JCS&T Vol. 3 No. 2

Techniques for Improving the Performance and Scalability of
Directory-based Shared-Memory Multiprocessors: A Survey

Manuel E. Acacio and José M. Garcia
Dept. Ingenieria y Tecnologia de Computadores
Universidad de Murcia, SPAIN

E-mail: {meacacio, jmgarcia}@ditec.um.es

ABSTRACT

Cache-coherent, nonuniform memory access or
cc-NUMA is an attractive architecture for build-
ing a spectrum of shared memory multiproces-
sors (which are seeing widespread use in commer-
cial, technical and scientific applications). Un-
fortunately, there are some factors which limit
the maximum number of processors that can be
offered at a good price/performance ratio. This
paper presents a survey of some of the propos-
als that have recently appeared focusing on two
of these factors: the increased cost in terms of
hardware overhead that the use of directories en-
tails, and the long cache miss latencies observed
in these designs as a consequence of the indirec-
tion introduced by the access to the directory.
Keywords: c¢c-NUMA Multiprocessors, Scalabil-
ity, Cache Coherence, Directory Memory Overhead,
Cache Miss Latency

1. INTRODUCTION

The key property of shared-memory multiproces-
sors is that communication occurs implicitly as
a result of conventional memory access instruc-
tions (i.e., loads and stores) which makes them
easier to program and thus, more popular than
message-passing machines.

Shared-memory multiprocessors cover a wide
range of prices and features, from commodity
SMPs to large high-performance cc-NUMA ma-
chines. Most shared-memory multiprocessors
employ the cache hierarchy to reduce the time
needed to access memory by keeping data values
as close as possible to the processor that uses
them. Since multiple copies of a data value may
co-exist in different caches, these machines im-
plement a coherence protocol (generally, a write-
invalidate coherence protocol) to ensure consis-
tency among these copies.

The adopted solutions to the coherence problem
are quite different depending on the total number
of processors. For systems with small processor
counts, a common bus is usually utilized along
with snooping cache coherence protocols. Snoop-
ing protocols [20] solve the cache coherence prob-
lem using a network with a completely ordered

-1-

message delivery (traditionally a bus) to broad-
cast coherence transactions directly to all proces-
sors and memory. Unfortunately, the broadcast
medium becomes a bottleneck (due to the lim-
ited bandwidth that it provides and to the lim-
ited number of processors that can be attached)
preventing them from being scalable.

Instead, scalable shared memory multiprocessors
are constructed based on scalable point-to-point
interconnection networks, such as a mesh or a
torus [18]. Besides, main memory is physically
distributed in order to ensure that the bandwidth
needed to access main memory scales with the
number of processors. In these designs, access-
ing main memory has nonuniform access costs
to a processor and in this way, architectures of
this type are often called cache-coherent, nonuni-
form memory access or cc-NUMA architectures.
The best-known example of a commercial multi-
processor using this approach is the SGI Origin
2000 [37].

In these organizations, totally ordered message
delivery becomes infeasible and cache coherence
is based on the concept of a directory [12], which
is an structure used to keep explicitly the state
of every memory line. Directory entries are dis-
tributed along with the memory, so that different
directory accesses can go to different locations,
just as different memory requests go to differ-
ent memories. Each memory line is assigned to
a directory (the home directory), which keeps
a directory entry for the memory line. A nat-
ural way to organize directories is to maintain
the directory information for each memory line
together with the line in main memory at the
home node. Each directory entry is comprised of
two main fields: a state field, used to store the
state of the line, and a sharing code [45] field,
used to identify those caches currently holding
a copy of the line. The majority of the bits of
each directory entry are devoted to codifying the
sharing code and, therefore, its election directly
affects the memory required for the directory. A
simple organization for the sharing code is as a
bit-vector of N presence bits, which indicate for
each of the N nodes whether that node has a

JCS&T Vol. 3 No. 2

100
P0 r Full-map —+— q
80 r q
70 B
§ 60 1
o
350 ,
840
5
Syl J
20t ,
10 + 1
3264 128 256 512 1024

Number of Nodes

Figure 1. Memory Overhead for Full-Map

cached copy of the line or not (note that each
node may be a uniprocessor or a multiprocessor
system). This organization of the sharing code is
called full-map, Diry or bit-vector [17] and some
current multiprocessors, such as the SGI Origin
2000 [37] or the Stanford DASH Multiprocessor
[39], directly use it or some variations on it.
Although the use of directory-based coherence
protocols allows multiprocessor designers to or-
chestrate shared memory multiprocessors with
hundreds of nodes, the implementations of the
shared memory paradigm have limited scala-
bility, then becoming infeasible for very large-
scale systems, which use the message-passing
paradigm. Examples of such machines are the
ASCI Red, the ASCI Blue Pacific and the ASCI
White multiprocessors.

There are several factors limiting the scalability
of cc-NUMA designs. Two of the most impor-
tant of these issues are, first, the cost in terms of
the hardware overhead that the use of directories
implies, and, second, the increased distance to
memory, which is the reason for the higher cache
miss latencies that are currently being observed
in cc-NUMA architectures.

The most important component of the hardware
overhead is the amount of memory required to
store the directory information, particularly the
sharing code. Depending on how the sharing
code is organized, memory overhead for large-
scale configurations of a parallel machine could
be intolerable. For example, for a simple full-
map sharing code and for a 128-byte line size,
Figure 1 draws directory memory overhead (mea-
sured as sharing code size divided by memory line
size) as a function of the number of system nodes.
As observed, directory memory overhead for a
system with 128 nodes is 12.50%, which is not
too bad. However, when the node count reaches
1024, this overhead becomes 100%, which is def-
initely prohibitive.

On the other hand, long cache miss latencies of
directory protocols are caused by the inefficien-

-2-

Average Miss Latency

|0 Misc
@ Directory
B Network

Normalized Latency

Figure 2. Average cache miss latency

cies that the distributed nature of the protocols
and the underlying scalable network imply. Cur-
rently, and as a consequence of the increased dis-
tance to memory, the most important of such in-
efficiencies is the indirection introduced by the
access to the directory, which is usually stored
in main memory. This represents a unique fea-
ture of directory protocols, not present in SMPs.
The consequences of such indirection are partic-
ularly serious for cache-to-cache transfer misses
and upgrade misses, which constitute the most
important fraction of the total cache miss rate
[3, 9]. Figure 2 presents the normalized aver-
age miss latency obtained when running several
applications on top of a simulated 64-node cc-
NUMA multiprocessor using RSIM [29]. Average
miss latency is split into network latency, direc-
tory latency and miscellaneous latency (buses,
cache accesses...). As can be observed, the most
important fraction of the time needed to satisfy
a certain request is spent at the directory in al-
most every application. Therefore, techniques
for reducing the directory component of the miss
latency will be rewarding.

In this paper, we present a revision of the propos-
als that have recently appeared facing these two
important issues in cc-NUMA multiprocessors.
First of all, in Section 2 we summarize several
organizations for the directory aimed at reduc-
ing directory memory overhead. Then, in Sec-
tion 3 we depict some important research efforts
for accelerating cache misses in these architec-
tures. Finally, Section 4 concludes the paper and
presents some future ways.

2. REDUCING DIRECTORY
MEMORY OVERHEAD

There are two main alternatives for storing di-
rectory information [17]: flat, memory-based
directory schemes and flat, cache-based direc-
tory schemes. In flat, memory-based directory
schemes the home node maintains the identity
of all the sharers and the state, for every one of
its memory lines. On the contrary, flat, cache-

JCS&T Vol. 3 No. 2

based directory protocols (also known as chained
directory protocols), such as the IEEE Standard
Scalable Coherent Interface (SCI) [23], rely on
distributing the sharing code among the nodes
of the system. For every one of its memory lines,
the home node contains only a pointer to the
first sharer in the list plus a few state bits. The
remaining nodes caching the line are joined to-
gether in a distributed, doubly linked list, using
additional pointers that are associated with each
cache line in a node (which are known as for-
ward and backward pointers). The locations of
the copies are therefore determined by traversing
this list via network transactions.

The most important advantage of flat, cache-
based directory protocols is their ability to sig-
nificantly reduce directory memory overhead. In
these protocols, every line in main memory only
has a single head pointer. The number of forward
and backward pointers is proportional to the
number of cache lines in the machine, which is
much smaller than the number of memory lines.
Although some optimizations to the initial pro-
posal have been studied (for example, in [14] and
[49]) and several commercial machines have been
implemented using this kind of protocols, such as
the Sequent NUMA-Q [40] and Convex Exem-
plar [16] multiprocessors, the tendency seems to
have changed these days and from the SGI Ori-
gin 2000 [37] onwards, most designs use memory-
based directory protocols, such as Piranha [10],
the AlphaServer GS320 [19] or the Cenju-4 [28§].
Other examples of shared memory multiproces-
sors that have been constructed based on such a
directory organization are the Stanford FLASH
and DASH multiprocessors [34, 39|, the MIT
Alewife [6] and the HAL-S1 [60], among others.
The decreased popularity of cache-based direc-
tory protocols is a consequence of some impor-
tant drawbacks they introduce: the increased la-
tency of coherence transactions as well as occu-
pancy of cache controllers, and complex proto-
col implementations [17]. A comparison between
flat, memory-based directory protocols and flat,
cache-based ones can be found in [27].

On the other hand, memory overhead in flat,
memory-based directory schemes is usually man-
aged from two orthogonal points of view: re-
ducing directory width and reducing directory
height.

Reducing directory width

Some authors propose to reduce the width of
directory entries by having a limited number
of pointers per entry to keep track of sharers
[7, 13, 55]. The differences between them are
mainly found in the way they handle overflow
situations, that is to say, when the number of
copies of the line exceeds the number of avail-

able pointers [17]. As an example, Dir;B sharing
code [7] provides i pointers to codify up to i po-
tential sharers. It was inspired by experimental
data suggesting that, in many cache invalidation
patterns, the number of sharers is very low and a
few number of pointers may be sufficient for the
majority of cases [21]. When the number of avail-
able pointers i is exceeded, a broadcast bit in the
directory entry is set. On a subsequent write op-
eration, invalidation messages will be sent to all
the nodes in the system, regardless of whether
or not they are caching the line. Two interest-
ing instances of this sharing code are Dir; B and
DirgB. Whereas the former needs 1+ log, N bits,
the latter does not use any bit and always sends
N-1 coherence messages (invalidations or cache-
to-cache transfer requests) when the home node
cannot directly satisfy a certain cache miss (i.e.,
on a coherence event), for a N-node system.

More recently, the segment directory has been
proposed as an alternative to the limited pointer
schemes [15]. The segment directory is a hybrid
of the full-map and limited pointers schemes.
Each entry of a segment directory consists of two
components: a segment vector and a segment
pointer. The segment vector is a K-bit segment
of a full-map vector whereas the segment pointer
is a log2(N/K)-bit field keeping the position of
the segment vector within the full-map vector,
aligned in K-bit boundary. Using directory’s bits
in this way results in a reduction of the number
of directory overflows suffered by limited pointer
schemes.

Other proposals reduce directory width by us-
ing compressed sharing codes. Unlike the well-
known full-map sharing code, compressed shar-
ing codes require a lower number of bits and
achieve better scalability by storing an in-excess
representation of the nodes that hold a memory
line. Since more sharers than necessary are usu-
ally codified, this kind of sharing codes, which
are also known as multicast protocols [45] and
limited broadcast protocols [7], leads to the ap-
pearance of unnecessary coherence messages. An
excessive number of these messages has dramatic
consequences on the final performance. Several
compressed sharing code schemes have been pro-
posed in the literature with a variety of sizes and
precisions. Some of the them are coarse vector
[22], which is currently employed in the SGI Ori-
gin 2000 multiprocessor, tristate [7], gray-tristate
[45], and binary-tree with subtrees [2].

Unlike full-map sharing code, in coarse vector
each bit of the sharing code stands for a group
of K processors. The bit is set if any of the pro-
cessors in the group (or some of them) cached
the memory line. Thus, for a N-node system,
the size of the sharing code is N/K bits. Tris-

JCS&T Vol. 3 No. 2

tate, also called the superset scheme by Gupta
et al. [22], stores a word of d digits where each
digit takes on one of three values: 0, 1 and both.
If each digit in the word is either 0 or 1, then
the word is the pointer to exactly one sharer. If
any digit is coded both, then the word denotes
sharers whose identifier may either be 0 or 1 in
that digit, but match the rest of the word. If
i digits are coded both, then 2¢ sharers are cod-
ified. In this way, it is possible to construct a
superset of current sharers. Each digit can be
coded in 2 bits, thus requiring 2log, N bits for
a N-node system. Gray-tristate improves tris-
tate in some cases by using Gray code to num-
ber the nodes. Finally, binary-tree with subtrees
requires approximately log, N bits for a N-node
system, and it is based on the distinction between
the logical structure of the system (i.e, how the
system seems to be organized) and the physical
one (how the system actually is). The codifi-
cation of the sharers is performed based on the
logical structure of the system. In this case, the
logical system is a binary tree with the nodes
located at the leaves, and the sharing code codi-
fies the two minimal subtrees that include all the
sharers. One of them is computed from the home
node. For the other one, one of the symmetric
nodes of the home node is employed. Addition-
ally, this sharing code solves the common case of
a single sharer by directly encoding the identifier
of that sharer.

Reducing directory hetight

Other schemes try to decrease directory memory
overhead by reducing the total number of direc-
tory entries available. This can be achieved ei-
ther by combining several directory entries in a
single entry (directory entry combining) [54] or
by organizing the directory as a cache (sparse
directory) [22, 51]. The first approach tends to
increase the number of coherence messages per
coherence event as well as the number of cache
misses in those cases in which several memory
lines share a directory entry. On the other hand,
the use of sparse directories also increases the
number of cache misses as a result of premature
inwalidations that are sent each time a directory
entry is evicted.

Everest [48] is an architecture for high perfor-
mance cache coherence and message passing in
partitionable distributed shared memory systems
that use commodity SMPs as building blocks.
In order to maintain cache coherence between
shared caches included into every SMP, Everest
uses a new directory design called Complete and
Concise Remote (CCR) directory. In this design
each directory maintains a shadow of the tags
array of each remote shared cache. In this way,
each directory consists of N — 1 shadows for a

N-node system, which prevents CCR directories
from being a solution for scalable systems.

Reducing directory width and height

Finally, two-level directories are proposed in
[1, 2] as a solution to the scalability problem
which combines the benefits of compressed shar-
ing codes and sparse directories in order to signif-
icantly reduce directory memory overhead with-
out degrading performance. A two-level direc-
tory architecture consists of a small full-map
first-level directory (which stores precise infor-
mation for a small subset of the memory lines)
and a compressed and complete second-level di-
rectory (which provides in-excess information for
every line). Due to the temporal locality found
for directory accesses, results show that a sys-
tem with this directory architecture achieves the
same performance as a multiprocessor with a big
and non-scalable full-map directory, with a very
significant reduction of the memory overhead.
This approach can be generalized to a multilevel
directory organization.

3. REDUCING CACHE MISS
LATENCY

In most designs directory entries are stored in
main memory, together with the memory lines
they are associated with, which puts the cy-
cles needed to access main memory into the
critical path of cache misses. Unfortunately, a
well-known industry trend is that microproces-
sor speed is increasing much faster than mem-
ory speed [25]. The increased distance to mem-
ory (the memory wall problem) raises the ne-
cessity of storing directory information out of
main memory, in more efficient structures, or
even more, of completely removing the access to
the directory from the critical path of the cache
misses.

Caching-based techniques

Caching directory information was originally
proposed in [22] and [51] as a means to reduce the
memory overhead entailed by directories. More
recently, directory caches have also been used
to reduce directory access times [34, 44, 47].
For example, Michael and Nanda [47] proposed
the integration of directory caches inside the co-
herence controllers to minimize directory access
time and, consequently, to reduce cache miss la-
tencies. The Everest architecture proposed in
[48] also uses directory caches to reduce direc-
tory access time. In addition, remote data caches
(RDCs) have also been used in several designs (as
[39], [40] and [50]) to accelerate access to remote
data. A RDC is used to hold those lines that are
fetched to the node from remote memory and
acts as backup for the processor caches.

JCS&T Vol. 3 No. 2

In [30], the remote memory access latency is re-
duced by placing caches in the crossbar switches
of the interconnect to capture and store shared
data as they flow from the memory module to
the requesting processor. Subsequently, in [31]
the same idea is applied to reduce the latency
of cache-to-cache transfer misses. In this case,
small directory caches are implemented in the
crossbar switches of the interconnect medium to
capture and store ownership information as the
data flows from the memory module to the re-
questing processor. In both cases, special net-
work topologies are needed to keep coherent the
information stored in these switch caches.

Exploiting on-chip integration

Recent technology improvements have enlarged
the number of components that can be included
into a single chip. System-on-a-chip techniques
allow for integration of all system functions in-
cluding compute processor, caches, communica-
tions processor, interconnection networks and co-
herence hardware onto a single die. Directly con-
necting these highly-integrated nodes leads to
a high-bandwidth, low-cost, low-latency "glue-
less" interconnect. Some proposals exploiting
system-on-a~-chip techniques are the Compaq Al-
pha 21364 EV7 [24], the IBM BlueGene/L su-
percomputer [58], and the AMD Hammer [§].
Even more, as more transistors can be placed on
a chip, a sizeable fraction of the main memory
is likely to be also integrated on chip (processor-
in-memory or PIM chips) [59]. Other designs go
further and use semiconductor technology trends
to implement a complete multiprocessor into a
single chip (multiprocessor-on-a-chip), for exam-
ple the Compaq Piranha CMP [10], the Stan-
ford Hydra [26] or the IBM POWERA4 [57]. In
[3], cache misses found in cc-NUMA multipro-
cessors are firstly classified in terms of the ac-
tions performed by directories to satisfy them,
and then, it is proposed a novel node architecture
that makes extensive use of on-processor-chip in-
tegration in order to reduce the latency of each
one of the types of the classification.

Approaching snooping behavior

Other proposals have focused on using snooping
protocols with unordered networks. In [42], Mar-
tin et al. propose a technique that allows SMPs
to utilize unordered networks (with some modifi-
cations to support snooping). However, scalabil-
ity to larger systems is still compromised since
coherence transactions must be sent to all the
processors in the system which, in turn, must
process them. In addition, Bandwidth Adaptive
Snooping Hybrid (BASH) has been proposed to
reduce the requirements that snooping protocols
put on the interconnect [43]. BASH is a hybrid

-5-

protocol that ranges from behaving like snooping
(by broadcasting coherence transactions) when
excess bandwidth is available to behaving like
a directory protocol (by unicasting coherence
transactions) when bandwidth is limited. Ad-
ditionally, Token Coherence is presented in [41]
as a new coherence framework that tries to avoid
the accesses to the directory in a system by di-
rectly sending coherence messages from the re-
questing node. To this end, Token Coherence has
two parts: a correctness substrate which ensures
safety (i.e., all reads and writes are coherent) and
starvation avoidance, and a performance proto-
col.

The new Compaq AlphaServer GS320 [19] con-
stitutes an example of cc-NUMA architecture
specifically targeted at medium-scale multipro-
cessing (up to 64 processors). The hierarchi-
cal nature of its design and its limited scale
make it feasible to use simple interconnects, such
as a crossbar switch, to connect the handful
of nodes, allowing a more efficient handling of
certain cache misses than traditional directory-
based multiprocessors by exploiting the extra or-
dering properties of the switch.

Prediction-based techniques

Prediction has a long history in computer ar-
chitecture and it has proved useful for improv-
ing microprocessor performance. Prediction in
the context of shared memory multiprocessors
was first studied by Mukherjee and Hill, who
showed that it is possible to use address-based!
2-level predictors at the directories and caches to
track and predict coherence messages [46]. Sub-
sequently, Lai and Falfasi modified these pre-
dictors to improve their accuracy and to reduce
their size (that is, their implementation costs).
Additionally, the authors presented the first de-
sign for a speculative coherent cc-NUMA using
pattern-based predictors by executing coherence
operations speculatively to hide the remote read
latency [35]. In particular, the proposed scheme
tries to predict when the producer of a particu-
lar memory line has finished writing to it. Then,
the writable copy is speculatively invalidated and
forwarded to the consumers. Finally, Kaxiras
and Young [33] presented a taxonomy of all pre-
diction schemes in a uniform space, and provided
simulation results on the accuracy of a practical
subset of them. Through this process, the au-
thors derived prediction schemes that are more
accurate than those previously proposed.
Alternatively, Kaxiras and Goodman [32] pro-
posed and evaluated prediction-based optimiza-
tions of migratory sharing patterns (convert-
ing some load misses that are predicted to

1 Address-based stands for predictors whose table is
accessed using the effective memory address.

JCS&T Vol. 3 No. 2

be followed by a store-write fault to coherent
writes), wide sharing patterns (to be handled
by scalable extensions to the SCI base protocol)
and producer-consumer sharing patterns (pre-
sending a newly created value to the predicted
consumers).

Bilir et al. [11] investigated a hybrid protocol
that tried to achieve the performance of snooping
protocols and the scalability of directory-based
ones. The protocol is based on predicting which
nodes must receive each coherence transaction.
If the prediction hits, the protocol approximates
the snooping behavior (although the directory
must be accessed in order to verify the predic-
tion). Performance results in terms of execution
time were not reported and the design was based
on a network with a completely ordered message
delivery, in particular an Isotach-like Fat Tree
Network [53], which could restrict its scalability.

Recently, cache-to-cache transfer misses has been
reported as constituting a significant fraction of
the cache miss rate in commercial applications
[9]. For these misses, the home node has an ob-
solete copy of the memory line and the corre-
sponding directory entry stores the identity of
the node holding the single valid copy of the
memory line (this node is said to be the owner
node). Therefore, the role of the directory in
these cases is to redirect the misses to the corre-
sponding owner nodes (of course, the directory
also serves as the serialization point for all ac-
cesses to a particular memory line and therefore,
to ensure correctness). If on suffering a cache-to-
cache transfer miss, the missing node were able
to know the identity of the owner of the mem-
ory line, it could send the request directly to it,
completely removing the access to the directory
from the critical path of the miss. This idea is
developed in [4] and requires to extend the origi-
nal coherence protocol to deal with some emerg-
ing situations, as well as the development of an
effective prediction scheme. Additionally, in [5]
it is shown how a similar technique can be ap-
plied for accelerating upgrade misses, that is to
say, write misses for which the requesting node
already has the valid data and only needs exclu-
sive ownership, for which invalidation messages
are sent to the rest of the sharers of the memory
line.

Another related technique to reduce coher-
ence overhead resulting from the invalidation of
shared lines was originally presented in [38]. In
this work, some heuristics are applied to allow
each processor to detect and self-invalidate those
shared lines that will probably not be accessed
in the future. Subsequently, Lai and Falsafi [36]
proposed Last-Touch Predictors (LTPs) to im-
prove self-invalidation accuracy.

-6-

4. CONCLUSIONS

Cache-coherent, nonuniform memory access or
cc-NUMA is an attractive architecture for build-
ing a spectrum of shared memory multiproces-
sors (which are seeing widespread use in commer-
cial, technical and scientific applications). Based
on a directory-based cache coherence protocol,
cc-NUMA designs offer a scalable performance
path beyond symmetric multiprocessors (SMPs)
by maintaining a compatible programming inter-
face and allowing a large number of processors
to share a single global address space over phys-
ically distributed memory.

Unfortunately, there are some factors which limit
the maximum number of processors that can be
offered at a good price/performance ratio. This
paper surveys some of the proposals that have re-
cently appeared focusing on two of these factors:
the increased cost in terms of hardware overhead
that the use of directories entails, and the long
cache miss latencies observed in these designs as
a consequence of the indirection introduced by
the access to the directory.

Apart from the two issues studied in this pa-
per, availability has become increasingly impor-
tant as cache-coherent shared memory multipro-
cessors has seen widespread use in commercial,
technical and scientific applications. Recently,
techniques for providing fault-tolerance in these
architectures has been the focus of several works,
such as ReVive [52] and SafetyNet [56].

5. REFERENCES

[1] M. E. Acacio. “Improving the Performance and
Scalability of Directory-based Shared-Memory Mul-
tiprocessors”. Ph.D. Thesis, University of Murcia,
2003.

[2] M. E. Acacio, J. Gonzalez, J. M. Garcia and J. Du-
ato. “A New Scalable Directory Architecture for
Large-Scale Multiprocessors”. Proc. of the 7th Int’l
Symposium on High Performance Computer Archi-
tecture (HPCA-7), pp. 97-106, January 2001.

[3] M. E. Acacio, J. Gonzalez, J. M. Garcia and J. Du-
ato. “A Novel Approach to Reduce L2 Miss Latency
in Shared-Memory Multiprocessors”. Proc. of the
16th Int’l Parallel and Distributed Processing Sym-
posium (IPDPS’02), April 2002.

[4] M. E. Acacio, J. Gonzalez, J. M. Garcia and J. Du-
ato. “Owner Prediction for Accelerating Cache-to-
Cache Transfer Misses in cc-NUMA Multiproces-
sors”. Proc. of the Int’l SC2002 High Performance
Networking and Computing, November 2002.

[5] M. E. Acacio, J. Gonzalez, J. M. Garcia and J. Du-
ato. “The Use of Prediction for Accelerating Up-
grade Misses in cc-NUMA Multiprocessors”. Proc.
of the 2002 Int’l Conference on Parallel Architec-
tures and Compilation Techniques (PACT 2002),
pp. 155-154, September 2002.

[6] A. Agarwal, R. Bianchini, D. Chaiken, K. L.
Johnson, D. Kranz, J. Kubiatowicz, B.-H. Lim,
K. Mackenzie and D. Yeung. “The MIT Alewife

JCS&T Vol. 3 No. 2

7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Machine: Architecture and Performance”. Proc. of
the 22nd Int’l Symposium on Computer Architec-
ture (ISCA’95), pp. 2-13, May/June 1995.

A. Agarwal, R. Simoni, J. Hennessy and
M. Horowitz. “An Evaluation of Directory Schemes
for Cache Coherence”. Proc. of the 15th Int’l Sym-
posium on Computer Architecture (ISCA’88), pp.
280-289, May 1988.

A. Ahmed, P. Conway, B. Hughes and F. Weber.
“AMD Opteron?™ Shared Memory MP Systems”.
Proc. of the 14th HotChips Symposium, August
2002.

L. A. Barroso, K. Gharachorloo and E. Bugnion.
“Memory System Characterization of Commercial
Workloads”. In Proc. of the 25th Int’l Sympo-
stum on Computer Architecture (ISCA’98), pp. 3—
14, June 1998.

L. A. Barroso, K. Gharachorloo, R. McNamara,
A. Nowatzyk, S. Qadeer, B. Sano, S. Smith, R. Stets
and B. Verghese. “Piranha: A Scalable Architec-
ture Based on Single-Chip Multiprocessing”. Proc.
of the 27th Int’l Symposium on Computer Architec-
ture (ISCA’00), pp. 282-293, June 2000.

E. E. Bilir, R. M. Dickson, Y. Hu, M. Plakal, D. J.
Sorin, M. D. Hill and D. A. Wood. “Multicast
Snooping: A New Coherence Method Using a Multi-
cast Address Network”. Proc. of the 26th Int’l Sym-
posium on Computer Architecture (ISCA’99), pp.
294-304, May 1999.

L. Censier and P. Feautrier. “A New Solution to
Coherence Problems in Multicache Systems”. IEEE
Transactions on Computers, 27(12):1112-1118, De-
cember 1978.

D. Chaiken, J. Kubiatowicz and A. Agarwal. “Lim-
itLESS Directories: A Scalable Cache Coherence
Scheme”. Proc. of International Conference on
Architectural Support for Programming Languages
and Operating Systems (ASPLOS IV), pp. 224-234,
April 1991.

Y. Chang and L. Bhuyan. “An Efficient Hybrid
Cache Coherence Protocol for Shared Memory Mul-
tiprocessors”. IEEE Transactions on Computers,
pp- 352-360, March 1999.

J. H. Choi and K. H. Park. “Segment Directory
Enhancing the Limited Directory Cache Coherence
Schemes”. Proc. of the 13th Int’l Parallel and
Distributed Processing Symposium (IPDPS’99), pp.
258-267, April 1999.

Convex Computer Corp. “Convex Exemplar Archi-
tecture”. dhw-014 edition, November 1993.

D. E. Culler, J. P. Singh and A. Gupta. “Parallel
Computer Architecture: A Hardware/Software Ap-
proach”. Morgan Kaufmann Publishers, Inc., 1999.

J. Duato, S. Yalamanchili and L. Ni. “Interconnec-
tion Networks: An Engineering Approach”. Morgan
Kaufmann Publishers, Inc., 2002.

K. Gharachorloo, M. Sharma, S. Steely and S. V.
Doren. “Architecture and Design of AlphaServer
GS320”. Proc. of International Conference on
Architectural Support for Programming Languages
and Operating Systems (ASPLOS IX), pp. 13-24,
November 2000.

J. Goodman. “Using Cache Memories to Reduce
Processor-Memory Traffic”. Proc. of the Int’l Sym-
posium on Computer Architecture (ISCA’83), June
1983.

-7-

[21]

[22]

(23]

[24]

25]

[26]

(27]

28]

[29]

30]

31]

32]

33]

34]

A. Gupta and W.-D. Weber. “Cache Invalidation
Patterns in Shared-Memory Multiprocessors”. IEEE
Transactions on Computers, 41(7):794-810, July
1992.

A. Gupta, W.-D. Weber and T. Mowry. “Reduc-
ing Memory and Traffic Requirements for Scalable
Directory-Based Cache Coherence Schemes”. Proc.
Int’l Conference on Parallel Processing (ICPP’90),
pp- 312-321, August 1990.

“The Scalable Coherent Interface
IEEE Micro,

D. Gustavson.
and Related Standards Projects”.
12(1):10-22, Jan/Feb 1992.

L. Gwennap. “Alpha 21364 to Ease Memory Bottle-
neck”. Microprocessor Report, 12(14):12-15, Octo-
ber 1998.

H. Hadimioglu, D. Kaeli and F. Lombardi. “Intro-
duction to the Special Issue on High Performance
Memory Systems”. IEEE Transactions on Comput-
ers, 50(11):1103-1105, November 2001.

L. Hammond, B. Hubbert, M. Siu, M. Prabhu,
M. Chen and K. Olukotun. “The Stanford Hy-
dra CMP”. IEEE Micro, 20(2):71-84, March/April
2000.

M. A. Heinrich. “The Performance and Scalability of
Distributed Shared Memory Cache Coherence Pro-
tocols”. Ph.D. Thesis, Stanford University, 1998.

T. Hosomi, Y. Kanoh, M. Nakamura and T. Hi-
rose. “A DSM Architecture for a Parallel Com-
puter Cenju-4”. Proc. of the 6th Int’l Symposium on
High Performance Computer Architecture (HPCA-
6), pp. 287—298, January 2000.

C. J. Hughes, V. S. Pai, P. Ranganathan and S. V.
Adve. “RSIM: Simulating Shared-Memory Multi-
processors with ILP Processors”. IEEE Computer,
35(2):40-49, February 2002.

R. Iyer and L. N. Bhuyan. “Switch Cache: A Frame-
work for Improving the Remote Memory Access La-
tency of CC-NUMA Multiprocessors”. Proc. of the
5th Int’l Symposium on High Performance Com-
puter Architecture (HPCA-5), pp. 152-160, Jan-
uary 1999.

R. Iyer, L. N. Bhuyan and A. Nanda. “Using Switch
Directories to Speed Up Cache-to-Cache Transfers
in CC-NUMA Multiprocessors”. Proc. of the 1jth
Int’l Parallel and Distributed Processing Sympo-
sium (IPDPS’00), pp. 721-728, May 2000.

S. Kaxiras and J. R. Goodman. “Improving CC-
NUMA Performance Using Instruction-Based Pre-
diction”. Proc. of the 5th Int’l Symposium on
High Performance Computer Architecture (HPCA-
5), pp. 161-170, January 1999.

S. Kaxiras and C. Young. “Coherence Communi-
cation Prediction in Shared-Memory Multiproces-
sors”. Proc. of the 6th Int’l Symposium on High Per-
formance Computer Architecture (HPCA-6), pp.
156167, January 2000.

J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Si-
moni, K. Gharachorloo, J. Chapin, D. Nakahira,
J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum
and J. Hennessy. “The Stanford FLASH Multipro-
cessor”. Proc. of the 21st Int’l Symposium on Com-
puter Architecture (ISCA’94), pp. 302-313, April
1994.

JCS&T Vol. 3 No. 2

[35]

[36]

[37]

38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

48]

A. C. Lai and B. Falsafi. “Memory Sharing Pre-
dictor: The Key to a Speculative DSM”. Proc. of
the 26th Int’l Symposium on Computer Architecture
(ISCA’99), pp. 172183, May 1999.

A. C. Lai and B. Falsafi. “Selective, Accurate, and
Timely Self-Invalidation Using Last-Touch Predic-
tion”. Proc. of the 27th Int’l Symposium on Com-
puter Architecture (ISCA’00), pp. 139-148, May
2000.

J. Laudon and D. Lenoski. “The SGI Origin: A
ccNUMA Highly Scalable Server”. Proc. of the
24th Int’l Symposium on Computer Architecture
(ISCA’97), pp. 241-251, June 1997.

A. R. Lebeck and D. A. Wood. “Dynamic Self-
Invalidation: Reducing Coherence Overhead in
Shared-Memory Multiprocessors”. Proc. of the
22nd Int’l Symposium on Computer Architecture
(ISCA’95), pp. 48-59, June 1995.

D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. We-
ber, A. Gupta, J. Hennessy, M. Horowitz and M. S.
Lam. “The Stanford DASH Multiprocessor”. IEEE
Computer, 25(3):63-79, March 1992.

T. Lovett and R. Clapp. “STiING: A CC-NUMA
Computer System for the Commercial Market-
place”. Proc. of the 23rd Int’l Symposium on Com-
puter Architecture (ISCA’96), pp. 308-317, 1996.

M. M. Martin, M. D. Hill and D. A. Wood. “Token
Coherence: Decoupling Performance and Correct-
ness”. Proc. of the 30th Int’l Symposium Computer
Architecture (ISCA’08), June 2003.

M. M. Martin, D. J. Sorin, A. Ailamaki, A. R.
Alameldeen, R. M. Dickson, C. J. Mauer, K. E.
Moore, M. Plakal, M. D. Hill and D. A. Wood.
“Timestamp Snooping: An Approach for Extend-
ing SMPs”. Proc. of International Conference on
Architectural Support for Programming Languages
and Operating Systems (ASPLOS IX), pp. 25-36,
November 2000.

M. M. Martin, D. J. Sorin, M. D. Hill and D. A.
Wood. “Bandwidth Adaptive Snooping”. Proc.
of the 8th Int’l Symposium on High Performance
Computer Architecture (HPCA-8), pp. 251-262,
February 2002.

M. M. Michael and A. K. Nanda. “Design and Per-
formance of Directory Caches for Scalable Shared
Memory Multiprocessors”. Proc. of the 5th Int’l
Symposium on High Performance Computer Archi-
tecture (HPCA-5), pp. 142-151, January 1999.

S. S. Mukherjee and M. D. Hill. “An Evaluation
of Directory Protocols for Medium-Scale Shared-
Memory Multiprocessors”. Proc. of the 8th Int’l
Conference on Supercomputing (ICS’94), pp. 64—
74, July 1994.

S. S. Mukherjee and M. D. Hill. “Using Predic-
tion to Accelerate Coherence Protocols”. Proc. of
the 25th Int’l Symposium on Computer Architec-
ture (ISCA’98), pp. 179-190, July 1998.

A. K. Nanda, A.-T. Nguyen, M. M. Michael and
D. J. Joseph. “High-Throughput Coherence Con-
trollers”. Proc. of the 6th Int’l Symposium on
High Performance Computer Architecture (HPCA-
6), pp. 145-155, January 2000.

A. K. Nanda, A.-T. Nguyen, M. M. Michael and
D. J. Joseph. “High-Throughput Coherence Control

-8-

[49]

[50]

[51]

[52]

53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

and Hardware Messaging in Everest”. IBM Jour-
nal of Research and Development, 45(2):229-244,
March 2001.

H. Nilsson and P. Stenstrém. “The Scalable
Tree Protocol — A Cache Coherence Approach for
Large-Scale Multiprocessors”. Proc. of 4th Int’l
Symposium on Parallel and Distributed Processing
(SPDP’92), pp. 498-506, December 1992.

A. Nowatzyk, G. Aybay, M. Browne, E. Kelly,
M. Parkin, W. Radke and S. Vishin. “The S3.mp
Scalable Shared Memory Multiprocessor”. Proc.
of the Int’l Conference on Parallel Processing
(ICPP’95), pp. I:1-10, July 1995.

B. O’Krafka and A. Newton. “An Empirical Evalu-
ation of Two Memory-Efficient Directory Methods”.
Proc. of the 17th Int’l Symposium on Computer Ar-
chitecture (ISCA’90), pp. 138-147, May 1990.

M. Prvulovic, Z. Zhang and J. Torrellas. “Re-
Vive: Cost-Effective Architectural Support for Roll-
back Recovery in Shared-Memory Multiprocessors”.
Proc. of the 29th Int’l Symposium Computer Archi-
tecture (ISCA’02), pp. 111-122, May 2002.

P. F. Reynolds, C. Williams and R. R. Wagner. “Iso-
tach Networks”. IEEE Transactions on Parallel and
Distributed Systems, 8(4):337-348, April 1997.

R. Simoni. “Cache Coherence Directories for Scal-
able Multiprocessors”. Ph.D. Thesis, Stanford Uni-
versity, 1992.

R. Simoni and M. Horowitz. “Dynamic Pointer Al-
location for Scalable Cache Coherence Directories”.
Proc. Int’l Symposium on Shared Memory Multi-
processing, pp. 72-81, April 1991.

D. J. Sorin, M. M. Martin, M. D. Hill and D. A.
Wood. “SafetyNet: Improving the Availability
of Shared Memory Multiprocessors with Global
Checkpoint/Recovery”. Proc. of the 29th Int’l Sym-
posium Computer Architecture (ISCA’02), pp. 123-
134, May 2002.

J. Tendler, J. Dodson, J. Fields, H. Le and B. Sin-
haroy. “POWERA4 System Microarchitecture”. IBM
Journal of Research and Development, 46(1):5-25,
January 2002.

The BlueGene/L Team. “An Overview of the
BlueGene/L Supercomputer”. Proc. of the Int’l
SC2002 High Performance Networking and Com-
puting, November 2002.

J. Torrellas, L. Yang and A. T. Nguyen. “Toward
A Cost-Effective DSM Organization that Exploits
Processor-Memory Integration”. Proc. of the 6th
Int’l Symposium on High Performance Computer
Architecture (HPCA-6), pp. 15-25, January 2000.

W.-D. Weber, S. Gold, P. Helland, T. Shimizu,
T. Wicki and W. Wilcke. “The Mercury Inter-
connect Architecture: A Cost-Effective Infrastruc-
ture for High-Performance Servers”. Proc. of the
24th Int’l Symposium on Computer Architecture
(ISCA’97), pp. 98-107, June 1997.

	footer1: -1-
	header: JCS&T Vol. 3 No. 2 October 2003
	footer2: -2-
	footer3: -3-
	footer4: -4-
	footer5: -5-
	footer6: -6-
	footer7: -7-
	footer8: -8-

