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Abstract

Energy-efficient microprocessor designs are one of 

the major concerns in both high performance and 

embedded processor domains. Furthermore, as 

process technology advances toward deep 

submicron, static power dissipation becomes a new 

challenge to address. Value prediction emerged as a 

effective way of increasing processor performance 

by overcoming data dependences. The more 

accurate the predictor is the more performance is 

obtained, at the expense of becoming a source of 

power consumption and a thermal hot spot.  

In this paper we propose the design of leakage-

efficient value predictors by applying adaptive 

decay techniques in order to disable unused entries 

in the prediction tables of value predictors (Stride, 

DFCM and FCM) studying the tradeoffs for these 

prediction structures, that exhibit different pattern 

access behaviour than caches, in order to reduce 

their leakage energy efficiently compromising 

neither VP accuracy nor the speedup provided. 

Results show average leakage energy reductions of 

52%, 70% and 80% for the Stride, DFCM and 

FCM value predictors of 20 KB respectively. 

1. INTRODUCTION

Energy consumption and power dissipation are 

one of the main goals when facing the design of a 

modern microprocessor in the high performance 

domain and, more crucially, in the embedded 

microprocessor domain. There are two sources of 

power dissipation, dynamic and static power 

(power dissipated regardless of activity). For 

several generations, static power (leakage) has 

been just a small fraction of the overall power 

consumption in microprocessors, and it was not 

considered a major concern [9]. However, as 

feature size shrinks to allow greater transistor 

density and higher performance, supply voltage 

must be lowered in order to restrain dynamic 

power consumption since it is proportional to the 

square of supply voltage. But using smaller 

geometries has the additional effect of increasing 

leakage loss exponentially, which leads static 

power to dominate the overall power consumption 

as process technology drops below 65 nm [5][9].  

 Several proposals can be found in the 

literature for managing leakage power, at both 

circuit and architecture level. Some proposals 

have focused on reducing the leakage power by 

switching off unused portions of large array 

structures, since they occupy a significant fraction 

of total die area, therefore, providing a great 

opportunity for leakage savings. Cache Decay [8] 

selectively turns individual data cache lines off if 

they have not been used for a long time, reducing 

leakage at the expense of losing the contents of 

the cache line. This non-state preserving 

technique has also been applied to branch 

predictors and BTB structures.  

 On the other hand, Value Prediction (VP) has 

been proposed as a very effective way of 

improving superscalar processor performance [6] 

[11] by overcoming data dependences which are 

one of the major performance limitations in 

current high performance processors. However, 

the use of value prediction structures despite the 

speedup provided (average 15% as reported in [2]) 

has not been widely spread, mainly due to 



complexity-delay issues. Note however that, 

unlike other prediction structures such as branch 

predictors where increasing access time and 

complexity can significantly reduce their benefits 

since the next fetched instruction is needed as 

early as possible, the access time in VPs is not so 

crucial. First, the predicted value is not needed 

until the instruction has reached its issue stage, 

and second, current high performance processors 

typically implement deeper pipelines (14 stages or 

more) which effectively hide the VP latency due 

to the increased front-end pipeline length. When 

an instruction reaches the end of the multi-stage 

front-end, the predicted value allows a speculative 

issue of the instruction if any register input is not 

ready, making traditional VP a very effective way 

of increasing processor performance.  

 However, the use of VP structures incurs in 

additional dynamic and static power dissipation. 

The continuous access to the prediction tables in 

almost each clock cycle may result in a thermal 

hot spot, increasing the leakage power of the 

structure, as in the case of caches and branch 

predictors. In modern high performance 

processors, due to high operating temperatures, it 

is necessary to fight to reduce leakage in every 

possible structure. Although the VP is a small 

structure compared to an L2 cache, if we let it 

overheat (likely, as it is accessed frequently and 

resides quite close to the core) without any 

precaution to regulate its leakage, the negative 

effects can be quite serious. Small hot structures 

can leak more than larger but cooler ones. We 

cannot afford not to attack leakage even at the 

smallest structures. 

 In this paper we propose Adaptive Value 

Prediction Decay (AVPD), a mechanism able to 

dramatically reduce the leakage energy of 

traditional Value Predictors with negligible impact 

on prediction accuracy nor processor performance 

by dynamically locating VP entries that have not 

been accessed for a noticeable amount of time. 

When those entries have been identified, AVPD

switches them off to prevent them from leaking, 

which makes Value Predictors complexity-

effective structures (due to the minimal extra 

hardware required) when used in medium and 

long pipelines as well as a power-performance 

efficient mechanism suitable for high performance 

processor designs. 

 Previous proposals that applied static decay 

approaches to both caches and branch predictors 

needed to carefully choose a decay interval, which 

could be even tuned per application, in order to 

minimize the performance impact of leakage 

power reduction. However, even obtaining the 

best decay interval per application (by profiling 

techniques) does not guarantee the best energy 

savings, since the static decay approach cannot 

capture variations within an application. This is 

particularly important in the case of prediction 

structures since correct and wrong predictions 

usually appear clustered.  

 The contribution of the present work is a 

novel adaptive decay scheme suited for the 

peculiarities of Value Predictors. The new AVPD

extends the static approach [3] and is needed for 

two reasons. First, adapting the decay interval 

individually for the very small VP entries (as 

opposed to cache lines) would represent 

significant overhead and thus we consider it 

impractical. Second, VPs are non-tagged 

structures, and, therefore, it is not feasible to track 

the ideal miss rate vs. the induced miss rate. 

AVPD uses a global decay interval, requiring no 

additional hardware per entry. To adapt this 

global decay interval without tags, AVPD uses a 

time-based approach to judge whether or not the 

current decay interval causes an inordinate 

number of entries to be prematurely shutoff.  

 The rest of the paper is organized as follows. 

Section 2 analyzes the utilization of the prediction 

tables. The proposed AVPD scheme is described 

in Section 3. Section 4 shows the experimental 

methodology and the leakage energy savings 

obtained. Section 5 provides some background. 

Finally, Section 6 summarizes the main 

conclusions of the work. 

2. Problem Overview 

2.1. Generational Behaviour in VPs 

Power dissipation of value prediction structures is 

divided into dynamic and static power, as cited 

before. The dynamic component strongly depends 

on the utilization of the VP tables. Values can be 

predicted at different demanding levels: the most 

aggressive utilization predicts the output value for 

all instructions traversing the pipeline. Other 

approaches restrict the use of the value predictor 

to just a fraction of instructions such as long-

latency instructions, load instructions that miss in 
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the L1 or L2 data cache, instructions that belong 

to a critical path, or just to predict the effective 

address for memory disambiguation. Therefore, 

restricting the VP utilization to just a fraction of 

selected instructions effectively reduces the 

dynamic power component of this structure. 

However, the static power component is still 

present, as the VP structure leaks regardless of 

utilization with increasing leakage loss for finer 

process technologies. For this reason, this work is 

focused on reducing the VP’s static component. 

 The authors in [8] showed that, very 

frequently, cache lines have an initial active 

period (known as live time) followed by a period 

of no utilization (known as dead time) before they 

are eventually evicted. They proposed to break the 

stream of references to a particular cache line into 

generations. Each generation lasts until the cache 

line is evicted and replaced by a new one. This 

generational behaviour also appears in the VP 

structure, although with some particularities: as 

value predictors are implemented as direct-

mapped tables with no tags and allowing 

destructive interferences, in our proposal, a 

generation ends when the VP entry is accessed by 

an instruction with a different PC. Its live time 

will be the period of accesses with the same PC 

and its dead time will be the period between the 

last access with an specific PC until an access 

with a different one. 

 To better understand the generational 

behaviour in value predictors, Figure 1 shows the 

utilization of the VP entries by measuring the 

fraction of time each entry remains in a dead

state1 for the whole SPECint2000 benchmark suite 

as a function of VP size. It can be observed that 

the three evaluated value predictors –Stride, FCM 

and DFCM– present a similar utilization 

regardless of their size. For sizes around 20 KB, 

the average fraction of dead time is 43% and for 

predictor sizes around 40 KB the average fraction 

of time the entries spend in their dead state is 

47%. Therefore, if we were able to take advantage 

of these dead times by detecting them and shutting 

the entries off, we could reduce the leakage 

energy of the VP structure by one half on average. 

3. Adaptive Value Prediction Decay 

(AVPD)

Dynamically applying decay techniques to Value 

Predictors is not a trivial fact as we need to detect 

those VP entries that have been unused for a 

significant amount of time and switch them off to 

prevent them from leaking. Adaptive Value 

Prediction Decay (AVPD) is a time-based 

mechanism that analyzes each VP entry 

individually to detect how often that entry is 

accessed. If an entry is unused for a long period of 

time, it probably means that it has entered in a 

dead state, and we should proceed to turn it off.  

 The problem is to dynamically determine how 

long a decay interval (the time we wait before 

shutting an entry off) must be. If we choose to 

turn VP entries off using too long decay intervals, 

the potential leakage energy savings will be 

reduced. Conversely, if the time-based policy 

chooses too short decay intervals, the VP accuracy 

might be reduced and, therefore, inducing a 

performance degradation. A positive effect of 

AVPD compared to the original cache decay

mechanism is that prematurely disabling a VP 

entry is not so harmful as disabling a cache line: 

losing the contents of the cache line always leads 

to an extra access to L2 cache or memory to 

retrieve the lost information incurring in extra 

execution cycles; however, losing the contents of 

a VP entry might result –or not– in a value 

misprediction on the next access to that entry but 

this is exactly what would happen if we had a real 

generational change (which is a very common 

                                                                         

1
This fraction of time can be measured as the ratio total 

dead time/(total live time+total dead time). 

Figure 1. Fraction of time spent in dead state 

(SpecInt2000). 

0,40

0,45

0,50

0,55

0,60

0,65

0,70

10 20 40 80 160

Predictor Size (KB)

d
e
a
d

_
ti

m
e
 /

 (
li

v
e
_

ti
m

e
+

d
e
a
d

_
ti

m
e
) STP FCM DFCM

XVIII Jornadas de Paralelismo, Zaragoza 2007 109



situation and one of the major limitations in 

traditional non-tagged VPs, where the huge 

number of destructive interferences dramatically 

shortens the generational replacement). 

Regarding the utilization of VPs, throughout 

the paper we are predicting the output values for 

all instructions traversing the pipeline. However, 

it is important to note that this aggressive 

prediction scheme does not benefit a decay 

mechanism, either static or adaptive, since they 

are based on locating unused predictor entries. 

The more demanding use of the VP structure the 

less opportunities to detect unused VP entries and 

the less leakage energy savings obtained from a 

decaying mechanism.  

 The best decay interval is dependant on the 

application running in the processor or even on 

the section of the code being executed. During 

program execution there are sections of code 

where the VP usually hits (or fails) its predictions 

(correct and wrong predictions appear clustered 

depending on the program phase). In other 

program sections the number of VP entries being 

accessed is low, or we can even identify 

instructions whose optimal decay interval is 

different from others. Therefore, if we are able to 

dynamically adapt the decay interval to the 

program needs, higher leakage energy savings 

could be obtained compared to statically setting it.  

 The implementation of the decay interval is 

done by means of a hierarchical counter composed 

of a global counter and a two-bit saturated gray-

code counter for each individual value predictor 

entry2 (local counters). In order to make the 

AVPD mechanism easier to implement we will use 

power-of-two decay intervals. VP entries are shut 

off, preventing them from leaking, by using gated-

VDD transistors [10]. These “sleep” transistors are 

inserted between the ground (or supply) and the 

cells of each VP entry, which reduces the leakage 

in several orders of magnitude and it can be 

considered negligible. An alternative to using 

gated-VDD transistors consists of using quasi-static 

4T transistors, although similar leakage savings 

would be expected. 

 The AVPD mechanism considers that each VP 

entry can be in one of the following three states, 

as shown in Figure 2: enabled (both data and the 

local counter are enabled), partially disabled (data 

is shut off but the local counter is enabled) or 

disabled (both data and the local counter are shut 

off). AVPD uses two additional global counters 

that account for: a) the number of partially 

disabled entries (entries that change from the 

enable state to the partially disabled state) within 

the previous decay interval; and b) the number of 

re-enabled entries (entries that change from the 

partially disabled state to the enabled state) within 

the current decay interval. After a number of 

cycles equal to the average live time3, a re-

activation ratio is calculated as the number re-

enabled entries over the number of partially 

disabled entries.  

 In addition, AVPD uses two pre-defined 

threshold values (increasing threshold and

decreasing threshold) in order to determine 

whether the length of the current decay interval is 

correct, that is, if the current decay interval makes 

VP entries to decay during their live time

(prematurely) or during their dead time.

Therefore, if the re-activation ratio is higher than 

the increasing threshold, the current decay 

window is too short and it is doubled since the are 

many entries being disabled prematurely. On the 

other hand, if the re-activation ratio is lower than 

the decreasing threshold, the current decay 

                                                                         

2
Using a hierarchical counter is more power-efficient 

since it allows accessing the local counters at a much 

coarser level.
3

As cited in section 2.2, the static decay experiments 

showed that the average live time is around 400 cycles 

for the three evaluated VPs. 
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window is too long and it is halved since we are 

shutting entries off too late, loosing opportunities 

to reduce the VP leakage.  

 The AVPD mechanism works as follows (see 

Figure 2): each cycle the global decay counter is 

incremented by one and, when it overflows, the 

local counters of all VP entries in either the 

enabled or partially disabled state are 

incremented. However, an access to any VP entry 

will result on an immediate reset of its local 

counter. In addition: 

x For those entries in the enabled state (both VP 

data and the local counter are enabled): if the 

entry remains unused for a long time, its local 

counter will eventually overflow and the entry 

will change to the partially disabled state. The 

number of partially disabled entries is 

incremented. 

x For those entries in the partially disabled state 

(VP data is shut off whereas the local counter 

is enabled): if the entry is not accessed within 

the average live time4, it will be changed to 

the disabled state and the local counter will be 

also shut off. However, an access to a 

partially disabled entry will change it to the 

enabled state, increasing the number of re-

enabled entries. 

x For those entries in the disabled state (both 

VP data and the local counter are shut off): an 

access to the entry will change it to the 

enabled state.  

 Regarding the pre-defined values used for the 

increasing and decreasing thresholds, it is 

important to note that setting the decreasing 

threshold to small values will make AVPD sure 

that there are few re-enabled entries before 

lowering the decay interval, resulting in a more 

conservative policy. On the other hand, setting the 

decreasing threshold to high values will make 

AVPD to decrease the decay interval more 

frequently, resulting in a more aggressive policy.  

Finally, the power overhead associated to the 

AVPD mechanism can be divided into three main 

components. The first component is associated to 

the dynamic and static power derived from the 

two-bit local counters inserted into every entry of 

the predictor (same overhead as for the static 

decay scheme). The second component comes 

from the three global counters: one is part of the 

two-level decay interval counter (also appears in 

the static decay scheme) and the other two 

counters are particular of the adaptive decay 

scheme. The third component overhead, is derived 

from the induced VP misses (when a VP entry is 

prematurely disabled) that increase program 

execution time. These extra cycles that the 

program is running will also lead to additional 

static and dynamic power dissipation. Note that 

this third component (also appears in the static 

decay scheme) is highly destructive since each 

extra cycle accounts for the overall processor 

dynamic and static power and can easily cancel 

whatever leakage energy savings provided by 

AVPD.

4. Experimental Results 

4.1. Simulation Methodology 

To evaluate the energy-efficiency of the AVPD,

we have used the SPECint2000 benchmark suite. 

All benchmarks were compiled with maximum 

optimizations (-O4 -fast) and they were run using 

a modified version of HotLeakage power-

performance simulator that includes the dynamic 

and static power model for the evaluated Value 

Predictors (Stride, FCM and DFCM) as well as 

the power overhead associated to AVPD. The VP 

access latency is 5 cycles.  

 Due to the large number of dynamic 

instructions in some benchmarks, we reduced the 

input data set while keeping a complete execution. 

Table 1 shows the configuration of the simulated 

architecture. Leakage related parameters have 

Table 1. Configuration of the simulated processor. 

Processor Core 

Process Technology: 

Frequency: 

Instruction Window: 

Decode Width: 

Issue Width: 

Functional Units: 

Pipeline: 

70 nanometers 

5600 Mhz 

128 RUU, 64 LSQ 

8 inst/cycle 

8 inst/cycle 

8 Int Alu; 2 Int Mult 

8 FP Alu; 2 FP Mult 

2 Memports 

22 stages 

Memory Hierarchy 

L1 Icache: 

L1 Dcache: 

L2 cache: 

64KB, 2-way  

64KB, 2-way 

2MB, 4-way, unified  
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been taken from the Alpha 21264 processor, 

provided with the HotLeakage simulator suite, and 

using a process technology of 70 nanometers. 

4.2. Leakage-efficiency of AVPD Mechanism 

This section presents the leakage-efficiency 

evaluation of the proposed AVPD mechanism for 

the Stride, FCM and DFCM predictors. Each 

figure shows the VP leakage energy savings4

respect to not applying a decay scheme for some 

representative configurations of the adaptive 

mechanism as well as the best static decay 

configuration (512-cycle decay interval) for 

comparison purposes.  

 For the evaluation of AVPD, we carried out a 

comprehensive set of experiments for many 

configurations defined by using different 

decreasing and increasing threshold values. In 

this work we only present the most representative 

configurations:

x Configuration 00/100 (decreasing threshold 

set to 0% / increasing threshold set to 100%): 

this is the most conservative policy since 

AVPD will try to decrease the decay interval 

only if none of the entries are re-activated; and 

it will only try to increase the decay interval 

when all the entries are re-activated. It works 

pretty well for all studied predictors as it does 

not take any risks when changing the decay 

interval.  

x Configuration 50/50: this is the most 

aggressive configuration as it keeps changing 

the decay interval continuously, increasing or 

decreasing the decay interval according to the 

re-activation ratio. This configuration is so 

aggressive that the constant changes on the 

decay interval neutralize, for many 

benchmarks, the VP energy savings with the 

overhead of the extra execution cycles. 

x Configurations 40/60 and 70/100: they are the 

best ones we have found for the different 

predictors. The 40/60 is quite aggressive but 

works well with the Stride predictor, as it 

balances long decay intervals with short ones. 

                                                                         

4
Total processor leakage-energy results are not 

presented due to HotLeakage limitations that only 

provides static-power models for regular array structures 

(caches, predictors and register file).
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Figure 5. FCM leakage energy savings (SPECint2000). 
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The 70/100 configuration has the trend to 

shorten the decay interval whenever is 

possible, only raising it when all decayed 

entries are re-activated.  

Figure 3 shows the average leakage energy 

savings for the DFCM predictor and the cited 

adaptive configurations as well as for the best 

static decay interval (512 cycles). For this 

predictor, the best adaptive configuration is 

70/100 that surpasses the best static decay scheme 

for all evaluated predictor sizes. For an average 

size of 10.5 KB, AVPD obtains 64% leakage 

energy savings versus the 55% of the static 

scheme. For the smaller size of 5 KB, the 

difference between the adaptive and static 

schemes is even more evident: AVPD provides

additional leakage energy savings of 14% respect 

to the static scheme (AVPD obtains 55% and the 

static scheme just 41% of leakage energy 

savings). It can be observed that, as size grows, 

the differences between the adaptive and static 

schemes disappear, both obtaining 80% leakage 

energy savings for a size of 87 KB. In such big 

size predictors, there is no need for an adaptive 

scheme as there are very low generational 

changes, and they can be easily identified by the 

static scheme. The 70/100 configuration is the 

best one we have found since its trend is to reduce 

the decay interval towards its lower limit of 256 

cycles. In general, we have seen that whatever 

configuration that tends to shorten the decay 

interval will perform well with DFCM, but 

constant changes of the decay interval, like in the 

50/50 configuration, will result in a loose of net 

leakage energy savings. 

 Figure 4 shows the average leakage energy 

savings for the STP predictor. As cited in section 

3, the AVPD mechanism tries to decrease the 

decay interval in order to reduce the leakage 

energy. The STP predictor is especially 

susceptible to these trials of reducing the decay 

interval since a big interval reduction degrades the 

STP accuracy enough to make the power overhead 

due to the induced extra cycles equal to the power 

savings provided by AVPD. This results in the 

adaptive scheme to behave similarly to the static 

scheme. The STP predictor works better with 

configurations that change the decay interval 

quickly, like 50/50 or 40/60, because 

configurations with a trend to shorten the decay 

interval (like 70/100) decrease the predictor’s 

accuracy too much, making the overhead even 

greater than the provided energy savings.  

 Figure 5 shows the average leakage energy 

savings for the FCM predictor. This predictor 

behaves very similarly to DFCM, with the same 

best configuration (70/100), but obtaining even 

greater leakage energy savings. In addition, the 

differences compared to the best static decay 

scheme are also higher. For a predictor size of 4.6 

KB, the static approach obtains 50% leakage 

energy savings whereas the adaptive scheme 

obtains 74% (an additional 24%). For greater 

sizes, the differences between the static and 

adaptive schemes keep lowering until they 

converge to the same leakage energy savings for 

very big predictor sizes (close to 90% leakage 

energy savings for a size of 78 KB). If we focus 

on moderated FCM sizes (around 10 KB), the best 

static scheme gets 64% leakage energy savings 

whereas AVPD obtains 77% (13% of additional 

savings). Note that FCM, like DFCM, performs 

well with any configuration that tends to decrease 

the decay interval, due to the negligible impact on 

its accuracy. 

5. Related Work 

In order to reduce leakage power in processors, 

many proposals have focused on reducing the 

leakage power by switching off unused portions of 

large array structures. These techniques have been 

categorized into state-preserving and non-state

preserving [1][7][12]. 

 Studies by Powell et al. [10] proposed gated-

VDD as a technique to limit static leakage power 

by banking and providing “sleep” transistors 

which dramatically reduce leakage current by 

gating off the supply voltage. This technique, 

known as decay, reduces the leakage power 

drastically at the expense of losing the cell’s 

contents, being necessary to apply it very 

carefully since the loose of information can result 

in an increase of the dynamic power to retrieve it 

again. Kaxiras et al. [8] successfully applied 

decay techniques to individual cache lines in order 

to reduce leakage in cache structures (67% of 

static power consumption can be saved with 

minimal performance loss). This technique has 

also been applied to conditional branch predictors 

and BTB structures. On the other hand, drowsy

techniques try to reduce leakage without losing 
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the cell’s information. Drowsy caches [4] use 

different supply voltages according to the state of 

each cache line. The lines in drowsy mode use a 

low-voltage level, retaining the data, while 

requiring a high voltage level to access it again.  

 Li et al. [7] evaluated the use of state and non-

state preserving techniques in caches. The authors 

showed that for a fast L2 cache decay techniques 

are superior in terms of both performance loss and 

energy savings to drowsy ones. 

6. Conclusions 

This paper proposes Adaptive Value Prediction 

Decay (AVPD), a mechanism able to reduce the 

leakage energy of traditional Value Predictors 

with negligible impact on prediction accuracy nor 

processor performance by dynamically locating 

VP entries that have not been accessed for a 

noticeable amount of time. Once those unused 

entries have been located, AVPD switches them 

off to prevent them from leaking. The proposed 

AVPD extends the static decay approach in order 

to better exploit the program behaviour as well as 

the differences between sections of code where 

the VP can be under-utilized.  

 The AVPD mechanism requires just slight 

modifications, with virtually no extra hardware 

overhead compared to the static decay scheme 

(just two additional global counters). In addition, 

in our scheme, the aggressiveness of the 

adaptation is easily controlled by two parameters 

(increasing and decreasing thresholds).

 The average leakage energy savings for the 

best known configuration of the adaptive 

mechanism for a moderated predictor size of 

around 10 KB are 32%, 64% and 77% for the 

three evaluated predictors, Stride, DFCM and 

FCM, respectively. Compared to the best static 

decay scheme, AVPD provides additional average 

leakage energy savings (e.g., 14% for a 5 KB 

DFCM and 24% for a 5 KB FCM). 
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