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Abstract We are witnessing the consolidation of the heterogeneous computing in
parallel computing with architectures such as Cell Broadband Engine (Cell BE) or
Graphics Processing Units (GPUs) which are present in a myriad of developments
for high performance computing. These platforms provide a Software Development
Kit (SDK) to maximize performance at the expense of dealing with complex and
low-level architectural details which makes the software development a daunting
task. This paper explores stencil computations in several heterogeneous program-
ming models like Cell SDK, CellSs, ALF and CUDA to optimize the Jacobi method
for solving Laplace’s differential equation. We describe the programming techniques
to extract the maximum performance on the Cell BE and the GPU, and compare their
computing paradigms. Experimental results are shown on two Nvidia Teslas and one
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IBM BladeCenter QS20 blade which incorporates two 3.2 GHz Cell BEs v 5.1. The
speed-up factor for our set of GPU optimizations reaches 3–4×, and the execution
times defeat those of the Cell BE by an order of magnitude, also showing great scala-
bility when moving towards newer GPU generations and/or more demanding problem
sizes.

Keywords Hardware accelerators · GPGPU · CELL · Stencil computations

1 Introduction

Heterogeneous computing (or hybrid computing) is being consolidated in the land-
scape of high performance computing. Heterogeneous systems refer to hardware plat-
forms using a variety of different types of computational units. A computational unit
can be a general-purpose processor (CPU), a special-purpose processor (i.e. SPEs,
GPUs or even DSPs)), or custom acceleration logic (i.e. field-programmable gate ar-
rays or FPGAs). The demand for increased heterogeneity in computing systems is
mainly due to physical reasons (memory-wall and power-wall [3]) and the need for
high-performance, highly-reactive systems that interact with other environments like
audio/video, control or network applications.

Heterogeneous architectures, including Cell BE and GPUs, have been success-
fully used in high performance computing. The Cell BE architecture [13] is an het-
erogeneous multi-core chip composed of a general-purpose processor, called Pow-
erPC Processor Element (PPE), eight specialized co-processors, called Synergistic
Processing Elements (SPEs), a high-speed memory interface controller, and the I/O
interface, all integrated in a single chip. All these elements communicate through
an internal high-speed Element Interconnect Bus (EIB). Besides, the newest versions
of programmable GPUs deliver extremely high floating point performance for scien-
tific applications which fit their architectural idiosyncrasies [20]. They contain up to
512 streaming processors (SPs) which are organized into groups of 8 SPs, namely
Streaming Multiprocessors (SMs). Each GPU contains its own high bandwidth off-
chip memory (video memory of several Gigabytes of GDDR5 DRAM).

Major vendors and research groups have released software components which pro-
vide a simpler way to handle parallelism in heterogeneous computing. CUDA (Com-
pute Unified Device Architecture) [15] is Nvidia’s solution as a simple block-based
API for GPU programming. Examples on the Cell side are ALF, CellSs, Sequoia and
MicroMPI [17]. All of these models are expected to converge in OpenCL [22] as a
higher level standard shared by a wide set of heterogeneous systems.

Stencil computations are those in which each computing node in a multi-
dimensional grid is updated with weighted values contributed by neighboring nodes.
These neighbors comprise the stencil, and multiple iterations across the array are
usually required to achieve convergence or to simulate time steps. Among those
stencil codes, our work focuses on the Jacobi method to solve Laplace’s differential
equation. We address the design space on Cell BE and GPUs. We analyze the main
features of stencil computations and also their corresponding architectural idiosyn-
crasies, by using the Jacobi method as a case study. A set of optimization paths are
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also explored, trying to illustrate the strength of CUDA for accelerating those stencil
computations.

The rest of the paper is organized as follows. Section 2 briefly introduces the Cell
BE and the CUDA architectures together with their programming models. Section 3
describes the Jacobi method representing stencil computations and compares its par-
allelization on the Cell BE and the GPU. Section 4 outlines optimizations, Sect. 5
evaluates performance, and finally, Sects. 6 and 7 describe some related work and
conclude, also pointing some directions for future work.

2 Hardware platforms and programming models

2.1 The cell broadband engine (Cell BE)

The PPE is the main processor of the Cell BE, responsible for running the operating
system and coordinating the SPEs. It is a traditional 64-bit PowerPC (PPC) processor
core with a VMX unit (Vector/SIMD Multimedia Extension), 32 KByte L1 instruc-
tions and data caches, and a 512 KByte L2 unified cache. The PPE is a dual issue,
in-order execution, 2-way SMT processor, containing two different units called Pow-
erPC Processor Unit (PPU) and PowerPC Processor Storage Subsystem (PPSS).

Each SPE is a 128-bit RISC processor which consists of a Synergistic Processing
Unit (SPU) and a Memory Flow Controller (MFC). The SPUs are in-order processors
with two pipelines and 128 registers of 128 bits. All SPU instructions are inherently
SIMD operations that the proper pipeline can run at four different granularities: 16-
way 8-bit integers, 8-way 16-bit integers, 4-way 32-bit integers or single-precision
floating-point numbers, or 2-way 64-bit double-precision. SPEs do not have a private
cache memory, but a 256 KByte LS memory to hold instructions and data, and SPU
programs cannot access main memory directly. The MFC contains a DMA Controller
and a set of memory-mapped registers called MMIO Registers. Each SPU can write its
MMIO registers though several Channel Commands. The DMA controller supports
DMA transfers among the LSs and main memory. These operations can be issued
by the owner SPE, which accesses the MFC through the channel commands, or the
other SPEs (or even the PPE), which access the MFC through the MMIO registers. In
addition, the PPE and the SPEs can use a variety of hardware-supported mechanisms
like Mailboxes.

Cell BE programming requires separate programs, written in C/C++, for the
PPE and the SPEs, respectively [10]. The PPE program can include extensions
(e.g., vec_add), to use its VMX unit; and library function calls [11], to man-
age threads and perform communication and synchronization operations. (e.g.,
spe_context_run, spe_in_mbox_write and spe_signal_write).

2.2 Compute unified device architecture (CUDA)

CUDA comprises a programming model and a hardware architecture for the GPU,
making it operate as a highly parallel computing device. Each GPU consists of a
set of SIMT (Single Instruction Multiple Threads) multiprocessors (SM), each of
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them containing Stream Processors (SPs) [15]. Different memory spaces are available
on each GPU: The global (or device) memory is the only space accessible by all
multiprocessors, and each multiprocessor has its own private memory space called
shared memory.

A CUDA parallel program has two parts: a sequential code executed by the CPU
(host), and a parallel code (kernel) executed by the GPU. The host code transfers
data between main memory and global memory via PCI-express, and also sets up the
kernel parameters for each GPU (like the number of blocks per grid and the number
of threads per block).

The device code is grouped into one or more program routines called kernels, and
they are called from the host code as if they were procedures or objects in C/C++.
A kernel is a piece of code programmed in a SPMD (Single Program, Multiple Data)
style, that is, the same code is executed over different data by distinct threads on
different SP cores. The kernel computation is performed by all these threads running
in parallel.

The CUDA execution model [19] is based on a hierarchy of abstraction layers:
grids, blocks, warps and threads. The thread is the basic execution unit that is mapped
to a single SP. A block is a batch of threads which can cooperate together because they
are assigned to the same multiprocessor, and therefore they share all the resources
included in this multiprocessor, such as register file and shared memory. A grid is
composed of several blocks which are equally distributed and scheduled among all
multiprocessors. Finally, threads included in a block are divided into batches of 32
threads called warps.

The programmer declares the number of blocks and threads per block. Each block
and thread has its own and unique identifier (thread id and block id), which allow the
programmer to select different data and code depending on them.

Memory accesses and synchronization schemes also play important roles in the
CUDA programming model. Memory latency can be greatly reduced if the memory
access follows the correct pattern [18]. Global synchronization is not provided at
the device side: only threads within a block are synchronized, and therefore block
synchronization mechanisms must be explicitly implemented by the host through
consecutive kernel invocations or via atomic instructions.

3 Stencil computations for the Jacobi method

Jacobi [14] is a popular algorithm for solving Laplace’s differential equation on a
square domain, regularly discretized [6]. The kernel (see Fig. 1) is based on the fol-
lowing idea: Let us consider a body represented by a 2D array of particles, each with
an initial value of temperature. This body is in contact with a fixed value of tempera-
ture on the four boundaries, and Laplace’s equation is solved for all internal points to
determine their temperature as the average of the four neighboring particles. Taking
this task as the computational core, a number of iterations are performed over the data
to recompute average temperatures repeatedly, and the values gradually converge to
a finer solution until the desired accuracy is reached.
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for (k=0; k<4096; k++) {
for (i=0; i<N; i++)
for (j=0; j<N j++)
M[i][j] = 0.2*(M’[i][j]+M’[i-1][j]+

M’[i+1][j]+M’[i][j-1]+M’[i][j+1]);
for (i=0; i<N; i++)
for (j=0; j<N j++)
M’[i][j] = M[i][j]; }

Fig. 1 Jacobi’s solver pseudocode

Note that iterations have to be serialized due to carried-loop dependencies, but
parallelism is enabled within iterations for the computation as each particle is inde-
pendent. Thus, the workload depends more on the number of iterations, whereas the
amount of parallelism that can be extracted from the code relies more on the size
of the 2D input matrix. At the end, our Jacobi kernel consists of three nested loops,
with the two innermost being of length N (which is the matrix dimension), and the
outermost being of length k (the number of iterations) (see Fig. 1). The algorithm
complexity can be expressed as O(k · N2).

For experimental purposes, we consider a constant number T = 4096 iterations to
compute an input square 2D-matrix of single-precision floating-point elements, al-
though performance is largely independent of the number of iterations T . The Cell
BE and GPU architectures present distinct properties to face an optimal paralleliza-
tion of stencil computations based on the Jacobi method:

– Intensive memory access. To update each computing node in a multi-dimensional
grid, weighted values contributed by neighboring nodes are employed and have to
be read from memory. When comparing the amount of data read from and writ-
ten to memory with the time spent on calculation, memory access becomes a po-
tential bottleneck. The Cell BE and GPUs behave differently here due to limited
explicitly-managed on-chip memories. Those memories are handled using tiling,
coalescing and double-buffering techniques in order to alleviate memory pressure
on each architecture.

– Massive parallelism. Stencil computations are allowed to use a large number of
threads during parallelization. Depending on the architecture features, the pool of
threads can be increased or decreased to obtain the maximum performance, by
setting a thread per element in the multi-dimensional grid or a thread per data set.
A priori, a large number of independent threads has more impact on the GPU,
where computing model is highly multi-threaded and the number of processors is
much higher.

– Data locality. Adjacent nodes are needed for computing each node. This allows
for threads executed by the same SIMD unit to address contiguous memory blocks
throughout the node computation. This influences equally Cell and GPUs, but the
key issue now is to take advantage of the fastest levels in the memory hierarchy.

– Synchronization requirements. Multiple iterations across the array are usually re-
quired to achieve convergence or to simulate time steps on stencil computations.
Therefore, a synchronization among all processing elements is required to update
frontier values. The Cell BE is better suited to improve this issue through a barrier
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synchronization; GPUs, on the other hand, have to finalize the kernel to get global
synchronization among all streaming processors.

– Low floating-point arithmetic intensity. For the particular case of the Jacobi
method, only five operations are needed at each computing node (see the Jacobi’s
solver pseudocode of Fig. 1). Even though the instruction set implemented by
GPUs is more restricted than that of the Cell BE, the simplicity of the kernel al-
lows a draw in this concern. Anyway, the Jacobi method does not constitute an
ideal partner for any of these platforms, where a high arithmetic intensity becomes
an essential issue for attaining high performance computing.

4 Application design

In this section, we discuss several CPU and Cell BE implementations of the Jacobi
solver. We propose different computational patterns, introduce two different program-
ming models for the Cell BE, and describe several GPU techniques that are poten-
tially useful to increase the data bandwidth during the Jacobi computation.

4.1 Jacobi solver implementation on Cell BE

Figure 2 shows the parallelization of the Jacobi solver by using the Cell SDK. First,
the PPE allocates matrices A and B in main memory (see number 1). Then, the PPE
statically assigns a set of columns to each available SPE by dividing the number
of columns by the number of available SPEs. This exploits SIMD parallelism, and
then, columns per SPE are logically divided into chunks. For instance, Fig. 2 shows a
column set equivalent to three chunks: SET1, SET2 and SET3 (see number 2). These
SETs determine the number of chunks to be computed.

Fig. 2 Jacobi implementation using the SDK. Arrows indicate data transfers, and the computational order
is determined by numbers
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The PPE synchronizes with all SPEs through mailbox operations in order to ini-
tialize the computation. Then, each SPE transfers to its local store its corresponding
chunks from matrix A (see number 3), with the order of the transfers per SET go-
ing from the top to the bottom chunk. Figure 2 shows groups of three chunks in local
store, with the top-adjacent and the bottom-adjacent chunks being required to process
each chunk.

Eventually, the left-adjacent and/or right-adjacent chunks may be transferred as
128-bytes aligned subsets of these chunks to enhance performance (see [10]). For ex-
ample, in Fig. 2 they are transferred for chunks belonging to SET2, which introduces
an extra overhead particularly in large matrices.

Finally, all SPEs synchronize in a barrier which takes just 650 ns for a 16-SPE syn-
chronization, similarly as the overhead in [8], and then matrix pointers are swapped
and the stop-condition is verified. In our particular case, the SPE0 checks the stop
condition and sends an acknowledgment or exit message through mailboxes, accord-
ingly.

4.1.1 Increasing the memory bandwidth

The Jacobi method on Cell BE is designed to reduce memory transfers between
main memory and local storage of SPEs, and thus to harness the Cell BE computa-
tional resources to the maximum. In this sense, it avoids transferring the left elements
when processing the first element of a particular chunk, leaving untouched the first
four elements (see the first white-colored elements in chunks To write, except those
chunks belonging to SET1). Instead, it computes the next four elements from the
right-adjacent chunk (except for chunks belonging to SET3).

As a result of the computation (see ellipse J), the chunks To write contain the addi-
tional 4 elements (16 bytes) from the right-adjacent chunk. These chunks are written
to main memory by computing SET3, SET2 and SET1 in reverse order, to avoid
overwriting the first four elements of those chunks. As a result of the computation,
number 4 shows the final SETs which are written to matrix B.

All transfers between main memory and local storage of SPEs have been accom-
plished by using a double-buffering technique in order to overlap computation with
communications. In particular, we use double-buffering for (1) the transfers per SET
going from the top chunk to the bottom chunk, and (2) the final SETs which are writ-
ten to matrix B. 1024-bytes chunks were selected as optimal size for transfers accord-
ing to statistics reported in [1] in order to efficiently exploit latencies and bandwidths
on Cell.

4.1.2 Alternative Cell BE high-level programming models

A number of programming models have arisen as an attempt to reduce the high
complexity of programming provided by the flexible SDK. In this way, CellSs or
ALF programming models make transparent some regular operations such as task
scheduling or data-transfers management to programmers, at the cost of degrading
performance in most cases.

In CellSs, programmers declare parallel tasks (or functions) which the runtime
will attempt to execute in parallel on available SPEs. To do so, we identify two main
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1#pragma c s s s t a r t
2
3f o r ( k =0; k <4096; k ++){ {
4
5/ / Read Mold m a t r i x and w r i t e Mnew m a t r i x
6f o r ( i =0 ; i <ROWS; i ++){
7
8f o r ( j =0 ; j <COLUMNS; j += s i z e o f _ c h u n k )
9{
10J a c o b i (&Mold [ i ] [ j ] ,
11&Mold [ i + 1 ] [ j ] ,
12&Mold [ i + 2 ] [ j ] ,
13&Mnew[ i + 1 ] [ j ] ) ;
14}
15}
16
17/ / B a r r i e r
18#pragma c s s b a r r i e r
19/ / I n t e r c h a n g e p o i n t e r s t o m a t r i c e s
20tmp=Mold ;
21Mold=Mnew ;
22Mnew=tmp ;
23}
24
25#pragma c s s f i n i s h

Fig. 3 Jacobi solver on CellSs

tasks to solve the Jacobi method: Jacobi and Stop_Condition, respectively. The for-
mer receives as input three specific chunks (or sets of consecutive matrix elements)
from the matrix A (top, center and bottom chunks), processes them according to the
Jacobi algorithm shown in Fig. 1, and, finally, stores the output-parameter chunk into
matrix T. The latter checks whether stop condition has been satisfied or not.

Figure 3 outlines our CellSs algorithm. The implementation for the function tasks
and the special cases for computing frontier elements have been omitted for sim-
plicity. On each inner iteration, the Mold matrix is read in three chunks (top, center
and bottom) from three consecutive rows (lines 10–12). The center chunk is com-
puted (line 10) and written to the corresponding row of matrix Mnew (line 13). This
process is repeated until all the elements in the matrix Mnew have been computed.
Upon completion, a barrier is performed (line 18) to check the stop condition (line
21). Finally, pointers to matrices are swapped prior to starting the next iteration (lines
24–26).

Figure 4 shows the ALF version of the Jacobi method. This version is based on the
host-partition scheme presented in [9]. We assume the reader is familiar with ALF
particularities, thus the code has been highly simplified. ALF programming model
specifies tasks, work blocks or DTLs (see Sect. 2.1). Similarly to the CellSs version,
the ALF version performs two task based on the Jacobi algorithm. The SPE code has
been omitted because it is equivalent to the Jacobi function in CellSs. A task context
buffer is used by applications that require common persistent data that can be refer-
enced and updated by all work blocks. In this way, upon completion the execution of
each work block, a new partial summation updates a local copy of the task context
buffer. At the end, the ALF runtime merges all of those local copies and assesses the
final result.
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1f o r ( k =0; k <4096; k ++){ {
2
3/ / Read Mold m a t r i x and w r i t e Mnew m a t r i x
4f o r ( i =0 ; i <ROWS; i ++){
5
6f o r ( j =0 ; j <COLUMNS; j += s i z e o f _ c h u n k ) {
7/ / C r e a t e a new work b l o c k
8a l f _ w b _ c r e a t e ( t a s k _ h a n d l e , ALF_WB_SINGLE,& wb_handle ) ;
9/ / DTL e l e m e n t s f o r i n p u t chunks from Mold m a t r i x
10a l f _ w b _ d t l _ b e g i n ( wb_handle , ALF_BUF_IN , 0 ) ;
11a l f _ w b _ d t l _ e n t r y _ a d d ( wb_handle , &Mold [ i ∗n + j ] ) ;
12a l f _ w b _ d t l _ e n t r y _ a d d ( wb_handle , &Mold [ ( i +1)∗ n + j ] ) ;
13a l f _ w b _ d t l _ e n t r y _ a d d ( wb_handle , &Mold [ ( i +2)∗ n + j ] ) ;
14a l f _ w b _ d t l _ e n d ( wb_handle ) ;
15/ / DTL e l e m e n t s f o r o u t p u t chunk i n t o Mnew m a t r i x
16a l f _ w b _ d t l _ b e g i n ( wb_handle , ALF_BUF_OUT , 0 ) ;
17a l f _ w b _ d t l _ e n t r y _ a d d ( wb_handle , &Mnew [ ( i +1)∗ n + j ] ) ;
18a l f _ w b _ d t l _ e n d ( wb_handle ) ;
19/ / Enqueue a new work b l o c k
20a l f_wb_enqueue ( wb_handle ) ;
21}
22}
23a l f _ t a s k _ f i n a l i z e ( t a s k _ h a n d l e ) ;
24/ / B a r r i e r
25a l f _ t a s k _ w a i t ( t a s k _ h a n d l e , −1);
26
27/ / Swap p o i n t e r s t o m a t r i c e s
28tmp=Mold ;
29Mold=Mnew ;
30Mnew=tmp ;
31}

Fig. 4 Jacobi solver on ALF

Fig. 5 Threads deployment for the CUDA parallelization strategy

4.2 Jacobi solver implementation on CUDA

Figure 5 shows the threads deployment for the parallelization of the Jacobi method
using CUDA. Blocks and threads are deployed following a 2D layout to balance
the decomposition of the computational domain on each matrix dimension. Adjacent
blocks share data placed on boundaries, and each thread within a block is responsible
for updating a single element on each iteration.
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Among all possibilities concerning an input matrix of size N × N and a squared
block of B × B threads, we have selected N = 1024,2048,4096,8192 and B =
14,16,18,20 for representing good choices after a preliminary survey.

4.2.1 Shared memory optimizations

Our CUDA baseline implementation does not use shared memory. All threads access
the device memory to read an element together with its four matrix neighbors and
later update its value with the average. From this departure point, three optimizations
were incrementally developed:

1. Each input element read from device memory is stored into shared memory by the
owner thread prior to the actual computation, and the output result is written back
into device memory. The kernel length increases from 34 to 78 instructions, but
this variant notably reduces the pressure on device memory, just requiring 18 GB/s
of memory bandwidth compared to 122 GB/s in our baseline version.

On the Tesla C870, 99.68% of the memory accesses to device memory are non-
coalesced when running the code using CUDA Compute Capabilities 1.0 (CCC
1.0). On the Tesla C1060, things are very different, for this device uses coalescing
rules based on CCC 1.3, leading to a 100% of coalesced accesses. Benefits are
therefore larger on the Tesla C1060 GPU.

2. Our second optimization uses an internal register as substitute of the shared mem-
ory cell on each thread, eliminates unnecessary synchronization barriers between
threads at block level, and enables data prefetching. These enhancements behave
similarly on CCC 1.0 and 1.3, and are translated into minor improvements in the
overall execution time.

3. The third optimization reduces the tile size to decrease the use of shared memory.
In CCC 1.0, the maximum number of threads assigned to a multiprocessor is 768,
whereas in CCC 1.3 this number reaches 1024. In the first case, the tile size is
decreased to reduce the amount of shared memory used (4120 bytes) so that we
can assign three blocks of 256 threads to each multiprocessor. In the second case,
the tile size is reduced even more until we can assign four blocks of 256 threads,
which increases parallelism leading to slightly better results. Insights of different
tiling strategies for stencil codes can be found in [21].

4.2.2 The effect of larger 2D stencils

Our next alternative kernel tries to evaluate the effect of changing the 2D stencil size,
which imposes a coarser granularity on SIMD parallelism. Instead of a single ele-
ment, a 2×2 matrix of elements was assigned to every thread. Using this new stencil,
partial sums on diagonal elements of the matrix can be reused for computing the out-
put elements on the other diagonal (see Fig. 6), saving two arithmetic operations and
four memory accesses on each thread at the expense of using two registers for storing
auxiliary values. However, other optimization parameters may be affected, such as the
memory granularity; the coalesced access to device memory could be compromised
by not using double buffering between shared and device memory. Therefore, there is
a trade-off between the number of operations performed and having a homogeneous
memory access.
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Fig. 6 Benefits of increasing
the stencil size: some redundant
operations may be saved

Fig. 7 Execution time (secs.) on the Cell BE for a 2048 × 2048 input matrix depending on the program-
ming model: Cell SDK, CellSs and ALF

5 Performance evaluation

The Cell BE architecture was managed using the IBM SDK v3.0 and Fedora Core 7
installed on a regular PC acting as host. This development kit includes a simulator,
named Mambo, allowing programmers to execute binary files compiled for the Cell
BE architecture. Experimental results were measured on a Cell-based IBM Blade-
Center QS20 blade which incorporates two 3.2 GHz Cell BEs v 5.1, namely Cell0
and Cell1, endowed with 1 GByte of main memory.

Our first GPU-based platform is dual-socket, Intel Core 2 duo E6850 3 GHz,
which acts as a host machine for our Tesla C870. Our second GPU-based platform
incorporates a four-socket, quad-core Intel Xeon E5530, acting as host for our four
Nvidia Tesla C1060 GPUs. Host PCs run under Ubuntu 10.04, and the NVIDIA
CUDA SDK and compilation toolkit, release 2.3.

5.1 Cell BE platform

Figure 7 shows the elapsed time (in seconds) achieved by varying the programming
models on the Cell BE (up to 8 SPEs are used to illustrate performance trends). They
emphasize the performance degradation by using high-level programming languages
like CellSs or ALF, compared to a low-level programming with the Cell SDK, which
improves elapsed times of ALF and CellSs versions with linear scalability. High-level
alternatives need to reduce the overhead when running fine-grain applications like
our Jacobi solver. In those cases, an additional effort for programming the hardware
at SDK level becomes quite rewarding.
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Table 1 Execution times (in seconds) for our Jacobi baseline implementation when varying the CUDA
block size

Matrix size (Threads deployment per CUDA block)

(14 × 14) (16 × 16) (18 × 18) (20 × 20)

(a) Tesla C870 GPU

10242 13.50 13.16 13.70 14.13

20482 52.73 50.74 52.57 52.43

40962 206.99 203.35 207.06 211.28

81922 843.55 850.18 899.46 852.26

(b) Tesla C1060 GPU

10242 3.27 2.34 3.24 3.071

20482 12.73 8.72 11.88 11.594

40962 50.36 34.60 46.28 44.402

81922 211.03 144.02 211.16 177.795

5.2 GPU platform

We start with Table 1, where the optimal threads deployment for the Jacobi baseline
implementation is analyzed on either Tesla C870 (left) or Tesla C1060 (right). We
see that 16 × 16 constitutes the optimal layout and number of threads per block, with
a penalty around 5–10% for the top 3 remaining cases (those sizes not shown where
tested, but led to worse results). In addition, a comparison between GPU platforms
allows us to establish an improvement factor roughly between 4× and 5× on the
Tesla C1060.

Our CUDA baseline implementation does not use shared memory. From this de-
parture point, we gradually develop the three optimizations involving shared memory
as described in Sect. 4.2.1. Table 2(a) shows the execution times for all these versions
on a Tesla C870 and Table 2(b) does the same for the Tesla C1060 GPU, where an
average speed-up factor of 3.5× is roughly attained. Between code versions, a re-
markable improvement arises when enabling shared memory, and marginal gains are
reported for the two remaining optimizations: coalescing and memory bank conflicts.

Execution times on larger tiles are shown in Table 3 on a Tesla C1060 GPU for
different threads deployment (depicted on rows). The input matrix size is 40962 and
our kernel uses shared memory without further optimizations. Times slowdown 30–
40% on average with respect to the case in which each thread computes a single
element, proving that context switch is free in CUDA and the block startup (CUDA
runtime overhead) is not: Using a 1 × 1 stencil we require 341 × 341 block calls,
whereas using a 2 × 2 stencil, we just need 157 × 157 block calls. The lesson here
is that coarser grain parallelism hurts performance on the GPU, and consequently,
results on 3 × 3 or 4 × 4 tiles worsen and were not even tried.

5.3 Overall comparison

Figure 8 summarizes the performance of the best implementation on either the Cell
SDK or CUDA for different matrix sizes: 1024 × 1024, 2048 × 2048, 4096 × 4096
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Table 2 Execution times (in seconds) for our Jacobi implementation when using different optimizations.
Between parenthesis, we show the speed-up factor versus the baseline implementation on the same plat-
form. Threads deployment is 16 × 16 in all cases

Input
matrix size

Baseline:
no shared
memory used

Optimization 1:
using shared
memory

Optimizations 1 + 2:
shared memory
+ coalescing

Optimizations
1 + 2 + 3:
also solving
banks conflicts

(a) Tesla C870

10242 13.16 3.77 (3.49×) 3.76 (3.50×) 3.88 (3.39×)

20482 50.74 14.49 (3.50×) 14.45 (3.51×) 14.71 (3.45×)

40962 203.35 55.60 (3.65×) 55.59 (3.65×) 57.45 (3.54×)

81922 850.18 243.00 (3.50×) 241.81 (3.51×) 241.81 (3.51×)

(b) Tesla C1060

10242 2.34 0.73 (3.20×) 0.65 (3.60×) 0.63 (3.71×)

20482 8.72 2.79 (3.12×) 2.47 (3.53×) 2.42 (3.60×)

40962 34.60 11.45 (3.02×) 9.93 (3.48×) 9.66 (3.58×)

81922 144.02 45.70 (3.15×) 40.35 (3.57×) 40.29 (3.57×)

Table 3 Execution times (in seconds) on a Tesla C1060 GPU for different threads deployment (depicted
on rows). The input matrix size is 40962 and the code version uses shared memory without further opti-
mizations. The stencil size is the number of elements computed by each thread

Threads deployment Stencil size Slowdown
factorOne 2 × 2

14 × 14 13.91 19.31 38%

16 × 16 11.45 15.43 34%

18 × 18 13.27 18.16 36%

20 × 20 13.83 18.40 33%

and 8192 × 8192. These times only concern the parallel stage of the execution time
(initial startup is discarded).

The Tesla C1060 outperforms Cell BE in all cases. In particular, the maximum
speed-up is reached for 2K × 2K matrices: 3.6× gain factor versus Tesla C870
and 10× versus Cell BE platform. Larger problem sizes do not increment this gain,
mainly because of the global synchronization penalty that GPUs incur (see Fig. 9),
which is closely associated with the number of threads involved in the execution. On
a GPU, this number increases with the problem size, whereas it remains constant on
the Cell BE leaving the synchronization overhead unchanged.

6 Related work

Along the years, researchers have traditionally investigated tiling/blocking as a con-
solidated way of improving cache locality and parallelism, with stencil computations
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Fig. 8 Execution time for the two different programming models and architectures: Cell SDK on the Cell
BE and CUDA on GPUs

Fig. 9 Synchronization times for the Cell BE platform, Tesla C870 and Tesla C1060

considered as one of the most rewarding applications in this respect. Recent contri-
butions are more ambitious and propose automatic tuning for tiling stencil computa-
tions. This trend includes developments on multicores [5, 21], the Cell BE [4], and
ultimately the GPU [24].

As time goes by, stencil computations are being offloaded from the Cell BE and
more GPU deployments gain attention in the heart of the scientist community. Listed
in order of affinity with our work, we may select the following four contributions:
Datta et al. [5] tune a benchmark of 3D stencil kernels on GPUs and multicores,
Christen et al. [4] consider a 7-point stencil kernel to be implemented on GPUs and
the Cell BE, Amorim et al. [2] perform a comparison of the Jacobi method between
a GPU parallelization using OpenGL and CUDA, and finally, Venkatasubramanian
et at. [24] implement the Jacobi method on GPUs and hybrid CPU/GPU systems.
Other efforts on implementing stencil computations on GPUs we may highlight are
provided by Fang et al. [7], who benchmark ATI/AMD GPUs using stencil codes and
provide different techniques such as those proposed in this paper. Maruyama et al.
[16] provide a compiler-based programming framework that automatically translates
user-written structured grid code into scalable parallel implementation code for GPU-
equipped clusters. Finally Unat et al. [23] give importance to stencil codes by provid-
ing a programming model that targets stencil methods.
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Focusing on the work performed specifically on Jacobi method, Amorim et al.
[2] use diagonal matrices and a different access pattern than ours to compare results
against a CPU implementation on a quad-core AMD Phenom processor, obtaining a
78× speed-up factor. On the other hand, the work in [24] was developed in parallel to
ours with a similar methodology. Our implementation sacrifices two idle threads on
each half-warp to be rewarded on coalesced and conflicts-free accesses to memory
banks, since memory bandwidth is more a bottleneck than the availability of com-
puting cores within the GPU. Also, padding is more profitable in our coalesced case
because it allows us to take advantage of remarkable improvements introduced in
CUDA Compute Capabilities 1.3 when using the Tesla C1060 platform.

7 Conclusions and future work

We have explored the parallelization of stencil computations depending on different
programming models and hardware platforms under the general framework of high
performance computing. More in particular, critical aspects like arithmetic intensity
or memory access patterns can be modeled under the umbrella of stencil computa-
tions, and we use the Jacobi method for solving Laplace’s differential equation as a
case study algorithm. Programming models include CellSs, ALF and Cell SDK on
the IBM Cell BE architecture, and CUDA on Nvidia Tesla GPUs.

By studying our initial implementations, their inefficiencies, and the behavior of
our optimizations, we have learnt several key insights about the underlying architec-
tures and their programming models, namely:

– The main bottleneck on both architectures is the memory bandwidth. On the Cell
SDK, we use 1024-byte chunks and double buffering technique to overlap commu-
nication and computation. On CUDA, data parallelism, threads deployment and
memory hierarchy are primary issues we focus our analysis on, with great suc-
cess for our optimization techniques scoring a consistent 3–4× factor improvement
with respect to the baseline Jacobi code.

– The trade-off between programming effort, performance and scalability is ana-
lyzed on the Cell BE architecture. Programming with CellSs is the simplest way of
developing parallel applications on the Cell BE, but it shows low performance and
poor scalability with respect to our SDK implementation, particularly in scenar-
ios with more SPEs and not enough coarse grain parallelism. Similar conclusions
can be drawn from the ALF implementation, with slightly better results though.
Our third candidate, the SDK version, reports good scalability at the expense of
development complexity.

– An outstanding scalability is also reported when moving towards newer GPU gen-
erations: Gain factors are 4–5× when migrating the code from a Tesla C870 model
(as of 2007, with 128 streaming processors) to the C1060 counterpart (the up-
graded model as of 2009, extended to 240 streaming processors).

On a side-by-side comparison, GPUs show better performance than the Cell BE
platform on a similar hardware complexity: The Nvidia Tesla C1060 defeats the IBM
BladeCenter QS20 by an order of magnitude, also showing better behavior on more
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demanding problem sizes and a promising future on incoming GPU generations. In
general, streaming and arithmetic intensive kernels achieve higher performance on
GPUs than Cell, but our kernel for Jacobi is bandwidth limited, preventing us from
further optimizations. Synchronization costs were also seen higher on the GPU as a
function of the problem size, whereas they remained constant on Cell.

Programming heterogeneous architectures represents a challenge for program-
mers, no matter the platform we choose to work with. We pretend to reduce our
implementation effort in the future by adopting converging models foreseen in the
horizon. Rapidmind was a corporate initiative pioneering this movement. The com-
pany was acquired by Intel in 2009 to end up with the Array Building Blocks (ArBB)
[12] parallel programming model for multicore and many-core architectures. This ef-
fort was followed by OpenCL [22] as a joint industry-academia consortium seen as a
flagship for hybrid computing. Our goal from now on goes to analyze the possibili-
ties of OpenCL on a wide variety of high performance platforms, analyzing different
computational patterns derived from the general framework of stencil computations.
In this respect, the Jacobi kernel we present here is just a first step on a long road
ahead us.
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