A Formal View of Multicomputers
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Abstract

Formal Methods and Techniques are widely used in communication systems and distrib-
uted computing. Today, such techniques are not sufficiently employed in other systems as
industrial processes or hardware design. In this paper we propose a methodology to apply
the Lotos technique in computer design. Thus, we describe a particular case based on spe-
cifying a classical router algorithm in massively parallel machines. The e-cube routing is a
deadlock-free algorithm which serves as a valid reference for our purpose. Lotos tools are
used to validate the system, in particular we have used LOLA for analysis and design testing.

1: Specifying Computer Behaviour Using Lotos

A number of advantages have been attributed to the use of formal specifications. These
advantages cover from enhanced insight into and understanding of specifications, up to help
in verification of the specifications and their implementations. Formal methods are intended
to be used by software and hardware designers to describe systems, and in particular, to
verify that the system has the desired properties [19].

As we can see in [5], the design of special systems as life-critical systems with fault-
avoidance is only intellectually defendable by using formal methods. Formal methods are of
particular importance in the development of real-time systems [16]. Many other systems [13]
can be designed using formal techniques in order to reduce both high cost and time related
to the development of complex systems. Finally, formal methods are specially recommended
for security and safety systems.

Lotos [3] is playing an important role in exploring the behaviour of diferent kinds of
systems. Communication protocols definition and distributed computing are two of the
main areas within which formal specification is widely used. Lotos, Estelle and SDL have
been chosen to describe important architectural and functional design features related to
software engineering [20]. Lotos Formal Description Technique allows software designers to
give a precise relation between initial and final states of any application, without describing
implementation details.



Formal specification techniques are generally beneficial [12] [4] because a formal language
makes specifications more concise and explicit than informal ones [21]. These techniques help
us to acquire greater insights into the system design, dispel ambiguities, maintain abstraction
levels, and determine both our approach to the problem as well as its implementation.

In this paper we intend to study a special application of the Lotos formal technique to
multicomputer design. In a former work [9] we showed the basis of a methodology for
specifying diferent problems related to multicomputer design. Multicomputers are a known
class of massively parallel machines that have thousand of processors interconnected through
a communication network [1]. The nodes do not physically share memory, each one using
a local memory. This hardware feature forces nodes to communicate by message-passing
technique through the network [17].

The basic function of an interconnection network is to transfer information among com-
municating nodes of a multicomputer in a eflicient manner. In a broad sense, routing refers
to the communication methods and algorithms used to implement this function: how to set
up a communication path in the network, how to choose a path from many alternatives, and
how to handle contention for resources in the network [18].

An important aspect in the design of a routing algorithm is the possibility of dead-
locks. Deadlocks occur as a result of the simultaneous occurrence of four conditions: Cyclic
wait, Mutual exclusion, No preemption and Hold and wait. The resources in routing are the
channels and buffers, so deadlock can result if a communication request is allowed to hold
the resources allocated to it while waiting for additional resources to become available. A
logical channel cannot be shared among nodes.

Deadlocks can appear both in circuit-switched and packet-switched networks. Similarly,
both store-and-forward and wormhole approaches are susceptible to produce deadlocks. Vari-
ous approaches can be used to deal with deadlocks: deadlock avoidance, deadlock detection
and deadlock prevention. A detection approach can be used to break a deadlock once it has
occurred, however this option is not popular because the channel selection must be repeated,
resulting in large and unpredictable latencies.

The unique approach in interconnection networks is to prevent deadlocks by careful design
of the routing algorithm. Deadlock avoidance studies the new resource allocation graph for
each request in order to detect deadlocks. If a deadlock appear,then the request is rejected.
As can be seen, this method introduces large and prohibitive latencies. Deadlock prevention is
focused on the four conditions we have showed above. The solution is to introduce constraints
in order to eliminate a condition. An easy approach is impose an order in which resources
are allocated to a communication request, avoiding the cyclic-wait condition.

Both circuit-switched and packet-switched networks can prevent deadlocks by using one of
these methods [18]: The virtual-channel technique (wormhole routing), that is, the capacity
of a physical channel is multiplexed among multiple virtual channels. By partitioning the
available buffers in a node into multiple classes and controlling the allocation of buffer classes
to packets (store-and-forward). By reducing the path selection process in order to avoid
cyclic-wait situations, an example for adaptative routing can be found in [8]. The existence
of deadlocks in routing algorithms can be studied by constructing the resource allocation
graph (channel or buffer dependence graph). A deadlock can appear in the system if the
resource allocation graph has a cycle [11] and conversely, the allocation occurs if the graph
has no cycles. Most of deadlock-free algorithms have been obtained by analyzing the buffer
dependence graph.

In this paper we present an alternative to graphs for deadlock prevention and detection



based on the use of the Lotos formal technique. The tools and methods applied to com-
munication networks have successfully used in interconnection networks, and the resource
allocation graph is no exception indeed formal techniques should be no exception either.
Such a discussion is important in the design of optimal routing algorithms. Formal methods
can help designers to find deadlock-free algorithms and, by extension, to develop multicom-
puters with a rigorous method, with all the advantages of formal methods [7]. We show
this by describing the specification of a deadlock-free algorithm, namely, the row-column
deterministic algorithm.

The rest of the paper is as follow. In section two we show the case study of a routing
algorithm. This routing algorithm is specified using Lotos in section three and, finally, in
section four we describe our conclusions and future work.

2: A Case Study:Routing Algorithms

In a multicomputer, the way the nodes are connected to one another varies from one
machine to another. In a direct network, each node has a point-to-point, or direct, connection
to some number of other nodes, called neighboring nodes. Such an aspect defines a main
feature of multicomputers, the topology. Interconnection networks usually have regular and
fixed topologies: hypercubes, torus and meshes are the most known topologies. We have
choosen a popular topology from the k-ary n-cube family: the 3-ary 2-cube or 2D torus.

In a multicomputer, all the interprocessor communication functions are usually handled
by a router. The router interconnects a number of external channels to other nodes in the
network, and one or more internal channels to the local processor. Our 2D torus has nine
nodes and each node has four external channels and two internal channels. When a packet
arrives at the router from an external channel it may either be destined to the local node or
may be forwarded on by another external channel.

A valid taxonomy of communication methods used in static networks can be found in [15].
All methods assume a form of distributed control since centralized control needs a power
node to make the routing decision and thus is not a practical scheme. Such a taxonomy
distinguishes between three classes:

1. Path setup: Defines how -statically or dynamically- the path between two nodes is
set up. The dynamic approach is usually divided into circuit-switching and packet
switching approaches.

2. Routing path selection: Defines the problem of choosing a path from among the many
alternatives.Basically there are two approaches: deterministic and adaptative.

3. Network control flow: Defines the techniques used to regulate the movement of packets
from node to node and the efficient use of the network resources. The best known
techniques are the following: Store-and-forward, Virtual cut-through and Wormbhole.

This classification can help us to characterize a particular router algorithm, and then we
can carry out the study of its properties. Thus, the specification of the routing algorithm
defined in this paper has the next features: the path is set up dynamically, the routing path
selection is deterministic and, finally, the technique used to network control flow is wormhole.
In wormhole routing, a message is divided into a sequence of fixed-size units, called flits.
We have choosen a popular deterministic algorithm: the e-cube or XY algorithm. Such an
algorithm offers a main feature, namely, it is deadlock-free.



We want to study the deadlock problem, and how Lotos can solve it. So, in this paper
we present both a torus topology and a router algorithm specification in order to analyze
deadlock states. We assume all nodes always select a valid destination, and especially a node
in the border.

As we have noted above the channel dependence graph models deadlocks in wormhole but
it is sometimes tedious to construct the graph and check for cycles [18]. A classic example
of proving deadlock freedom of some algorithms can be found in [6].

3: The e-cube Algorithm Specification

Lotos specifications are networks of processes that are activated concurrently and commu-
nicate through shared gates or channels. A Lotos specification has two different parts: the
abstract data type (ADT) definition and the system behaviour definition by specifying the
temporal relationship between every synchronization on the gates. We can indicate the types
used within the specification: boolean, natural numbers from 1 to 9, and two special types
called Message and Chan. ADT’s are not important in this paper.

The specification can be studied by distinguishing between two parts: the specification of
the torus topology and the specification of the row-column router.

The specification of the topology is defined after the Lotos word behaviour. We have
defined a Lotos expression with nine Lotos processes which represent each nine nodes of the
multicomputer. This Lotos expression models the torus topology and the expression defines
channel joinning two processes.

On the other hand we have the expressions related to the second part, the e-cube algorithm
specification. Such a definition is provided by three Lotos processes called enc, comp and
cross. Each node of a 3-ary 2-cube has a number of modules: the router, a local memory
and a processor are the most important. The router has to perform two main tasks: routing
an incoming packet and crossing flits from ingoing to outgoing channels. Once a header flit
of an incoming packet is processed, the outgoing channel must be selected. This task is
defined with the Lotos processes enc and comp. Once an outgoing channel has been selected
(if the channel is free), the router has to cross the incoming flits up to the outgoing channel.
It can be seen that while the router is crossing a message, a new message can arrive via a
free channel. In this case such a process should be repeated to manage the new incoming
message.

With available Lotos tools, we can analyze and test the desired behaviour. A basic method
has been used to test the specification. Such a method includes a number of possible commu-
nication paths for a particular node. Among other we can study the following communication
directions:

1. Forward a node in the same row
2. Backward a node in the same row
3. Forward a node in the same column
4. Backward a node in the same column
5. Simultaneous combinations of these four cases
Lotos analysis can be done using step-by-step execution with tools such Lite or LOLA [14].

This operation helps us to detect particular problems, but the global space is too large and it
is impossible to cover all of them. Testing allow us to reduce this space state by composing



the specification with a test case. The next specification is a simple test case to check the
simultaneous communication among four nodes: from nodel to node3 and from node4 to
nodeb. The LOLA test operation answers with MUST PASS, MAY PASS or REJECT when

it composes a specification with an acceptance test.

process twoll[cia,cid,ci2,cl,c2,c6,success] :NOEXIT:=
cia!flit3;cl!libre;cl1!'flit3;cid!flit5;c2!'1libre;c2!f1lit3;c6!1libre;ci2!libre;
ci2!f1it3;

c6!flith;cialflit;cli!flit;ci2!libre;c2!flit;ci2!flith;ci2!flit;
cid!flit;c6!flit;ci2!flit;
cia'end;cl'end;c2!'end;ci2'end;cid'!end;c6'end;ci2'end;

success;

stop

endproc

The result shows that there is no rejection:

Analysed states = 27
Generated transitions = 27
Duplicated states =0
Deadlocks =0

Process Test = twol

Test result = MUST PASS.
successes = 1
stops = O
exits = 0
cuts by depth = 0

All nine nodes in the torus work in the same way, the behaviour is defined by the same
Lotos process comp. This aspect allows us to execute a limited number of test cases to
check the desired behaviour and to detect routing limitations. In this case we have deadlocks
because the specification does not define virtual channels. As we can see above the e-cube
algorithm is deadlock-free if the network has two virtual channels. This particular feature of
our specification can be detected as a result of a test rejection on LOLA.

4: Conclusions

This paper has analyzed how to apply formal techniques to computer design, specially to
multicomputer design. In such systems the communication network plays an important role
in determing the overall performance of the system. Formal techniques can help us to study
a number of problems related to communication network design. The application of formal
methods to hardware design has been increasing in recent years, some examples of which are
given in [2] and [10]. Our study of the network has focused on the much discussed problem
of designing a router algorithm.

An important issue in the design of a routing algorithm is the possibility of deadlocks.
Deadlock appears when four conditions are true in the system simultaneously: mutual exclu-
sion, no preemption, cyclic wait and hold and wait. The way to treat deadlocks is prevent



them by careful design of the routing algorithm.

Many earlier works have studied such a problem by using the channel dependence graph
in order to obtain a deadlock-free algorithm in different ways. Our proposal is introduce the
use of the Lotos technique as a valid and easier method to design deadlock-free algorithm.
Thus, we have showed the specification of a deterministic e-cube algorithm in a 3-ary 2-cube
topology. Lotos tools have been used to validate the system by using the test operation.

In future works we will be studying both other router algorithms and other topology
definitions. In this way, we are looking for new Lotos expressions to define greater topologies,
since our Lotos expression is difficult to scale. All these new expressions can be analyzed
and verified with different tools.
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