
Using Channel Pipelining in Reconfigurable Interconnection Networks�

José L. Sánchez
Dpto. Informática

Escuela Politécnica
Univ. Castilla-La Mancha
Albacete, SPAIN 02071

José Duato
Dpto. Ing. Sist. Comp. Aut.

Facultad de Informática
Univ. Politécnica Valencia
Valencia, SPAIN 46071

José M. Garcı́a
Dpto. Informática y Sistemas

Facultad Informática
Univ. Murcia

Murcia, SPAIN 30071

Abstract

The major problem in wormhole routing networks is re-
lated with the contention due to message blocking. Recon-
figurable networks are an alternative to reduce the nega-
tive effect that congestion produces on the performance of
the network. Our work is focused on dynamic reconfigura-
tion. This technique consists basically of placing the differ-
ent processors in the network in those positions which, at
each computational moment and according to the existing
communication pattern among them, are more adequate for
the development of such computation. In a reconfigurable
architecture, the clock period is determined by the transmis-
sion time across the switch. To increase this frequency the
channel pipelined technique is used.

In this paper we present the foundations of reconfig-
urable network architecture. We show the general structure
of the reconfigurable systems and we indicate the charac-
teristics of the channel pipelining technique. Finally, we
evaluate the performance of a reconfigurable system.

1. Introduction

In highly parallel machines, a collection of computing
nodes works in concert to solve large application problems.
The nodes communicate data and coordinate their efforts by
sending and receiving messages through a routing network.
Consequently, the achieved performance of such machines
depends critically on the performance of their routing net-
works. Network performance depends on a variety of fac-
tors, not only of network architecture, but also the features
of communication that is actually carried on the network
such as message sizes and traffic patterns.

So, it is important to increase the performance of the net-
work. To meet this objective, the designer manipulates three

�This work was supported in part by Spanish CICYT under Grant
TIC97-0897-C04-02

independent variables [3]: topology, routing and switching.
The network topology defines how the nodes are intercon-
nected by channels. The routing algorithm decides the path
selected by a message to reach its destination node. Switch-
ing mechanism refers to the strategy used to regulate traf-
fic in the network, that is, it must allocate the available re-
sources to messages, and on the other hand, resolve the con-
flicts that may emerge as a consequence from this.

Many recent multicomputer networks use cut-through or
wormhole routing [4, 9], a technique which reduces mes-
sage latency by pipelining transmission over the channels
along a message’s route.

A major problem found in wormhole networks is block-
ing situations. In large parallel processing systems there are
applications in which blocking situations can occur more
easily. A blocking situation appears when the header flit
cannot find a free link to move towards the destination and
then it is blocked in an intermediate node. Consequently,
the intermediate links that carry the remaining flits are
blocked. This in turn may block other messages. Moreover,
in these networks a message spans multiple channels which
couples the channels tightly together, therefore blockage on
one channel can have immediate impact on others. Tight
coupling between channels means that one long message
can block the progress of many other messages. In these
networks, channel coupling effects make the performance
quite sensitive to blockage problem. So, this congestion can
reduce the network performance in a significant rate.

Several techniques have been proposed to reduce or
avoid congestion, such as virtual channels, random routing
or message combining. In this paper we propose a network
reconfiguration mechanism in order to try to improve the
performance of these systems. The goal of a reconfigurable
network is to increase the performance by minimizing the
congestion of messages in the network. This objective is
achieved by means of changing the position of the nodes in
the network that cause a large congestion due to the deter-
ministic routing.

As it will be seen in section 3, the reconfigurable sys-

tem architecture is based on the use of indirect networks. In
these networks, the time required to transmit a flit from an
input port to an output port is very significant. So, the cy-
cle time of the reconfigurable system is determined by the
slowest stage, this is to say, the transmission time across the
switch. The clock frequency must be reduced in order to
transmit information properly through all the components.
This decreases throughput and increases message latency.
To reduce the negative effects of the slowest stages, the
channel pipelining [12] can be used. In a pipelined chan-
nel network, several flits may be simultaneously in flight on
a single wire. This technique is very common in computer
networks and it makes clock frequency completely indepen-
dent of wire length.

In this paper we present the foundations of reconfig-
urable network architecture. The reconfiguration capacity
is based on a reconfiguration algorithm distributed in each
node. The algorithm decides when and how the reconfigu-
ration will take place. The algorithm evaluates the commu-
nication contention and decides when the reconfiguration is
more favourable. This algorithm is based on a cost function
and requires only local information.

The rest of the paper is organized as follows. In sec-
tion 2 we introduce the reconfigurable network architectures
and we present the algorithm for dynamic reconfiguration.
In section 3 we show different implementation aspects. In
section 4 we present the pipelined channel technique. In
section 5 we show and analyze the evaluation results, and
finally, in section 6 some conclusions are given.

2. Reconfigurable network architecture

Most message-passing systems are based on a fixed in-
terconnection topology. In specialized architectures, the
interconnection topology is selected so that it matches the
communication requirements of a specific application. For
more general purpose architectures, routing mechanisms
must be implemented to allow a processor to communicate
with a non-neighbour processor.

A reconfigurable network is adopted in order to reduce
the cost of the communication. Basically, it consists of plac-
ing the different processors in the network in those positions
which, at each computational moment and according to the
existing communication pattern among them, are more ad-
equate for the development of such computation.

A reconfigurable network has the important advantages
[6]. Programming a parallel application becomes more in-
dependent of the target architecture because the architecture
adapts to the application. This feature provides the flexibil-
ity required for an efficient execution of various applica-
tions. Moreover, in this way it is easy to exploit the locality
in communications. In wormhole networks, reconfigurable
architectures alleviate the congestion in due to the blocking

problem. This problem is more important in networks with
deterministic routing. Finally, there are applications which
communications pattern varies over time. For these, recon-
figurable architectures can be very well suited.

There are two types of reconfiguration: static or dy-
namic. In this paper, we focus on dynamic reconfiguration,
that is, the topology can change almost arbitrarily at run-
time.

Figure 1 shows the effects of this technique for a very
elemental situation. We suppose a wormhole network. In
(a) and (b) messages sent by processors must in some situa-
tions go through the same channels until they reach their
destinations, originating delays in communication due to
the blockage of the channels. Once situation (c) is reached,
this problem disappears, thus accelerating the emission and
the reception of these messages and improving the network
performance.

Source nodes Destination node

(a) (b) (c)

Figure 1. An example of the reconfiguration
algorithm effects

The processor which receives the messages handles it-
self to place in its best position in the network and in every
moment. This is achieved by changing the location of this
processor by means of small alterations in the network, that
is, exchanging its position with a neighbour processor.

2.1. The reconfiguration algorithm

A reconfigurable network is controlled by the reconfig-
uration algorithm. We show an updated version of the al-
gorithm presented in [7]. This old version was designed to
work on networks using the store-and-forward routing tech-
nique. Now, most multicomputers use wormhole routing.
Therefore, we have developed a new version accounting all
features of this routing algorithm.

The basic idea is the following: when messages arriving
by a given channel to their destination nodes have supported
an important delay, the algorithm will try to put the destina-
tion node close to the site that is producing those delays, by
exchanging its position with its neighbour more close to the
conflict zone. Then, the algorithm works in the following
way:

1. Each time a message arrives at its destination node,
information about contention found along its path is
recorded. It must be taken into account that a limit ex-
ists for the contention value (threshold2). This limit
prevents that only one message having a very large
contention can perform the reconfiguration process.
Moreover, it is required a minimum number of mes-
sages for the reconfiguration to begin (threshold3).
Then, we can select an average contention and a num-
ber of messages received per channel in our algorithm.

2. The algorithm checks the state of the node each time
that the number of messages arriving at the node is a
multiple of threshold1 value.

3. If the contention in one channel is greater than the sum
of the rest of channels, the node sends a message to
its neighbour node through that congested channel to
indicate the convenience of exchanging their positions.

4. If the change is adequate, the network carries out the
reconfiguration protocol. Although the reconfiguration
algorithm is distributed, the reconfiguration protocol
needs a control node to perform the change.

Thus, the algorithm for the dynamic network reconfigu-
ration has the following properties: it preserves the topology
(after reconfiguration, the network has the same topology),
it is based on network contention (a node can reconfigu-
rate the network taking into account information about the
contention in the network), it produces a small alteration (a
node can only make an exchange with one of its neighbour
nodes), it uses three thresholds for network reconfiguration.

A node determines the convenience of changing itself
taking into account the information that it receives about
contention in the network. This information is obtained
from the messages arriving to it. Each node records the time
through a message has been blocked in the network, and the
number of channels that it has occupied. With both factors,
blocked time and number of channels, we can estimate the
loss of network bandwidth due to a congestion problem.

Then, for a given node D and a given channel j, the cost
function takes the following expression:

FCj �
X

messages

�
DX
k�S

tbk � cuk

�

where tbk is the time that a message arriving at node D has
been blocked in each node of its path (S� � � � � D), and cuk is
the number of channels occupied during tbk .

2.2. The reconfiguration control

As it will be seen in the next section, the dynamically
reconfigurable system consists of several nodes, a link con-
nection switch which allows communication among nodes

and a system controller which supervises the switch config-
uration.

We have chosen a centralized control for the dynamic
network reconfiguration. A reconfiguration protocol among
the nodes and the control node has been developed for han-
dling the reconfiguration of the network. The main steps are
the following:

1. When a pair of nodes decide that it is necessary to re-
configurate the network, both nodes inform all their
neighbouring nodes that they are going to interchange
their positions and therefore those nodes should stop
sending messages to them.

2. The nodes which want to interchange their positions
(one of them) send the reconfiguration data to the con-
trol node to carry out the reconfiguration.

3. The control node modifies the interconnection network
topology, adapting it to the new circumstances.

4. Once the new configuration has been established, the
control node sends information about the new situa-
tion to the other nodes. The pair of nodes that have
interchanged their positions, permit their neighbouring
nodes to communicate with them again.

This protocol adds little message traffic to the network.
Next, we describe a feasible implementation of a reconfig-
urable network.

3. Implementation of reconfigurable networks

The dynamically reconfigurable system consists of sev-
eral nodes, a link connection switch which allows commu-
nication among nodes, a system controller which supervises
the switch configuration and a bus used for reconfiguration
control (figure 2).

To establish a connection in the switch a configuration
request message is sent by a node through the control bus to
the switch controller. When it is possible, the required link
connection is established in the switch. Then, according
to the reconfiguration protocol described in the prior sec-
tion, nodes requesting the connection are acknowledged by
means of the adequate messages.

The control bus is organized in a very simple way. A
controller has been introduced, which acts as an interface
between the nodes and the bus. This model permits, in par-
allel, receiving and servicing connection requests and ac-
knowledges, due to autonomous functioning of node link
interface. On the other hand, the node can continue with
its normal process once it has sent the configuration request
even though it has not the control of the bus.

The bus is composed of a data line and an acknowledge
line. These lines are used to transmit the different messages

Link connection switch

k k k
.

N1 N N2 m

. . .

. . . SC

Control bus

Figure 2. General system structure for dy-
namic link connection reconfiguration

involved in the reconfiguration process. Additional lines are
provided by the controller for permitting the token-based
access to the bus.

We have chosen this type of bus due to several motives:
Firstly, it is very simple and it guarantees a absence of
conflicts. Secondly, the maximum delay for each message
transfer is predictable. Thirdly, the length of the wires is
not excessive. And finally, the traffic through the bus is very
small since this happens only in the control messages. This
is the reason why the bus will not become the bottleneck of
the system.

3.1. The switch

In our research we have studied two kinds of switches: A
crossbar and a Omega multistage [10]. The former allows
us to obtain very tiny size systems, up to 64 nodes. By
means of the latter we will get larger size systems, being
therefore the reconfiguration capacity much smaller than in
the above case.

As it is shown in section 5, we are going to evaluate the
behaviour of our reconfigurable system comparing its re-
sults with those obtained for a static network system. Hav-
ing such a network a 2D torus topology and being both
(static and reconfigurable networks) under the same work-
loads. Therefore, we must establish the adequate connec-
tions in the crossbar (o multistage) to obtain the 2D torus
topology.

In general, to get the k-ary n-cube topology we need a
crossbar with �nkn input and output ports, or an Omega
multistage with logr �nk

n stages using r� r switches. It is
clear that these values are very high for n and k values not
too high, making it even more unviable the crossbar and not
very advisable a multistage. In order to reduce this problem,
and considering the k-ary n-cube features, we have split the
global network in so many sub-networks as output channels

there are in a node. This is to say, �n for a k-aryn-cube with
bidirectional channels, or n for unidirectional channels.

The advantages of this kind of split are clear: A cross-
bar with a smaller number of input and output ports is
needed, as well as multistages formed of many less stages
and switches. This means a shorter transmission time. Be-
sides, the sub-networks split does not introduce any over-
head in the reconfiguration process since this can is done
simultaneously in all of them.

Even though, the characteristics of these networks are
such that the transmission time from an input port to an
output port is very significant. This fact doesn’t permit
to obtain, for example, performance similar to the one ob-
tained with direct networks. In order to improve the perfor-
mance of the reconfigurable system, we have applied chan-
nel pipelining and in this way it is reduced the negative ef-
fect of that important transmission time across the switch.

4. Channel pipelining

In a non-pipelined channel network, the cycle time in-
cludes the transmission time across the longest wire. Thus,
clock frequency must be reduced in order to transmit infor-
mation in an adequate way through all the links. The band-
width is reduced and the message latency increased. This is
more significant in the case of high-dimensional networks.

For reconfigurable systems, the reduction of the clock
period is even larger. As it has been shown in the previ-
ous section, the architecture is based on indirect networks,
which introduce a greater transmission time. However, the
characteristics of this kind of systems permit to apply the
technique of channel pipelining. In a pipelined channel net-
work, data is clocked onto the wires at a rate determined
solely by the switching speed [12], allowing multiple flits
to be simultaneously in flight on a single wire. In a mul-
tistage, for example, several flits may be simultaneously in
flight from an input port to an output port, along the path
established through the different stages in the network.

Pipelined channels are very common in wide area net-
works and local area networks. There is an abundance of
research regarding the different issues related to this tech-
nique [13]. In this work, we have used a protocol based
on using control flits instead of dedicated ports to flow con-
trol task. In order to reduce the effect of these flits over
the channel bandwidth the Stop & Go protocol has been
used. This protocol, - implemented in Myrinet [1], for ex-
ample -, is based on using input buffers quite larger than in
a non-pipelined channel network. These buffers are divided
into three parts separated by two watermarks: Stop and Go.
When the buffer fills over the Stop mark, a Stop control flit
is sent to the previous node. When this node receives that
control flit, it stops sending more flits. As the input buffer
empties, if the number of stored flits is below the Go mark,

the node sends a Go control flit to the previous node so that
it restarts sending flits again.

The buffer size must be accurately calculated in order to
avoid the loss of flits or the appearance of bubbles in the
message pipeline. The part above the Stop mark must be
able to store incoming flits that are in flight since the receiv-
ing node sends the Stop control flit until the previous node
stops sending more flits. This period is twice the propaga-
tion time through the switch plus the time required to pro-
cess the control flit. On the other hand, the part below the
Go mark must be as large as the part above the Stop mark,
in order to avoid that the input buffer empties before the
flit flow is resumed after sending the Go control flit. Taking
into account this, we have considered that input buffers have
capacity for all the flits arriving during a period three times
the maximum round trip delay. In this way, the central part
is large enough to avoid sending control flits continuously.

5. Performance Evaluation

In this section we are going to evaluate our reconfig-
urable network model. The evaluation methodology used
is based on the one proposed in [5]. The most important
performance measures are latency and throughput. Latency
is the required time to deliver a message. It is measured in
nanoseconds. Throughput is usually defined as the maxi-
mum traffic accepted by the network, where traffic is the flit
reception rate. It is measured in flits per node per microsec-
ond. We have also taken into account the simulation time,
this is to say, the time required for making a determined
number of messages arrive to their destinations.

The results have been obtained with Pepe environment
[8], a programming and evaluating tool for multicomputers
and multiprocessors. Pepe has two main phases: the first
phase is more language-oriented, and it allows us to code,
simulate and optimize a parallel program. The second phase
has several tools for mapping and evaluating the architec-
ture. The main feature included in Pepe is that it permits
the network to be dynamically reconfigured.

With the network simulator, we can evaluate the perfor-
mance of the interconnection network for parallel applica-
tions and synthetic workloads. The simulator allows us to
vary the parameters of the network and study how to im-
prove its behaviour in real cases and predetermined situa-
tions. The simulator can model at the flit level different
topologies and network sizes.

5.1. Message generation

We have considered hot-spot [11] and trace traffic mod-
els. In the first case, the situation that is going to be simu-
lated is the following: Let us consider a network with a uni-
form distribution of message destinations. In this message

pattern, message destinations are randomly chosen among
all the nodes with the same probability. At a given moment,
and with the network in steady state, the communication
pattern changes, and a small number of hot-spots appear
in the network. This situation repeats with a variable fre-
quency and, in general, the hot-spots are different.

As it is easy to imagine, enormous congestion is pro-
duced in the network, due to the great number of messages
that want to reach the hot-spot node. This causes the ap-
pearance of contentions in the network and the consequent
delays, therefore degrading the performance of the network.

On the other hand, the traces have been obtained by
means of the simulated execution of a parallel algorithm.
This algorithm is used for triangularizating a sparse matrix
and it is based on the fast Givens rotations. The parallel im-
plementation of the algorithm requires as many processes as
columns the sparse matrix has. If we define the type of a row
as the column position occupied by its leftmost non-zero el-
ement, then it is well known that only rows of the same type
can be rotated together. Then we distribute the rows among
processes in such a way that each process stores all the rows
of the same type. After a pair of rows has been rotated, one
of them increases its type, being sent to the corresponding
process to be rotated again.

5.2. Parameters of simulations

We have evaluated the performance of the reconfigura-
tion algorithm on 2D torus with 16, 64, and 256 nodes.
The deterministic algorithm proposed in [4] for the k-ary
n-cube has been used. It has been modified so that it uses
bidirectional channels with two virtual channels per physi-
cal channel. To compute the clock frequency of each node,
we have used the delay model proposed in [2]. The router
takes ��� ns to compute the output channel; the switch takes
one ��� ns to transfer a flit through the crossbar and the
time required to transfer a flit across a physical channel is
��� ns. On the other hand, we have considered that the
useful throughput of the bus is 16 Mbps and token moves
quickly (��� ns per node). Finally, each switch reconfigu-
ration spends � �s.

The testing matrices have been generated at random by
making a homogeneous distribution of their non-zero ele-
ments. Large size matrices have been selected to produce
a large message traffic to better appreciate in this way the
advantages of the reconfiguration algorithm. For a specific
number of columns in the matrix, tests with different rectan-
gularity factors have been carried out for a minimum value
of two, since smaller factors can hardly produce traffic in in-
termediate nodes of the network. An average number of two
non-zero elements per row has been taken in order to ensure
we are dealing with sparse matrices. Results included in this
work refer to matrices shown in the table 1.

The proportion of messages at the hot-spot has been var-
ied between 5% and 20%. For each simulation run, we have
considered that message generation rate is constant and the
same for all the nodes. Each simulation was run until the
network reached steady state, that is, until a further increase
in simulated network cycles did not change the measured
results appreciably. Once the network has reached a steady
state, the flit generation rate is equal to the flit reception
rate (traffic). The number of hot-spots taken has been 1 and
2, and they have been obtained randomly. Finally, 128-flit
messages have been considered.

Matrix Trace
Rows Columns Messages Avg. Length

A3 2400 600 300068 946
B3 3200 800 527165 1254
C3 3600 900 646648 1388
D3 4000 1000 823832 1583
E3 4800 1200 1170154 1882

Table 1. Matrices and corresponding traces

5.3. Simulations results

In this section, we present the results obtained from the
evaluation of the reconfigurable network model. We have
born in mind a crossbar switch to connect the nodes in the
system and, therefore, the time required to transfer a flit
from an input port to an output port is �	�� ns. Accord-
ing to section 4, input buffer size is 21 flits. We have con-
sidered 4 flits as the output buffer size. For other values,
different from the above parameters, the result tendency is
maintained.

To obtain the graphics below shown several parameters
have been varied. In the case of trace workload: Load
size (figures 3 and 4) and the distribution way of processes
among processors (figure 5); and for the other type of load,
the number of hot-spots and the traffic (figure 6).

As it has been shown in section 3, we have used an indi-
rect network to design the reconfigurable system architec-
ture. In figure 3, the reconfiguration effect on the proposed
system is shown (Non-pipelined channel network with re-
configuration, NPWR, versus Non-pipelined channel net-
work non-reconfiguration, NPNR). It can be appreciated
how the simulation time is reduce for any load size. This
reduction has achieved, in some cases, a value of until 15
%. The changes on the network have made possible to situ-
ate in much more adequate positions than the ones they had
before, the nodes of the system. As a consequence of this
fact the messages spend much less time in reaching their
destinations. We would like to emphasize this improvement
is produced with a small number of changes in the network.

Trace

S
im

ul
at

io
n

T
im

e
(m

s)

A3 B3 C3 D3 E3
0

50

100

150

200

250

NPNR

NPWR

Figure 3. Reconfiguration effect according to
load size for 2D torus with 64 nodes

Even though these results are significative, it is impor-
tant to know the behaviour of the system by making use of
a direct non-reconfigurable network (DN) and to compare
results. Rest of figures show some of these results and also
those which were obtained applying channel pipelined tech-
nique and reconfiguration (CPWR) on the proposed system.

Two clear facts can be observed in all the graphics. On
the one hand, an indirect reconfigurable network does not
achieve the performance offered by a direct one. And on
the other hand, the application to the proposed system of
the channel pipelined technique improves in a significative
way the performance of direct networks. These improve-
ments are kept even when realizing a good distribution of
processes among processors as can be seen in figure 5.

Trace

S
im

ul
at

io
n

T
im

e
(m

s)

A3 B3 C3 D3 E3
0

50

100

150

200

250

NPWR

DN

CPWR

Figure 4. Channel pipelined effect according
to load size for 2D torus with 64 nodes

Mapping Technique

S
im

ul
at

io
n

T
im

e
(m

s)

Random Round Robin
0

100

200

300

400

500

600

NPWR

DN

CPWR

Figure 5. Channel pipelined effect according
to mapping for 2D torus �� � and trace D3

6. Conclusions and future work

In this paper, we have presented a reconfigurable net-
work model. We have featured the reconfiguration tech-
nique supported by this model. We have analyzed the ca-
pabilities of several types of configuration, using a unique
crossbar or by means of a multistage network. The perfor-
mance of these models has been analyzed by simulation.
We have presented here the obtained results for an average
size network (64 nodes) under trace and hot-spot workload.

As it can be observed in the presented figures, the recon-
figurable network obtains good results, without needing a
high number of changes to reach these. The results obtained
are much better when the technique of channel pipelining
has been applied. This technique permits to reach through-
put close to direct networks using indirect networks. If
these networks can be reconfigurated, the results could be
improved in some situations.

For future work, we would like to extend our study over
larger sized networks, such as 512 or 1024 nodes. To
achieve this, we would use a multistage instead of a cross-
bar. Besides, we would like to study the behaviour of the
employed technique over other topologies such as mesh and
3D torus, and under other models of workload. We are in-
terested in getting to know the real capabilities of the recon-
figurable interconnection networks in any kind of context.

References

[1] N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz,
J. Seizovic, and W. Su. Myrinet - a gigabit per second local
area network. IEEE Micro, pages 29–36, Feb. 1995.

[2] A. Chien. A cost and speed model for k-ary n-cube worm-
hole routers. In Proc. of Hot Interconnects’93, Aug. 1993.

1000

1500

2000

2500

3000

3500

4000

4500

5000

5 10 15 20 25 30 35 40 45 50 55

A
ve

ra
ge

 L
at

en
cy

 (
ns

)

Traffic (flits/node/μs)

NPWR
DN

CPWR

Figure 6. Channel pipelined effect according
to traffic for 2D torus with 64 nodes, one hot-
spot and 20 % non-uniform component

[3] W. Dally. Network and processor architecture for message-
driven computers, chapter 3, pages 140–222. VLSI and Par-
allel Computation. Morgan Kaufmann Publishers, 1990. R.
Suaya and G. Birtwistle.

[4] W. Dally and C. Seitz. Deadlock-free message routing
in multiprocessor interconnection networks. IEEE Trans.
Comput., C-36(5):547–553, May 1987.

[5] J. Duato. A new theory of deadlock-free adaptive routing
in wormhole networks. IEEE Transactions on Parallel and
Distributed Systems, 4(12):1320–1331, Dec. 1993.

[6] C. Fraboul, J. Rousselot, and P. Siron. Software tools for
developing programs on a reconfigurable parallel architec-
ture. In D. Grassilloud and J. Grossetie, editors, Comput-
ing with Parallel Architectures: T. Node, pages 101–110.
Kluwer Academic Publishers, 1991.

[7] J. Garcı́a and J. Duato. Dynamic reconfiguration of multi-
computer networks: Limitations and tradeoffs. In P. Milli-
gan and A. Nuñez, editors, Euromicro Workshop on Paral-
lel and Distributed Proces., pages 317–323. IEEE Computer
Society Press, 1993.

[8] J. Garcı́a, J. Sánchez, and P. González. Pepe: A trace-driven
simulator to evaluate reconfigurable multicomputer archi-
tectures. In Lecture Notes in Computer Science, volume
1184, pages 302–311. Springer Verlag, 1996.

[9] P. Kermani and L. Kleinrock. Virtual cut-through: A new
computer communication switching technique. Computer
Networks, 3:267–286, 1979.

[10] D. Lawrie. Access and alignment of data in an array proces-
sor. IEEE Trans. Comput., C-24(12):1145–1155, Dec. 1975.

[11] G. Pfister and A. Norton. Hot spot contention and combining
in multistage interconnect networks. IEEE Trans. Comput.,
C-34:943–948, Oct. 1985.

[12] S. Scott and J. Goodman. The impact of pipelined channels
on k-ary n-cube networks. IEEE Transactions on Parallel
and Distributed Systems, 5(1):2–16, Jan. 1994.

[13] A. Tanenbaum. Computer Networks, (2nd ed.). Prentice-
Hall, 1988.

