆

Universidad de Murcia†

{negi,per.stenstrom}@chalmers.se
{rtitos,meacacio,jmgarcia}@ditec.um.es

Abstract—Hardware transactional memory (HTM) systems
have been studied extensively along the dimensions of speculative
versioning and contention management policies. The relative
performance of several designs policies has been discussed at
length in prior work within the framework of scalable chip-
multiprocessing systems. Yet, the impact of simple structural
optimizations like write-buffering has not been investigated and
performance deviations due to the presence or absence of these
optimizations remains unclear. This lack of insight into the
effective use and impact of these interfacial structures between
the processor core and the coherent memory hierarchy forms the
crux of the problem we study in this paper. Through detailed
modeling of various write-buffering configurations we show that
they play a major role in determining the overall performance
of a practical HTM system. Our study of both eager and lazy
conflict resolution mechanisms in a scalable parallel architecture
notes a remarkable convergence of the performance of these
two diametrically opposite design points when write buffers are
introduced and used well to support the common case. Mitigation
of redundant actions, fewer invalidations on abort, latency-hiding
and prefetch effects contribute towards reducing execution times
for transactions. Shorter transaction durations also imply a lower
contention probability, thereby amplifying gains even further.
The insights, related to the interplay between buffering mecha-
nisms, system policies and workload characteristics, contained in
this paper clearly distinguish gains in performance to be had from
write-buffering from those that can be ascribed to HTM policy.
We believe that this information would facilitate sound design
decisions when incorporating HTMs into parallel architectures.

I. INTRODUCTION

Transactional memory (TM) envisages programming con-
structs for optimistic concurrency control in parallel shared
memory applications. Sections of code that perform such
accesses, demarcated as atomic blocks or transactions, are
guaranteed the properties of atomicity and isolation by the
underlying system. Considerable book-keeping, necessary to
correctly implement TM, makes software implementations
cumbersome. Hardware TM (HTM) systems propose archi-
tectural extensions to support HTM and can leverage existing
architectural features like caches and coherence protocols to
provide efficient common case performance that matches or
exceeds that provided by fine-grained lock based approaches.

Most HTM designs rely upon containment, in some fashion,
of updates made in a transaction. Updates can be confined
to thread-private structures like private caches, as is done in
[3], [8]. Such versioning of possible future values of shared
data is termed lazy, where the defining characteristic is that

exclusive ownership over speculatively targeted locations is
acquired only after a transaction’s execution is guaranteed to
succeed. Alternatively, updates can be made in-place, which
implies early acquisition of written locations, when protocols
exist to ensure their isolation and restoration of a consistent
state when data-races need resolution. Such a mechanism is
termed eager and is utilized by designs like [19]. A closely
related design choice is that of conflict resolution. Eager
versioning of updates necessitates eager resolution of conflicts
– races must be detected and resolved when an in-place shared
memory update is attempted. Lazy versioning, however, also
allows conflict resolution to be deferred until a transaction
tries to commit, i.e. make its updates globally visible. This
lazy resolution of conflicts requires aborting and re-executing
transactions that conflict with the committing one.

Tracking transactional state by book-keeping in private
caches is a popular HTM design technique [7], [8], [19]. It
allows cache coherence protocols to be leveraged for conflict
detection at the granularity of cache lines. To do so, however,
requires certain protocol actions be taken that incur a cost in
terms of latency when they are performed and the possibility
of actions to revert their effect in the future. Take for example
a typical multicore HTM design where both versioning and
conflict resolution are lazy and directory based MESI coher-
ence is employed. The coherence protocol must allow for the
existence of multiple uncommitted versions of the same cache
line in private caches written by different transactions. The
simplest way to do so would be to have the coherence protocol
treat all such transactions as sharers of the last consistent state
of the cache line till one tries to commit. This necessitates
downgrade of dirty or exclusively owned lines that are targeted
by transactional writes to shared state with a possible write-
back of consistent state to shared levels of the cache hierarchy.
Standard directory invalidations can now be used for discovery
of data races. In scenarios where the probability that a trans-
action will commit without aborting is high, such coherence
actions to enable conflict detection prove to be redundant in
the common case. It is quite likely that, due to locality of
reference and low contention, transactional updates hit lines
that are already dirty or exclusively owned by the private
cache. Downgrading these lines to shared state to correctly
handle the unlikely case when a conflict might be seen on the
lines is inherently pessimistic and penalizes the common, non-



contended case. This penalty can be circumvented by buffering
transactional updates emitted by the processor before they
reach the coherent private cache.

Most modern microprocessors use such write buffers to
hide latency for completing updates to memory. Combined
with a store-forwarding mechanism, the technique quite ef-
fectively avoids stalling when write-misses are encountered.
Such buffers when suitably modified for containment of trans-
actional updates can provide significant reduction in HTM
protocol overheads. In lazy designs, updates in the buffer
would be released to the coherent cache hierarchy only when a
transaction attempts to commit or when the buffer overflows.
If, in the common case, most transactional updates can be
contained in this structure, redundant protocol actions would
be significantly reduced. It should be noted that in multilevel
private cache hierarchies the concept of write buffers can be
extended to private L1 caches that need not maintain coherence
on transactionally updated lines until commit.

An analogous situation arises when coarse grained trans-
actions show relatively high contention on a relatively small
portion of updated lines. In such cases a large number of aborts
would occur resulting in invalidations of uncommitted lines
in the private cache, a large fraction of which do not exhibit
contention. When the transaction re-executes, it will encounter
costly private cache misses when such data is accessed again.
Buffering of transactional updates before they reach the private
cache will largely eliminate such misses in the common case.
On aborts, only the contents of the buffer would be discarded.
Confinement of writes in the buffer till commit also avoids
writer-writer conflicts on such locations since they do not
contaminate cache lines and hence result in no ambiguities
when the final cache line update occurs.

Write buffers show interesting effects when HTM designs
employ eager conflict resolution. Typically, eager HTMs detect
conflicts when a write from the core is received by the cache
hierarchy. The core waits for the result and takes corrective
action if a conflict is reported. With write-buffering, the pro-
cessor is decoupled from conflict detection mechanisms and
can continue execution past a potentially conflicting update,
a feature typically found in lazy HTM designs. Buffered
writes are released in a controlled manner into the private
cache. An in-place update in shared memory is attempted in
a non-blocking manner while the processor continues to run
ahead. Logging of old values in the undo-log as necessitated
by eager versioning is also taken out of the critical path.
In case a conflict exists, the request can be retried in the
background while execution of the transaction continues. Thus,
transactional updates never stall execution on the core.

In this paper we demonstrate that in both eager and lazy
conflict resolution schemes, write-buffering can achieve sub-
stantial reductions in transactional execution times due to
the interplay of conditions described above. This, in turn,
results in a contraction of the window of contention for
concurrent transactions amplifying performance gains even
further. While the utility and ubiquity of write buffers in
standard microprocessors is well recognized, their use and

implications in the context of HTM have not been studied
in depth in prior work. This paper attempts to fill this gap
and shows how these structures impact transactional behavior
of a diverse set of workloads. It quantifies performance gains
and reductions in redundant work and stall times achieved
by write buffering for several pertinent design points. The
paper also highlights a remarkable leveling out of average
performance metrics for eager and lazy systems, showing
that with well-balanced write buffers of modest sizes eager
systems are as good as or better than lazy designs. Prior
research in this area shows a bias favoring lazy HTM designs,
particularly when high contention workloads are concerned.
Another contribution of equal significance is the underlining
of the importance of modeling standard processor structures
accurately after applying straightforward optimizations to such
structures, in order to support transactional memory more
effectively. Careful identification of sources of performance
variation is necessary before ascribing it to changes in policy.
Not doing so can result in measurements that are substantially
different from what might be seen in a real-world implemen-
tation and, more importantly, can lead to erroneous biases in
favor of or against certain design options.

II. BUFFERING SPECULATIVE UPDATES
IN COHERENT CACHES

This section discusses how speculative updates are buffered
in coherent caches in both lazy and eager designs. Lazy
designs need discussion since they require modest deviations
from the way coherence protocols typically work. Eager
designs do not require behavioural changes in the protocols
to support transactional updates but such updates have perfor-
mance implications, nevertheless.

We have chosen a tiled chip-multiprocessor (CMP) design
as reference because its modular nature makes it popular in
several commercial many-core designs and the availability
of versatile simulation setups [12] makes the modeling and
comparison of policies and architectural features less daunting.
The basic architecture comprises several tiles overlaid over
a point-to-point interconnect forming a mesh-based network-
on-chip. Each tile has a processing core, one level of private
cache, a slice each of the shared inclusive level 2 cache and
the corresponding directory entries and some routing logic. A
MESI protocol is used to keep private caches coherent.

A. Lazy HTMs

To buffer speculative data in private caches, per-cache line
meta-data is augmented with two bits, SR and SM, which
indicate whether a line has been speculatively read or specu-
latively modified, respectively. During the course of execution
of a transaction writes appear as non-invalidating reads to
the coherence protocol. In order to preserve its last globally
consistent value, a dirty (non-speculative) line is written back
to the shared memory hierarchy prior to the first speculative
update to it in a transaction, resulting in a downgrade of
its coherence state from M to S. Commits imply acquisition



Fig. 1. Downgrade miss: Redundant cache-state changes when a transaction eventually commits.

Fig. 2. Abort miss: Invalidations that could be avoided using a write buffer.

of ownership over all lines with SM set, while aborts imply
invalidation of all such lines.

Let us now consider the case presented in Fig. 1. A line that
is only written by one transaction (it is either thread-private
or not actively shared in the current phase of the workload)
might, in the steady state, be found with high probability in M
state in the private cache. To preserve the old content of the
line in the absence of non-coherent write buffering, it must
be written back prior to the write, resulting in a transition
to S, as shown in Fig. 1 (step 9). On commit we need to
reacquire exclusive ownership to the line. Since such a line
will not have any sharers, this work (M−→S and S−→M) to
ensure no races exist is largely redundant. We refer to such
events where unnecessary work prolongs the commit phase of
a transaction as a downgrade miss. Coarse grained transactions
that have a relatively large fraction of the write set as private
data (stack, thread-local storage) are expected to show the
most degradation in performance. In Section IV we examine
in detail the impact of downgrade misses and see that for
applications like genome and vacation [2] their elimination
results in a significant contraction of commit delays.

Fig. 2 depicts the alternate case. A transaction speculatively
updates a non-contended line present in its cache and then
aborts. As depicted in Fig. 2 (step 6), the line would not

be found in the private cache on re-execution as all lines in
the write-set have now been invalidated. We refer to such an
event as an abort miss. Such misses have also been referred
to as contamination misses [18]. Workloads with large write
sets and high contention over small amounts of shared data
would experience the greatest drop in private cache hit rates.
As Section IV will show, elimination of abort misses using
write buffers results in a marked improvement in L1 hit rates.

Some transactional workloads also suffer from write-write
conflicts. These are not true conflicts (not data races per se) but
need to be resolved in invalidation-based coherence protocols.
Consider two transactions that write (but do not read) to a
certain cache line. When one commits the other needs to be
aborted since the invalidation message only tells us that the
cache line might need merging and that cannot be handled
without making the coherence protocol a lot more complex.

B. Eager HTMs

Eager HTMs do not require special coherence actions to be
taken when updating lines. Yet, they require the old value of
the line to be preserved in a special undo-log, a part of which
may exist as a hardware structure in the private cache and
a part implemented as a data structure in virtual memory. In
the architectural setup for this study, the cache has a small 8



cache line old-value-buffer (OVB). Overflows from the OVB
are accommodated in the software log.

Before a transactional write can be performed, exclusive
ownership permission on the target cache line is required.
Thus, for shared or absent cache lines the write must be
buffered in the standard miss state handling mechanism,
MSHR. If the old-value logging operation misses in the OVB
an update to the software log must also be initiated which
can result in a second in-flight access being added to the
MSHR. The old value of the line must be preserved till the
software-log cache line is allocated in the cache. If a race with
another transaction causes a coherence request to be retried,
the request can sit in the MSHR being sent out periodically
into the network. Thus, it can be observed that a number of
actions that operate on entire cache lines may be invoked when
a transactional store hits the coherent cache hierarchy resulting
in increased cache controller usage, traffic and even stalls when
stores are bursty.

III. USE OF WRITE BUFFERS

Private caches are present primarily to keep frequently
used data close to the processor core. Their use in buffer-
ing uncommitted data should be made conservatively. Write
buffers between the core and the coherent first level cache can
be used to prevent transactional updates from polluting the
coherent cache hierarchy. The idea can also be extended to
inclusive two-level private caching schemes, wherein the first
level private cache can be made non-coherent when handling
transactional updates.

This can be incorporated very simply into the design by
capturing writes issued by the processor and then releasing
those to the private cache in a controlled manner. In a lazy
HTM, writes would be captured throughout the execution of a
transaction or as long as buffer capacity is not exceeded. On
commit, the buffer would be flushed causing all writes to enter
the memory hierarchy as quickly as possible. On abort, the
buffer contents would simply be discarded. In an eager HTM,
it would obviously also participate in any store forwarding
mechanism. In fact, existing write buffering schemes could be
suitably modified to enable such functionality.

It can be observed quite easily that unnecessary switches in
coherence state and invalidations of aborts can be completely
eliminated if write-sets are fully contained in write buffers.
Since speculative data can be recorded in the write buffer, we
can eliminate write-backs and downgrades of M lines to shared
(S) state. On commit, since the line would likely be present
in the cache in the M state, it can simply be written into the
private cache without any coherence action. An abort results in
the speculative contents inside the write buffer to be discarded.
No cache lines need invalidation and, thus, the transaction on
re-execution would still find such lines in the private cache.
Writes contained in the write buffer can be probed for cache-
hits and if they are not found in the cache a non-exclusive
prefetch can be made. This is done in the expectation that a
long latency write-miss at commit can now be converted to
a potentially less costly upgrade-to-exclusive request. Later in

this study, we find that doing so improves performance in most
cases.

Another benefit of having write buffers is reduction in
the number of write-write conflicts that are an artifact of
using coherence messages to detect possible modifications
to different parts of the same cache line. The cache, when
it does not buffer any speculative updates, only records the
read set of a transaction. Hence any invalidations resulting
from transaction commits result in aborts only when there is
a possible true data race, i.e. the write set of the committer
conflicts with the read set of the other. We would like to point
out that this does not eliminate conflicts due to reader-writer
false sharing.

Eager HTMs also benefit from the reduction in the number
of abort misses. They also benefit from hidden latencies for
eager conflict detection on stores. When executing transac-
tions, there are several choices for write buffer behaviour.
This relates to how buffered writes are drained into the
coherent memory hierarchy. We define immediate draining as
issuance of the update into the coherent hierarchy as soon as
possible after the write has been buffered. This allows early
detection of conflicts and hiding of memory fill latencies.
Deferred draining delays the issue till a later point in the
execution of the transaction, based on criteria like the fraction
of used entries in the write buffer being greater than a certain
threshold. The write buffer is drained on transaction commit.
Deferred draining allows greater opportunities for speculation
and mitigation of write-write conflicts.

IV. METHODOLOGY AND EVALUATION

A. Experimental Setup

We use a full-system execution-driven simulator based on
the Wisconsin GEMS tool-set [12], in conjunction with Vir-
tutech Simics [11]. We use the detailed timing model for the
memory subsystem provided by GEMS, with the Simics in-
order processor model. Simics provides functional simulation
of the SPARC ISA and boots an unmodified Solaris 10. We
perform our experiments on a 16-core tiled CMP system,
as described in Table I. The L1 caches maintain inclusion
with the L2. The private L1 caches are kept coherent through
an on-chip distributed directory (associated with L2 cache
banks), which maintains a presence-bit vector of sharers and
implements the MESI protocol.
Lazy designs. The lazy HTM system modeled in this evalu-
ation is an extension of the lazy system considered by Bobba
et al. [1], available in the GEMS v2.1 release. While Bobba’s
LL system models a private, per processor infinite write
buffer, for this study we extended the simulator to precisely
model finite buffering for transactional writes. We limited
the capacity of the non-coherent write buffer, so that once it
fills up, transactional stores happen in the private data cache.
Unlike writes to the L1 cache, which need the line present
in cache to be able to complete, writes to the write buffer
allow the core to execute ahead. A non-blocking prefetch-
read for the line is sent to the L2 cache if the line is absent
in the L1 cache. We modified the replacement policy of the



TABLE I
SYSTEM PARAMETERS.

MESI Directory-based CMP
Core Settings

Cores 16, single issue
in-order, non-memory IPC=1

Memory and Directory Settings
L1 I&D caches Private, 32KB, split

4-way, 1-cycle latency
Write Buffer 128 bytes
Old Value Buffer 8 cache lines
L2 cache Shared, 512KB per tile, unified

8-way, 12 cycle-latency
L2 Directory Bit vector, 6-cycle latency
Memory 4GB, 300-cycle latency

Network Settings
Topology 2D Mesh
Link latency 1 cycle
Link bandwidth 40 bytes/cycle

TABLE II
WRITE BUFFER CONFIGURATIONS.

Lazy
infWB infinite write buffer
noWB no write buffer
realWB finite write buffer
realWB pf finite write buffer

with prefetch
realWB pf pc finite write buffer

with prefetch and parallel commit-time
write-set acquisition

Eager
EE base GEMS baseline
EE lw GEMS baseline

with lingering write optimization
EE infWB infinite write buffer
EE realWB DD finite write buffer

with deferred draining
EE realWB ID finite write buffer

with immediate draining

L1 data cache by giving the highest priority to speculatively
written lines, in order to minimize the number of transactional
overflows when executing large transactions. Nonetheless, we
incorporate a speculative victim buffer to avoid serialization
penalty due to limited buffering capacity, similarly to [1]. In
our simulations only yada experiences a few such evictions
and a small victim buffer with 8 entries proves sufficient. We
use an ideal book-keeping scheme to track read sets (perfect
signatures) even when some speculatively read lines have been
evicted, in an attempt to isolate our study from the effects of
false conflicts arising from non-ideal signature schemes like
bloom filters. A simple commit token algorithm is used to
serialize transaction commits: Transactions arbitrate for the
token using a zero-latency broadcast bus. Once the token is
acquired, a transaction enters the commit phase and issues
coherence requests to gain exclusive ownership over all lines
in its write set. We later present results for the five lazy HTM
configurations listed in Table II. Finite write buffers are 128
bytes in size and have word (32bit) granularity. The last two
configurations attempt non-exclusive prefetches on cache lines
targeted by writes if not already present in the cache. These

prefetches do not block execution on the core and are done
in the expectation that it will help reduce the quantity of
data transferred at commit time. For a fair comparison with
eager HTM designs, (Section IV-D), realWB pf pc speeds up
commits by parallelizing issuance of writes into the coherent
hierarchy at commit time.

Eager designs. The eager design is based on Log-TM [19].
We have introduced a simple lingering-write optimization
(referred to as EE lw) in the basic eager implementation.
If writes are pending when a transaction aborts they are
silenced and completed in background, perhaps even after the
transaction has restarted. In fact, the in-flight access (i.e. the
lingering write) often proves useful bringing in data required
during re-execution. This has two benefits – first, the silenced
write acts like an exclusive prefetch and second, the transaction
can now restart earlier and has a better chance to use the cache
line before it is invalidated due to contention. This provides a
significant boost in performance when contention is high and
transactions are small. This simple optimization results in a
fairer comparison of policies and effects of other structures.
We felt it would be useful for readers to see how this compares
to the basic protocol available with GEMS. Hence, results for
eager HTMs also include the GEMS reference implementation
(EE base).

The baseline system is then augmented with a finite write
buffer. Transactional execution on a core is now not stalled
when an update requires coherence actions. It is simply
buffered in the write buffer. In contrast to lazy designs,
where we attempt to keep writes in the buffer for as long
as possible, the eager design drains buffered writes into
the coherent hierarchy at some point before commit. We
model two configurations – EE realWB ID which implements
immediate draining and EE realWB DD which implements
deferred draining. Immediate draining involves issuing writes
into the buffer as soon as possible. Deferred draining attempts
to keep writes in the buffer untill 80% of the buffer fills up. To
implement a limit study, we also model a configuration with
an infinite write buffer (EE infWB) that does not drain until a
transaction attempts to commit.

Workloads. For this evaluation, we have selected seven (out
of eight) transactional applications from the STAMP suite [2]:
genome, intruder, kmeans, labyrinth, ssca2, vacation and yada.
The application, bayes, was excluded since it exhibits unpre-
dictable behaviour and high variability in its execution time
[6], [13]. For kmeans and vacation, both high and low con-
tention configurations were used. Input parameters, detailed
in [2], were used. Small input results for all workloads are
provided. Where simulation times made it feasible, we have
included results for medium length runs – four applications
that show widely varying transactional characteristics (ssca2
at the low contention end to intruder at the high contention
end) have been included. We expect these results to present a
better picture of real-world performance.



genome-TM

genome-TM+

intru
der-T

M

intru
der-T

M+

kmeans-TM-high

kmeans-TM-low

labyrinth-TM

ssca2-TM

ssca2-TM+

vacation-TM-high

vacation-TM-low

yada-TM

yada-TM+

Applications

0.0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

L1
D

 m
is

s 
ra

te

LL_infWB
LL_noWB
LL_realWB

Fig. 3. Lazy design points: L1 data cache miss rates.

genome

genome+
intru

der

intru
der+

kmeans-high

kmeans-low

labyrinth
ssca2

ssca2+

vacation-high

vacation-low
yada

yada+

Applications

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

M
is

se
s 

pe
r 

co
m

m
it

Contamination_noWB
Contamination_realWB
Downgrade_noWB
Downgrade_realWB

548|546|77|77 103|89      104|94 

Fig. 4. Lazy design points: Downgrade and abort misses.

B. Lazy HTM Results

In this section, we analyze the impact of the four buffering
schemes with lazy conflict resolution described earlier and
quantify the effectiveness of write buffers in improving cache
performance and reducing the number of coherence actions
required on commit. Fig. 3 shows the average miss rate of L1
data caches for each STAMP benchmark. A dedicated write
buffer reduces miss rate for almost every benchmark. In Fig.
4, we present the number of abort misses suffered on average
by a transaction that restarted at least once. The same plot also
shows the average number of downgrade misses per committed
transaction. We see reductions in both metrics when buffer
sizes are large enough to contain most of the writes.

Fig. 5 shows the execution time breakdown of all applica-
tions, normalized to the execution time of the configuration
with no write buffer, running 16 threads. The execution
time is broken down into eight components – barrier is
a measure of the time spent waiting at barriers; non-txnal
corresponds to the number of cycles spent executing non-
transactional code; tx-useful and tx-aborted represent cycles
spent in transactional execution, split into useful and aborted

cycles, respectively; stall is the time a transaction spent stalled
in a data access, because such data was in the write set of a
committing transaction; backoff represents the wait before an
aborted transaction restarts, determined using a linear-backoff
algorithm; arbitration and acquisition represent the overheads
experienced at commit time, due to arbitration for the commit
token and acquisition of exclusive ownership over modified
lines, respectively. The figure shows a consistent improvement
in performance when write buffers are present. Fig. 6 zooms
in on the commit overheads, represented by the sum of cycles
spent arbitrating for commit and acquisition of the write set,
imposed by various configurations.
Genome. This workload runs high contention transactions in
its first phase. Write buffers prove sufficient and are able
to substantially mitigate abort misses, resulting in substantial
improvements in L1 performance (seen in Fig. 3). In the
latter phases, contention is relatively low and reductions in
downgrade misses (see Fig. 4) provide further performance
boost. Prefetching lines targeted by buffered speculative writes
(realWB pf ) also yields substantial benefits (8-10%) by over-
lapping latency for data transfer with useful execution.
Intruder. The improvement in L1 cache performance is
the most significant in intruder – an application with high
contention, a large number of transactions and a medium-
sized write set (about 50 bytes spread across 6 cache lines
on average for its main transaction). Here, the impact of
contamination in the private cache due to speculative writes is
considerable. As described in Section II, repeated aborts cause
invalidations of speculatively dirty data, which then result in
misses when the transaction re-executes. Fig. 4 clearly shows
the number of abort misses suffered by restarted transactions
is significant in intruder, with an average of 10 such misses
until a (perhaps repeatedly) restarted transaction eventually
commits. This causes severe degradation in the L1 cache miss
rate. The use of a write buffer completely eliminates abort
misses for this application, and effectively reduces its cache
miss rate by 40%, as shown in Fig. 3, for both configurations
with speculative write-buffering enabled. The improvement in
L1 cache performance shortens the duration of the transaction
and thus reduces its probability of conflicting with other con-
current transactions. The nett effect is a substantial decrease
of the number of aborted transactions (from almost 14000 in
noWB to around 12200 in realWB/idealWB). This explains
reductions in both tx-aborted and backoff components of the
total execution time.
Kmeans. This application spends little time executing trans-
actions. Moreover these transactions are tiny and behavioural
variations between different configurations do not substantially
impact performance. Nevertheless, write buffers achieves mi-
nor reductions in the number of abort misses (see Fig.4).
Labyrinth. In this benchmark, each thread replicates the
global grid into its thread-local memory, and then applies
Lee’s routing algorithm on a local grid. Every time a thread
creates a copy of the global grid, the cache lines that contain
the local grid are likely to be still in modified state since
the last commit, and thus must be written back to the L2 as



genome

genome+
intru

der

intru
der+

kmeans-high

kmeans-low

labyrinth
ssca2

ssca2+

vacation-high

vacation-low
yada

yada+

Average

Average+
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

barrier
non_txnal
tx_useful
tx_aborted

stall
backoff
arbitration
acquisition

infWB || noWB || realWB || realWB_pf

Fig. 5. Lazy design points: execution time breakdown.

well as downgraded to shared state before being speculatively
modified again. At commit time, the writes to the local
grid are indistinguishable from those to the global structure,
and hence result in a large number of redundant coherence
requests. Transactions here have extremely large write sets
running to several hundred cache lines. Finite buffers prove
insufficient and execution times remain largely independent of
buffering configurations. The same trend is seen in L1 cache
performance and the number of abort and downgrade misses.
The idealized infinite write buffer configuration coupled with
extremely high L1 hit rate significantly reduces commit and
arbitration delays as seen in Fig. 6.
SSCA2. This workload has a very large number of predom-
inantly non-conflicting tiny transactions that stress commit
bandwidth. Thus, configurations that are able to reduce com-
munication at commit time perform far better (30%) . Since
contention is low, prefetching lines that would eventually

genome

genome+
intru

der

intru
der+

kmeans-high

kmeans-low

labyrinth
ssca2

ssca2+

vacation-high

vacation-low
yada

yada+

Average

Average+
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2

C
om

m
it 

de
la

ys
 b

re
ak

do
w

n

arbitration
acquisition

infWB || noWB || realWB || realWB_pf3.2  3.2

Fig. 6. Lazy design points: Commit and arbitration delays.

be updated at commit improves performance significantly
(realWB pf in Fig. 5). Here, noWB configuration is interesting
too since it effectively behaves like the prefetch configuration,
reading in lines that would be eventually written.
Vacation. This workload shows little contention. Small im-
provements in performance can be noticed due to reductions
in abort and downgrade misses. Prefetching also provides
marginal improvements in performance.
Yada. Yada exhibits a high degree of cache contamination
in the configuration with coherent buffering, with 92 abort
misses per each commit of a restarted transaction. However,
its very large write set (60 cache lines on average for its
main transaction, with 2124 bytes written) makes it impossible
for the 128-byte write buffer configuration to contain any
substantial number of writes. Yet, it can be seen that infWB
and realWB configurations perform better than others. This is
because they are able to avoid, to a certain extent, interference
when write-write conflicts exist.

C. Eager HTM Results
Fig. 7 compares execution times of the five eager con-

figurations listed in II. The first four components are as
described earlier; stall useful represents stalls in cases when
the transaction commits without aborting after the stall is
released; stall aborted represents stalls in cases when the
stalled transaction eventually aborted; rollback represents cy-
cles spent in restoring old values upon abort. The figure
shows write-buffering, and immediate draining in particular,
improves performance significantly. Fig. 8 presents a break-
down transactional cycles spent waiting for memory accesses
to complete. We discuss below important insights for each
benchmark gathered from the data.
Genome. The early high contention phase in genome benefits
from write-buffering. Transactions in this phase are relatively
small so the size of the buffer does not matter much. Infinite
buffering and deferred draining show marginal improvements
over immediate draining (see Fig. 7). This is indicative of



genome

genome+
intru

der

intru
der+

kmeans-high

kmeans-low

labyrinth
ssca2

ssca2+

vacation-high

vacation-low
yada

yada+

Average

Average+
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

a.barrier
b.non_txnal
c.tx_useful
d.tx_aborted
e.stall_useful

f.stall_aborted
g.backoff
h.rollback

EE_base || EE_lw || EE_infWB || EE_realWB_DD || EE_realWB_ID

Fig. 7. Eager design points: execution time breakdown

genome

genome+
intru

der

intru
der+

kmeans-high

kmeans-low

labyrinth
ssca2

ssca2+

vacation-high

vacation-low
yada

yada+

Average

Average+
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

T
ra

ns
ac

tio
na

l t
im

e 
br

ea
kd

ow
n

tx_hit
tx_load_miss
tx_store_miss

EE_base || EE_lw || EE_infWB || EE_realWB_DD || EE_realWB_ID

Fig. 8. Eager design points: transactional time breakdown

useful run-ahead execution past conflicts allowing readers to
complete without stalling. An overall speedup of about 7%
over the baseline is seen.
Intruder. This application benefits the most (more than 50%
for intruder+) from introduction of write-buffering with imme-
diate draining (Fig. 7). This is because conflicts are detected
early resulting in stalls and consequently less demand for
otherwise highly contended shared memory resources. Fur-
thermore, immediate draining of writes behaves like prefetch
of non-contended data. Deferred draining (and the infinite
buffering case) causes injection of a lot of traffic into the
network when transactions commit. This chokes directory
resources and is unproductive since a large number of concur-
rently running transactions are conflicting. The overall impact
of reduction in transactional execution time with immediate
draining is magnified as it results in a contraction of the
window of contention leading to greater concurrency. Cache

performance is significantly better too (see Fig. 8). The
lingering write optimization (EE lw) also shows significant
improvements (20% for intruder and 38% for intruder+) over
the GEMS baseline implementation. Lingering writes are often
re-activated when the restared transaction performs a new
write to the same location, and in some cases effectively obtain
lines in exclusive mode for transactional read-modify-write
operations to complete successfully.
Kmeans. The application (both high and low contention
variants) shows no major differences in execution time across
different configurations. Transactions are tiny and most of the
application is non-transactional. Minor ( 3%) degradation is
seen with an infinite buffer or a finite deferred draining buffer
when contention is high. This is because of the lighter commit
time operations due to prefetch effects of immediate draining
and reduced demands on directory banks at commit time.
Labyrinth. Finite buffering proves inadequate in this case.
Deferred draining and infinite buffering manage to avoid
unnecessary interference during execution time by mitigating
write-write conflicts, achieving speedups of about 8-12%,
partly because commits are typically fast due to the good cache
performance over its write set (see Fig. 8).
SSCA2. Eager designs in general perform well for SSCA2
because of extremely low contention and high demands on
commit bandwidth. Nevertheless, write-buffering manages to
hide store latencies (Fig. 8 shows a 50% reduction in store
miss times) and provides a 5% improvement that is consistent
across all three buffering configurations. Prefetch effects of
immediate draining are not visible because of tiny transactions.
Vacation. Its behavior is similar to that of SSCA2, with
the exception that transactions are larger and fewer, and do
not stress the system much. Write-buffering obtains marginal
improvements (2-3%) in execution times, shown in Fig. 7.
Yada. Yada, like intruder, also shows significant improvements
( 30%) when write buffers are introduced. However unlike
intruder, yada exhibits a significant number of write-write



genome

genome+
intru

der

intru
der+

kmeans-high

kmeans-low

labyrinth
ssca2

ssca2+

vacation-high

vacation-low
yada

yada+

Average

Average+
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

a.barrier
b.non_txnal

c.tx_useful
d.tx_aborted

e.stall
f.backoff

g.arbitration
h.rollback

i.commit

EE_realWB_ID || LL_realWB_pf || LL_realWB_pf_pc

Fig. 9. Policy performance comparison: eager vs. lazy

conflicts. These are hidden entirely in the infinite buffering
configuration and to a smaller extent in the deferred draining
configuration. Thus, these configurations perform 4-8% better
than the immediate draining configuration.

D. Eager vs. Lazy: Relative performance

Fig. 9 compares the performance of three finite buffer-
ing configurations – EE realWB ID, LL realWB pf and
LL realWB pf pc. Overall we notice a leveling out of per-
formance. These configurations are the best performing ones
for each policy. Results in several previous studies consistently
favor lazy designs. Here, we show that with the right buffering
mechanisms, which are not related to TM policies at all, there
is an equalization of performance. Lazy systems are still better
in a highly contended application like intruder (by about 35%),
but this is offset by significantly better performance by the
eager design for SSCA2 (20-35% better). The eager design
also shows substantial speedups over lazy for yada (12-22%).
Overall, we see that the eager design performs as well as the
lazy ones. This key insight highlights the importance of write-
buffering in HTM systems, and shows that it is as important
a consideration in HTM design as conflict resolution policy.

V. RELATED WORK

This work presents a study of the impact of write buffering
in HTM systems. The insights it encompasses apply to a
large body of work done on HTM designs and yet are, to an
extent, orthogonal to that. Concepts first described by Herlihy
and Moss [9] have been leveraged by various HTM policy
implementations.
Lazy Designs. The TCC proposal [8] implements buffering in
a private cache with global commit arbitration using a bus. A
committing transaction writes back all its speculative updates
to the shared memory hierarchy. This broadcast is also used to
keep the private caches coherent in a transactions-all-the-time

framework. A later proposal [3] provides a commit algorithm
which allows for considerable parallelism in directory based
DSM systems. It works by dividing the directory into several
banks. Transactions can commit in parallel if they do not
observe directory bank conflicts. Commit sequence numbers
are assigned to prioritize transactions when such conflicts
occur. Tomic et al. [17] describe an eager conflict detection
design that commits transactions lazily, utilizing directory
coherence in MESI based systems with two levels of private
caching. Negi et al. developed a broadcast-based lazy commit
protocol in [13] that eliminates the need for write-backs or
cache-line invalidation messaging at commit.

Eager Designs. LogTM [19] describes a protocol where trans-
actional stores update memory in-place and store old values
on the side. The design leverages coherence to implement
conflict resolution and isolation. Bobba et al. [1] present
a discussion of pathogical cases encountered in eager and
lazy designs. Subsequent optimizations like signature based
LogTM and FASTM [10] improve upon buffering and abort
handling capabilities by extending coherence protocols.

Shriraman et al. [15] performed a comparative study of
contention management policies in a hybrid FlexTM [16]
based design. This study claims that systems lazy contention
management achieves higher performance better than those
with eager management. We would like to emphasize that
conflict resolution policy is a factor that contributes towards
overall HTM system performance but it is not the sole one.
Effective management of updates in write buffers can tip
the scales. Sanyal et al. [14] proposed schemes, involving
both paging hardware and the operating system, to manage
thread-local data separately to ease the burden on speculative
versioning mechanisms. In this work, write buffers can achieve
similar effects when they are large enough to capture most
updates. Caches are not contaminated by speculative updates



and commits and aborts do not penalize accesses to thread
local data. Dahlgren et al. [4] analyzed the efficacy of write
caches in parallel architectures supporting relaxed consistency
models and demonstrated major improvements in miss penal-
ties associated with coherence misses. While the study is
not directly related to TM, the results therein suggest that
transactional semantics permit flexibility in handling updates
issued within atomic code blocks. Dice et al. [5] mention the
use of store buffers to confine transactional updates in the Rock
processor which provides limited support for TM constructs.

One common characteristic of HTM proposals mentioned
in this section is that they do not investigate different write
management mechanisms which can cause significant vari-
ation in key performance metrics. Write buffers are either
absent or not clearly described. Considering the sensitivity
of performance to the structural optimizations highlighted in
this paper, ascribing improvements in performance metrics to
changes in policy or high level protocol design is fraught
with the risk of imprecision and oversimplification. This is of
particular importance in scalable network-on-chip hierarchies
where communication delays can be the major determinant
of performance and we wish to emphasize the importance of
accurate modeling when considering the complex interaction
of multithreaded code with synchronization mechanisms in
hardware.

VI. CONCLUSION AND FUTURE WORK

In this work we have described and analyzed the inef-
ficiencies that can be caused by buffering of speculative
writes in coherent structures like private caches. While we do
not recommend exclusive use of write buffers for managing
transactional data as area and power restrictions may severely
limit its utility, the importance of having such buffering to
support the common case efficiently has been underlined.
The performance impact of write-buffering has been quanti-
fied and shown to yield significant improvements in the set
of benchmarks analyzed here. The expectation is that TM
programming constructs would eventually enable workloads
with coarse grained transactions, where non-contended data
could be written along with actively contended data. Without
appropriate write buffer support, in high contention scenarios
abort misses would result in significant degradation of cache
performance in both eager and lazy designs. Under low
contention but high commit throughput scenarios downgrade
misses might result in substantial slowdowns in lazy designs
due to prolonged arbitration. Moreover, when write buffers
are present eager designs benefit both from the capability to
hide store latencies and reduced logging actions. Shortened
transactional execution times reduce the window of contention
and improve overall performance. Another interesting insight
is that write buffers bridge the performance gap between eager
and lazy designs when contention is high, thereby indicating
possible routes for the development of a general purpose, low
complexity, high performance HTM architecture. We hope this
will serve as a useful guide to architects planning to integrate
hardware support for transactional memory in their designs.

REFERENCES

[1] Jayaram Bobba, Kevin E. Moore, Luke Yen, Haris Volos, Mark D. Hill,
Michael M. Swift, and David A. Wood. Performance pathologies in
hardware transactional memory. In Proc. of the 34th Int’l Symp. on
Computer Architecture, pages 81–91, Jun 2007.

[2] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Oluko-
tun. STAMP: Stanford transactional applications for multi-processing.
In Proc. of the IEEE Intl. Symposium on Workload Characterization,
pages 35–46. Sept 2008.

[3] Hassan Chafi, Jared Casper, Brian D. Carlstrom, Austen McDonald,
Chi Cao Minh, Woongki Baek, Christos Kozyrakis, and Kunle Olukotun.
A scalable, non-blocking approach to transactional memory. In Proc.
of the 13th Symp. on High-Performance Computer Architecture, pages
97–108, 2007.

[4] Fredrik Dahlgren and Per Stenström. Using write caches to improve
performance of cache coherence protocols in shared-memory multipro-
cessors. J. Parallel Distrib. Comput., 26:193–210, April 1995.

[5] Dave Dice, Yossi Lev, Mark Moir, and Daniel Nussbaum. Early experi-
ence with a commercial hardware transactional memory implementation.
In Proc. of the 14th Int’l Symposium on Architectural Support for
Programming Language and Operating Systems, ASPLOS ’09, pages
157–168, New York, NY, USA, 2009. ACM.

[6] Aleksandar Dragojevic and Rachid Guerraoui. Predicting the scalability
of an stm. In TRANSACT ’10: 5th ACM SIGPLAN Workshop on
Transactional Computing, Feb 2010.

[7] Sridhar Gopal, T. Vijaykumar, James S. Smith, and Guri Sohi. Specu-
lative versioning cache. In Proc. of the 4th Symp. on High-Performance
Computer Architecture, pages 195–206, 1998.

[8] Lance Hammond, Brian D. Carlstrom, Vicky Wong, Mike Chen, Christos
Kozyrakis, and Kunle Olukotun. Transactional coherence and consis-
tency: Simplifying parallel hardware and software. IEEE Micro, 24(6),
Nov-Dec 2004.

[9] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Archi-
tectural support for lock-free data structures. In Proc. of the 20th Int’l
Symp. on Computer Architecture, pages 289–300. May 1993.

[10] Marc Lupon, Grigorios Magklis, and Antonio González. FASTM: A
log-based hardware transactional memory with fast abort recovery. In
Proc. of the 18th Int’l Conf. on Parallel Architectures and Compilation
Techniques, Sep 2009.

[11] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel
Forsgren, Gustav Hallberg, Johan Hogberg, Fredrik Larsson, Andreas
Moestedt, and Bengt Werner. Simics: A full system simulation platform.
IEEE Computer, 35(2):50–58, Feb 2002.

[12] Milo M.K. Martin, Daniel Sorin, Bradford Beckmann, Michael Marty,
Min Xu, Alaa Alameldeen, Kevin Moore, Mark D. Hill, and David A.
Wood. Multifacet’s general execution-driven multiprocessor simulator
(GEMS) toolset. Computer Architecture News, pages 92–99, Sept 2005.

[13] Anurag Negi, M.M. Waliullah, and Per Stenstrom. LV*: A low
complexity lazy versioning HTM infrastructure. In Proc. of the Intl.
Conference on Embedded Computer Systems: Architectures, Modeling,
and Simulation (IC-SAMOS 2010), pages 231–240, July 2010.

[14] Sutirtha Sanyal, Adrián Cristal, Osman S. Unsal, Mateo Valero, and
Sourav Roy. Dynamically filtering thread-local variables in lazy-lazy
hardware transactional memory. In HPCC ’09: Proc. 11th Conference
on High Performance Computing and Communications, jun 2009.

[15] Arrvindh Shriraman and Sandhya Dwarkadas. Refereeing conflicts in
hardware transactional memory. In Proc. of the 23rd Int’l Conf. of
Supercomputing, pages 136–146, 2009.

[16] Arrvindh Shriraman, Sandhya Dwarkadas, and Michael L. Scott. Flex-
ible decoupled transactional memory support. In Proc. of the 35th Int’l
Symp. on Computer Architecture. Jun 2008.

[17] Sasa Tomic, Cristian Perfumo, Chinmay Kulkarni, Adria Armejach,
Adrián Cristal, Osman Unsal, Tim Harris, and Mateo Valero. EazyHTM:
Eager-lazy hardware transactional memory. In Proc. of the 42nd Int’l
Symp. on Microarchitecture, 2009.

[18] M.M. Waliullah and Per Stenstrom. Classification and elimination
of conflicts in transactional memory systems. TR 2010:09, Dept. of
Computer Science and Engineering, Chalmers University of Technology.

[19] Luke Yen, Jayaram Bobba, Michael R. Marty, Kevin E. Moore, Haris
Volos, Mark D. Hill, Michael M. Swift, and David A. Wood. LogTM-
SE: Decoupling hardware transactional memory from caches. In Proc.
of the 13th Symp. on High-Performance Computer Architecture, pages
261–272, Feb 2007.


