A Parallel Algorithm for Tracking of Segmentsin Noisy Edge | mages

P.E. Lopez-de-Teruel

Dpto. Ingenieria y Tecnologia de Computadores

A. Ruiz
Dpto. Informética y Sistemas

J.M. Garcia
Dpto. Ingenieria y Tecnologia de Computadores

Universidad de Murcia, Campus de Espinardo, s/n
30080 Murcia (Spain)
E-mail: {pedroe, j ngarci a}l@itec.umes, aruiz@if.umes

Abstract

We present a parallel implementation of a probabilistic
algorithm for real time tracking of segments in noisy edge
images. Given an initial solution —a set of segments that
reasonably describe the input binary edge image—, the al-
gorithm efficiently updates the parameters of these segments
to track the movements of objects in the image in successive
image frames. The proposed method is based on the EM
algorithm —a technique for parameter estimation of statisti-
cal distributions in presence of incomplete data—, used here
to estimate the parameters of a mixture density. The algo-
rithm is highly susceptible of parallelization, because of the
uncoupled nature of the computations needed on its main
data structures. This property is exploited in order to make
an efficient version for parallel distributed memory environ-
ments, under the message passing paradigm. We carefully
describe the details of the implementation, and finally, we
show an evaluation of the algorithm in a NOW (Network Of
Workstations), using the standard Message Passing Inter-
face (MPI) library. Our evaluation shows that the reached
speedup is very close to the ideal optimum.

1. Introduction

Describing an edge image in terms of straight segments
is a standard medium level processing technique in com-
puter vision systems. Its main goal is to find some kind of
elemental structure in the previously segmented image, as
an intermediate step where further high level processing is
needed, such as object recognition or extraction of 3D in-
formation.

Although finding segments is a basic problem treated in
almost all generic machine vision references [2][5], most
of the available methods are based in just two different ap-

proaches, namely, the feature space transformation meth-
ods, and the aggregational methods. Feature space tech-
niques are based on the well-known Hough transform [4],
where lines are expressed in some convenient parametric
form, and a single transformation is applied to all the in-
put edge points, each of them voting for an unique or a set
of line candidates in the transformed parameter space. Ag-
gregational methods, on the other side, try to group edge
elements into extended boundaries by looking for contour
lines, that are processed later to be piecewise approximated
by segments [10]. In principle, both kind of techniques
are thought for static images. So, to be applied in moving
scenes, they have to start from scratch in each new frame.

In this paper we adopt a completely different approach to
the task of segment finding, reformulating it as an statistical
parameter estimation problem. The key idea is to deal with
the binary input image (previously segmented in order to
find edges of objects with any standard filtering technique)
as a random sample of points in a bidimensional space,
drawn from a probability density function that is modeled
like a mixture of ‘segment-like’ elemental densities. Fig-
ure 1 shows the idea: The problem of segment detection is
transformed into the problem of estimating the parameters
of the mixture that most likely generated the corresponding
input edge image. The EM algorithm [8] will be used for
this task.

Our approach has several advantages over the traditional
methods: First, the dynamics of the model: the algorithm
is specially useful in the tracking of moving segments in a
temporal sequence of images, using the previously obtained
solution and the current input to obtain the new set of seg-
ments. Second, the ability to cope with low-quality input
edge images, as noise points are, as we will see, explicitly
contained in the probabilistic model. And finally, the sus-
ceptibility for massive parallelization, because of the regu-
lar nature of the computations performed by the algorithm.

Figure 1. A sample image, a set of segments
describing its edge points, and the corre-
sponding mixture pdf.

2. Theoretical Foundations

As we have already stated, we use a probabilistic ap-
proach to estimate the parameters of the segments in a new
image, given a prior solution and a new set of input points.
The aim is to exploit the ability of EM of finding structure

in data: Each point has influence in the calculation of each
segment, but progressively, it is taken into account just for
computing the component that most likely generated it, los-
ing its influence on the calculus of the rest of components.
In this section we describe the mathematical details of the
adaptation of the EM algorithm to efficiently cope with seg-
ment tracking in noisy environments.

2.1. First Step: Weighted Assignation of Points to
Segments

First of all, we need an elemental component of the mix-
ture to model individual segments. To define the probability
density function (pdf) of each component, we use a previ-
ous and straightforward definition of d((z,y), S), the dis-
tance from a point (z,y) to a segment S: it will be the dis-
tance of the point to the nearest extreme of the segment, if
the projection of (z,y) along the direction of S falls out of
the segment, and simply the perpendicular distance of (z, y)
to S otherwise. Using this previous definition, the following
equation defines a proper pdf in the XY plane domain:

1

S A (NS eV

1)

where L is the length of S. It can be shown that the above
function is defined over the whole domain $R2, it integrates
to one, and it is inversely proportional in each point (z,y)
to the distance of the point to the segment S.

Given the previous definition, we can compute the a pos-
teriori probability ¢;. that an input point (z.,y.) has been
generated by a segment S;. This is analogous to the E-step
(expectation step) of the classic EM algorithm:

q§:+”t= p{s (e, o) T} =
Pz'()p{(xea ye)(t+1)|5¢()}

Z;Vzl Pj(t)p{(xe,ye)(t“)IS](.t)}
Vie{l,...,N}ee{1,..., Mt}

(@)

Here, N is the number of segments, M is the number of
points, and P; is the a priori probability of each segment
S;. Values with superscript (¢) correspond to the ¢** image
in the sequence. Note that, here, NV is fixed, but M (¢+1) the
number of input points, could change in time.

2.2. Second Step: The Adjustment of Segments

Now we can recompute the new extreme points of each
segment .S; using all the input points (z., ye), weighted by
their probabilities ¢;. of being part of such segment. In or-
der to do it, we first compute the new a priori probability
P;, mean (row) vector fi;, and covariance 2 x 2 matrix ¥;

of each component. This is analogous to the M-step (maxi-
mization step) of the classic EM algorithm:

1 M+

(t+1) (t+1)

z (t+1) Z Qe (3)
e=1
(t+1)

At = Mz ¢ ey @)
¢ M(t+1)P(t+1) e Je
D — 71 :

1 M(t+1)P-(t+1)
MY G YT (t+1)
Z Gie (@e,ye) —fi;)T (e, ye) — 17)
®)
Vie{l,...,N}

Now we can assume that the points in each segment present
a strong correlation between z and y, as they should be
straight segments. Then, we can calculate the main (i.e.,
major) eigenvalue, A;1, and the corresponding eigenvector
U1, of each covariance matrix X;:

A = max{(o11); + (022);it

V{((o11)i + (022)5)2 — 4((011)i(022)i —

L A= 2(022)i
U= 0 1) (")

These give us the direction of the segments. The minor
eigenvalue in each component, \;2, corresponding to the
other eigenvector ;> (orthogonal to ¥;;), should be much
smaller, and can be rejected (in fact, it would be zero in a
perfect segment). Using the values of A;; and ¥;1, it is easy
to compute the extreme points (z;1,y:1) and (z;2,y:2) for
the segment S;:

@y ©

|Tin |
In the above formulae, we assume that the projection of
points into their corresponding segment are uniformly dis-
tributed along its direction @1, and obviously centered in
fi;. Given that the eigenvalue \;; is exactly the variance of
the sample points projected along that direction, and that the
variance of an unidimensmnal uniform distribution in an in-
terval of length L is 12, it is straightforward to see that the
length of the segment S; is exactly L = +/12A;;. Thus, we
multiply £ 5 = v/3Xi1 by the normalized eigenvector |€11‘,
and respectively subtract and add it to ji; in order to obtain
the extremes of the segment.

{@i1,ya1), (Tiz, yi2)} = pi £ V3 (8)

2.3. Noise Treatment

Noise points are a problem in our approach. In most edge
images, many spurious points appear, caused by noise in the

sensor, textures, reflects, limitations of the filtering tech-
nique, and so on. If these points are not treated in a special
way, they could drastically disturb the solutions, moving
the segments away from their correct locations. To solve
this problem, we introduce in the mixture an additional
uniform bidimensional component to capture these noise
points. That is, the mixture is not constituted only by the
N elemental segment-like components, but also has an ad-
ditional uniform component across the XY plane, with the
same limits than the whole image frame. This component
gives a constant a priori probability p{(z,y)|Noise} = a
to each input point of having been produced by noise. The
constant a can be modified in order to cope with different
amounts of noise. The algorithm remains the same, except
that now we have to compute a new gy 1 . Value for each
point, the a posteriori probability that it has been generated
by the uniform component. Empirical tests confirmed that
the solution is satisfactory, with noise points being captured
by the uniform component during the EM algorithm itera-
tion, while aligned points were adequately tracked by the
rest of segment-like components.

3. Improving the Performance: Parallelization
of the Algorithm

In this section, we show how we take advantage of the
symmetry in the involved computations in the EM algo-
rithm for mixtures [7]. The first clear data parallelism can
be found in the E-step: We can distribute the processing of
the p{(x.,y.)|S;} and the subsequent g;. values (egs. (1)
and (2)) matrix by input points, indexed by e. This distribu-
tion avoids the need for communications among processors
in the normalizations needed by eq. (2). This solves the
E-Step of the algorithm in an efficient way, at a minimal
communication cost (only the segment parameters must be
sent to all the processors; the input points can be partitioned
among them).

A second source of parallelism can be exploited in the
M-Step, when parameters of the mixture are recomputed
using the ¢;. matrix: Once that we have the g;. values calcu-
lated, but distributed among the processors, we can compute
the intermediate parameters Py, fi;, and X;,, for each com-
ponent ¢ on each processor p, but taking into account only
the points assigned to the corresponding processor, using
the egs. (3), (4) and (5), conveniently modified as follows:

M (t+1)
P
(t+1) _ 1
Parameter;,” ™~ = WP(HI) Z ey
P % e=(p—1) M(;+1)+1
9)
Vpe{l,...,P}

where p indexes the processors, from 1 to P (total num-
ber of available processors). Note that these computations

can still be performed under the initial data distribution,
without the need for additional communications. But, of
course, what we need are the final values of P;, fi; and (o;).
So, to complete the M-Step, we have to gather the interme-
diate values obtained in (9) in all the processors, and using
them, compute the final values. This is the second commu-
nication point of the algorithm, after the initial distribution:

P
(t+1) _ 1 (t+1)
P =53 Py (10)
p=1

(1) _ P)

Hi P(t+1) Z (11)
(t+1) (t+1) t+1) ST S(e+1)
2 (t+1) Z T Hip i)
(12)
Vie{l,...,N}

Egs. (10) and (11) are fairly straightforward, while eq. (12)
uses the well known property that the total covariance of a
set of subsamples is the mean of the covariances plus the
covariance of the means of the subsamples.

For the sake of simplicity, we have supposed that A/ (t+1)
is a multiple of P. But if this condition does not hold, the
only change that must be made is to weight each interme-

diate value with its corresponding proportion of points as-
(t+
signed to that processor, i.e. ﬁ(m) , instead of the value +

that appears in egs. (10), (11) and (12), and M,§t+1) |nstead
of M(;:l) ineq. (9).

In (10), (11) and (12), a new data partition can be done
to take advantage of parallelism, in this case by segments,
indexed by i. Each processor is assigned a subset of seg-
ments i = (p — 1)%,... p&. We can also compute this
way the extremes of the segments, using egs. (6), (7), and
(8). The final results have to be broadcasted again to all the
processors, to begin with the next iteration. This is the third
and last communication point of the parallel algorithm.

Figure 2 shows in pseudo-code the message-passing pro-
gram for segment detection and tracking, in which the three
communication points are emphasized. In fact, we have
centered the discussion in the inner loop, corresponding to
EM iteration (tracking of segments). If the noise component
grows too much, then perhaps there are new objects in the
scene, or some old ones have disappeared, and the current
number of segments may have became inadequate. In this

10f course, M,SH'I) isthe number of input points assigned to processor

p, usually LM(;:I) M+ mod P and
1 ..

LM(I:)J for processor p = M(+D mod P 4 1,..., P. Thisis the

assignation of points that presents a better load balancing, assumed that
the P processors are identical.

| + 1 for processorsp = 1,. ..,

case, we have to reinitialize the solution with the external
detection algorithm.

Input: (Array of changing M sample points)
(Te,ye), fore=1,

Output: (Array of changlng N segments)
((zzlyy11) ($z2yyz2)) fori=1,...,N.

Main Iteration: (Infinite Loop)
Repeat
Input: (From Lower Levels of the Vision System)
-Read current list of edge points (z.,y.), fore =1,..., M.
Initialization: (Segment Detection)
-Compute an initial solution ((z;1,yi1), (zi2,y:s2)), for i =
., IV, with some standard (possibly parallel) algorithm (i.e. Hough).
-Assign P; := N}H,fori =1,...,N+1
EM Iteration: (Segment Tracking)
Repeat
Process0:
Input: (From Lower Levels of the Vision System)
-Read current list of edge points (z., y.), fore = 1,..., M.
Data Distribution: (First Communication Point)
-Send points (ze,9e). e = ((p — 1) +1,
respective processors p, forp = 1,
-Broadcast ((zll,yﬂ) (zlg,ylg)) for i =1,...,N, and

o p¥)to

P fori =1, , N + 1, toall P processors.
For all processesp = 1 , P:
E step: (Q Matrix Computatlon)
-Compute p{(ze,y)|S:;}, fori = 1,...,N + 1, and
e = ((p— DY +1,...,pY), using egs. (1) and

p{(ze,ye)|Si} = a(fori=N+1).
-Compute gie, fori=1,...,N+1,ande = ((p— 1) % +
1,...,p3), using eq. (2).

M1 step: (Intermediate Parameters Computation)
-Compute P;p, fiip,and X;p, fori = 1,..., N, using egs. (3),
(4) and (5), but adapted to the corresponding subset of points by
eq. (9).

Intermediate Gatherlng (Second Communication Point)
Gather P, fl;,r, and X, from the rest of processes p’

P, p' #p.
M 2 step: (Final Parameters Computation)
-Compute P;, g;,and 5;, fori = (p—1) X +1,..., (p) ¥,

using egs. (10), (11) and (12).
-Compute ((z:1,yi1), (i2, yi2)), fori = (p — DNE +
1,...,p% fori=1,..., N, usingegs. (), (7), and (8).
Process 0:

Segments Gathering: (Third Communication Pomt)
-Gather ((zi1,9i1), (Ti2,yi2)), for i = 1,
Vi=1, SN+ 1.

Output: (To Upper Levels of the Vision System)
(... Use output in higher levels...)

Until Py 41 > Threshold.
Until FALSE

,N and P;

Figure 2. Parallel message passing algorithm
for segment tracking (pseudo-code).

4. Evaluation

We conclude with some performance results obtained ex-
ecuting an MPI implementation [7] of our proposed parallel
algorithm in a cluster of workstations [1]. The cluster had
the following technical characteristics: Pentium MMX 200
MHz, 256 KB cache, 64 MB RAM nodes, communicated
by a Fast Ethernet 3Com 100 Mbps, and MPICH 1.0.13 for
Linux as the MPI library [3] implementation.

Figure 3 shows the processing times vs the number of
processors for several problem sizes M x N, after 100

iterations of E and M steps. The reduction in execution
time as we increment the number of workstations partic-
ipating in the computation (P) is very promising: The
reached speedups are not very far from the ideal optimum
P. The implementation, therefore, shows to be highly scal-
able, mainly due to the reductions performed in the size
of communications, and the symmetric distribution of the
computations (good load balancing). Using the 7 proces-
sors simultaneously, up to 5 frames per second were pro-
cessed for images with M = 2000 edge points and N = 50
segments, typical values for usual image sizes. Of course,
the higher the values of M and NV, the less the frames per
second that the system was capable to process, but, also, the
better the reached speedup. This is mainly due to the fact
that, as we increase the size of the problem, the increment in
the quantity of parallel computations is more important than
the increment in the size of communications, the traditional
bottleneck in NOWs.

5. Conclusions

In this paper, we have presented an innovative parallel al-
gorithm to track segments in real time computer vision en-
vironments, using a probabilistic technique. We have also
shown how it can be efficiently implemented in distributed
memory parallel machines. The algorithm shows very good
results in both speedup and scalability, as it takes advantage
of a careful load balancing and minimization of commu-
nications. As a result, for small/medium image sizes, the
number of frames per seconds that can be processed allows
for real time application in tracking of moving scenes.

The technique is specially appropriate for clusters of
PCs, where the shared communication medium does not
suppose a severe bottleneck [9]. In these clusters, very good
performance/cost ratios can be achieved if the parallel algo-
rithms are specifically designed for those distributed mem-
ory environments [6]. This suggests the interesting possi-
bility of using this kind of parallel machines in computer
vision, with standard PCI image acquisition cards. In this
way, we can significantly improve the overall processing
speed of our computer vision system, obtaining an inter-
esting performance/cost ratio, and real-time processing of
moving scenes.

6. Acknowledgements

This work has been partially supported by the Spanish
CICYT under grants TIC97-0897-C04-02 and TIC98-0559.

References

[1] T. Anderson, D. Culler, and D. Patterson. A case for NOW.
|EEE Micro, 15(1):55-64, 1999.

80

\
A —+— 500x50

60 - +- 500x100
- =— 1000x50

g
~ —— 1000x100
40 >

— 0 T — - — 2000x50

Execution Times in Seconds
-

—+— 2000x100

20

Nunber of Processors

Figure 3. Performance measures for 100 EM
iterations on several (N, M) input values.

[2] E. Davids. Machine Vision, 2"¢ Edition. McGraw-Hill,
1997.

[3] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable
Parallel Programming with the Message Passing Interface.
MIT Press, 1994.

[4] P.Hough. Methods and means for recognising complex pat-
terns. U.S. Patent 3 069 654, 1962.

[5] R. Jain, R. Kasturi, and B. Schunk.
McGraw-Hill, 1995.

[6] B. Lester. The Art of Parallel Programming. Prentice Hall,
1993.

[7] P. Lopez-de-Teruel, J. Garcia, and M. Acacio. The parallel
EM algorithm and its applications in computer vision. Pro-
ceedings of the PDPTA' 99, CSREA Press, 1999.

[8] G. McLachlan and T. Krishnan. The EM Algorithm and Ex-
tensions. John Wiley and Sons, 1997.

[9] J. Piernas, A. Flores, and J. Garcia. Analyzing the perfor-
mance of MPI in a cluster of workstations based on fast
ethernet. 4** European PVM/MPI Users Group Meeting.
Lecture Notes in Computer Science, 1332:17-24, 1997.

[10] P. Rosin. Techniques for assesing polygonal approximation
of curves. |EEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 19:659-666, 1997.

Machine Vision.

