
An Adaptive Approach for Reducing Leakage Energy

Consumption in Value Predictors

Juan M. Cebrián1, Juan L. Aragón1, José M. García1 and Stefanos Kaxiras2

1Dept. of Computer Engineering

University of Murcia,

Murcia, 30100, Spain

+34 968 367656

{jcebrian,jlaragon,jmgarcia}@ditec.um.es

2Dept. of Electrical and Computer Engineering

University of Patras

Rio, 26500 Patras, Greece

+30 2610 996441

kaxiras@ee.upatras.gr

Abstract

Energy-efficient microprocessor designs are one of

the major concerns in both high performance and

embedded processor domains. Furthermore, as

process technology advances toward deep

submicron, static power dissipation becomes a new

challenge to address. Value prediction emerged as a

effective way of increasing processor performance

by overcoming data dependences. The more

accurate the predictor is the more performance is

obtained, at the expense of becoming a source of

power consumption and a thermal hot spot.

In this paper we propose the design of leakage-

efficient value predictors by applying adaptive

decay techniques in order to disable unused entries

in the prediction tables of value predictors (Stride,

DFCM and FCM) studying the tradeoffs for these

prediction structures, that exhibit different pattern

access behaviour than caches, in order to reduce

their leakage energy efficiently compromising

neither VP accuracy nor the speedup provided.

Results show average leakage energy reductions of

52%, 70% and 80% for the Stride, DFCM and

FCM value predictors of 20 KB respectively.

1. INTRODUCTION

Energy consumption and power dissipation are

one of the main goals when facing the design of a

modern microprocessor in the high performance

domain and, more crucially, in the embedded

microprocessor domain. There are two sources of

power dissipation, dynamic and static power

(power dissipated regardless of activity). For

several generations, static power (leakage) has

been just a small fraction of the overall power

consumption in microprocessors, and it was not

considered a major concern [9]. However, as

feature size shrinks to allow greater transistor

density and higher performance, supply voltage

must be lowered in order to restrain dynamic

power consumption since it is proportional to the

square of supply voltage. But using smaller

geometries has the additional effect of increasing

leakage loss exponentially, which leads static

power to dominate the overall power consumption

as process technology drops below 65 nm [5][9].

 Several proposals can be found in the

literature for managing leakage power, at both

circuit and architecture level. Some proposals

have focused on reducing the leakage power by

switching off unused portions of large array

structures, since they occupy a significant fraction

of total die area, therefore, providing a great

opportunity for leakage savings. Cache Decay [8]

selectively turns individual data cache lines off if

they have not been used for a long time, reducing

leakage at the expense of losing the contents of

the cache line. This non-state preserving

technique has also been applied to branch

predictors and BTB structures.

 On the other hand, Value Prediction (VP) has

been proposed as a very effective way of

improving superscalar processor performance [6]

[11] by overcoming data dependences which are

one of the major performance limitations in

current high performance processors. However,

the use of value prediction structures despite the

speedup provided (average 15% as reported in [2])

has not been widely spread, mainly due to

complexity-delay issues. Note however that,

unlike other prediction structures such as branch

predictors where increasing access time and

complexity can significantly reduce their benefits

since the next fetched instruction is needed as

early as possible, the access time in VPs is not so

crucial. First, the predicted value is not needed

until the instruction has reached its issue stage,

and second, current high performance processors

typically implement deeper pipelines (14 stages or

more) which effectively hide the VP latency due

to the increased front-end pipeline length. When

an instruction reaches the end of the multi-stage

front-end, the predicted value allows a speculative

issue of the instruction if any register input is not

ready, making traditional VP a very effective way

of increasing processor performance.

 However, the use of VP structures incurs in

additional dynamic and static power dissipation.

The continuous access to the prediction tables in

almost each clock cycle may result in a thermal

hot spot, increasing the leakage power of the

structure, as in the case of caches and branch

predictors. In modern high performance

processors, due to high operating temperatures, it

is necessary to fight to reduce leakage in every

possible structure. Although the VP is a small

structure compared to an L2 cache, if we let it

overheat (likely, as it is accessed frequently and

resides quite close to the core) without any

precaution to regulate its leakage, the negative

effects can be quite serious. Small hot structures

can leak more than larger but cooler ones. We

cannot afford not to attack leakage even at the

smallest structures.

 In this paper we propose Adaptive Value

Prediction Decay (AVPD), a mechanism able to

dramatically reduce the leakage energy of

traditional Value Predictors with negligible impact

on prediction accuracy nor processor performance

by dynamically locating VP entries that have not

been accessed for a noticeable amount of time.

When those entries have been identified, AVPD

switches them off to prevent them from leaking,

which makes Value Predictors complexity-

effective structures (due to the minimal extra

hardware required) when used in medium and

long pipelines as well as a power-performance

efficient mechanism suitable for high performance

processor designs.

 Previous proposals that applied static decay

approaches to both caches and branch predictors

needed to carefully choose a decay interval, which

could be even tuned per application, in order to

minimize the performance impact of leakage

power reduction. However, even obtaining the

best decay interval per application (by profiling

techniques) does not guarantee the best energy

savings, since the static decay approach cannot

capture variations within an application. This is

particularly important in the case of prediction

structures since correct and wrong predictions

usually appear clustered.

 The contribution of the present work is a

novel adaptive decay scheme suited for the

peculiarities of Value Predictors. The new AVPD

extends the static approach [3] and is needed for

two reasons. First, adapting the decay interval

individually for the very small VP entries (as

opposed to cache lines) would represent

significant overhead and thus we consider it

impractical. Second, VPs are non-tagged

structures, and, therefore, it is not feasible to track

the ideal miss rate vs. the induced miss rate.

AVPD uses a global decay interval, requiring no

additional hardware per entry. To adapt this

global decay interval without tags, AVPD uses a

time-based approach to judge whether or not the

current decay interval causes an inordinate

number of entries to be prematurely shutoff.

 The rest of the paper is organized as follows.

Section 2 analyzes the utilization of the prediction

tables. The proposed AVPD scheme is described

in Section 3. Section 4 shows the experimental

methodology and the leakage energy savings

obtained. Section 5 provides some background.

Finally, Section 6 summarizes the main

conclusions of the work.

2. Problem Overview

2.1. Generational Behaviour in VPs

Power dissipation of value prediction structures is

divided into dynamic and static power, as cited

before. The dynamic component strongly depends

on the utilization of the VP tables. Values can be

predicted at different demanding levels: the most

aggressive utilization predicts the output value for

all instructions traversing the pipeline. Other

approaches restrict the use of the value predictor

to just a fraction of instructions such as long-

latency instructions, load instructions that miss in

108 Arquitectura del Procesador, Multi-núcleo y Multiprocesadores

the L1 or L2 data cache, instructions that belong

to a critical path, or just to predict the effective

address for memory disambiguation. Therefore,

restricting the VP utilization to just a fraction of

selected instructions effectively reduces the

dynamic power component of this structure.

However, the static power component is still

present, as the VP structure leaks regardless of

utilization with increasing leakage loss for finer

process technologies. For this reason, this work is

focused on reducing the VP’s static component.

 The authors in [8] showed that, very

frequently, cache lines have an initial active

period (known as live time) followed by a period

of no utilization (known as dead time) before they

are eventually evicted. They proposed to break the

stream of references to a particular cache line into

generations. Each generation lasts until the cache

line is evicted and replaced by a new one. This

generational behaviour also appears in the VP

structure, although with some particularities: as

value predictors are implemented as direct-

mapped tables with no tags and allowing

destructive interferences, in our proposal, a

generation ends when the VP entry is accessed by

an instruction with a different PC. Its live time

will be the period of accesses with the same PC

and its dead time will be the period between the

last access with an specific PC until an access

with a different one.

 To better understand the generational

behaviour in value predictors, Figure 1 shows the

utilization of the VP entries by measuring the

fraction of time each entry remains in a dead

state1 for the whole SPECint2000 benchmark suite

as a function of VP size. It can be observed that

the three evaluated value predictors –Stride, FCM

and DFCM– present a similar utilization

regardless of their size. For sizes around 20 KB,

the average fraction of dead time is 43% and for

predictor sizes around 40 KB the average fraction

of time the entries spend in their dead state is

47%. Therefore, if we were able to take advantage

of these dead times by detecting them and shutting

the entries off, we could reduce the leakage

energy of the VP structure by one half on average.

3. Adaptive Value Prediction Decay

(AVPD)

Dynamically applying decay techniques to Value

Predictors is not a trivial fact as we need to detect

those VP entries that have been unused for a

significant amount of time and switch them off to

prevent them from leaking. Adaptive Value

Prediction Decay (AVPD) is a time-based

mechanism that analyzes each VP entry

individually to detect how often that entry is

accessed. If an entry is unused for a long period of

time, it probably means that it has entered in a

dead state, and we should proceed to turn it off.

 The problem is to dynamically determine how

long a decay interval (the time we wait before

shutting an entry off) must be. If we choose to

turn VP entries off using too long decay intervals,

the potential leakage energy savings will be

reduced. Conversely, if the time-based policy

chooses too short decay intervals, the VP accuracy

might be reduced and, therefore, inducing a

performance degradation. A positive effect of

AVPD compared to the original cache decay

mechanism is that prematurely disabling a VP

entry is not so harmful as disabling a cache line:

losing the contents of the cache line always leads

to an extra access to L2 cache or memory to

retrieve the lost information incurring in extra

execution cycles; however, losing the contents of

a VP entry might result –or not– in a value

misprediction on the next access to that entry but

this is exactly what would happen if we had a real

generational change (which is a very common

1
This fraction of time can be measured as the ratio total

dead time/(total live time+total dead time).

Figure 1. Fraction of time spent in dead state

(SpecInt2000).

0,40

0,45

0,50

0,55

0,60

0,65

0,70

10 20 40 80 160

Predictor Size (KB)

d
e
a
d

_
ti

m
e
 /

 (
li

v
e
_

ti
m

e
+

d
e
a
d

_
ti

m
e
) STP FCM DFCM

XVIII Jornadas de Paralelismo, Zaragoza 2007 109

situation and one of the major limitations in

traditional non-tagged VPs, where the huge

number of destructive interferences dramatically

shortens the generational replacement).

Regarding the utilization of VPs, throughout

the paper we are predicting the output values for

all instructions traversing the pipeline. However,

it is important to note that this aggressive

prediction scheme does not benefit a decay

mechanism, either static or adaptive, since they

are based on locating unused predictor entries.

The more demanding use of the VP structure the

less opportunities to detect unused VP entries and

the less leakage energy savings obtained from a

decaying mechanism.

 The best decay interval is dependant on the

application running in the processor or even on

the section of the code being executed. During

program execution there are sections of code

where the VP usually hits (or fails) its predictions

(correct and wrong predictions appear clustered

depending on the program phase). In other

program sections the number of VP entries being

accessed is low, or we can even identify

instructions whose optimal decay interval is

different from others. Therefore, if we are able to

dynamically adapt the decay interval to the

program needs, higher leakage energy savings

could be obtained compared to statically setting it.

 The implementation of the decay interval is

done by means of a hierarchical counter composed

of a global counter and a two-bit saturated gray-

code counter for each individual value predictor

entry2 (local counters). In order to make the

AVPD mechanism easier to implement we will use

power-of-two decay intervals. VP entries are shut

off, preventing them from leaking, by using gated-

VDD transistors [10]. These “sleep” transistors are

inserted between the ground (or supply) and the

cells of each VP entry, which reduces the leakage

in several orders of magnitude and it can be

considered negligible. An alternative to using

gated-VDD transistors consists of using quasi-static

4T transistors, although similar leakage savings

would be expected.

 The AVPD mechanism considers that each VP

entry can be in one of the following three states,

as shown in Figure 2: enabled (both data and the

local counter are enabled), partially disabled (data

is shut off but the local counter is enabled) or

disabled (both data and the local counter are shut

off). AVPD uses two additional global counters

that account for: a) the number of partially

disabled entries (entries that change from the

enable state to the partially disabled state) within

the previous decay interval; and b) the number of

re-enabled entries (entries that change from the

partially disabled state to the enabled state) within

the current decay interval. After a number of

cycles equal to the average live time3, a re-

activation ratio is calculated as the number re-

enabled entries over the number of partially

disabled entries.

 In addition, AVPD uses two pre-defined

threshold values (increasing threshold and

decreasing threshold) in order to determine

whether the length of the current decay interval is

correct, that is, if the current decay interval makes

VP entries to decay during their live time

(prematurely) or during their dead time.

Therefore, if the re-activation ratio is higher than

the increasing threshold, the current decay

window is too short and it is doubled since the are

many entries being disabled prematurely. On the

other hand, if the re-activation ratio is lower than

the decreasing threshold, the current decay

2
Using a hierarchical counter is more power-efficient

since it allows accessing the local counters at a much

coarser level.
3

As cited in section 2.2, the static decay experiments

showed that the average live time is around 400 cycles

for the three evaluated VPs.

increment

local counter

re-enabled entries

counter

global decay

counter

partially disabled
entries counter

enabled

state

VP data

on

local counter

on

overflow

signal

partially

disabled state

local counter

on

VP data

off

if local counter

overflows

increment

overflow

if the entry is

accessed

reset

resetreset

disabled

state

VP data

off

local counter

off

if average live

time has elapsedif the entry

is accessed

reset

increment x

x

x

x

Figure 2. AVPD mechanism.

110 Arquitectura del Procesador, Multi-núcleo y Multiprocesadores

window is too long and it is halved since we are

shutting entries off too late, loosing opportunities

to reduce the VP leakage.

 The AVPD mechanism works as follows (see

Figure 2): each cycle the global decay counter is

incremented by one and, when it overflows, the

local counters of all VP entries in either the

enabled or partially disabled state are

incremented. However, an access to any VP entry

will result on an immediate reset of its local

counter. In addition:

x For those entries in the enabled state (both VP

data and the local counter are enabled): if the

entry remains unused for a long time, its local

counter will eventually overflow and the entry

will change to the partially disabled state. The

number of partially disabled entries is

incremented.

x For those entries in the partially disabled state

(VP data is shut off whereas the local counter

is enabled): if the entry is not accessed within

the average live time4, it will be changed to

the disabled state and the local counter will be

also shut off. However, an access to a

partially disabled entry will change it to the

enabled state, increasing the number of re-

enabled entries.

x For those entries in the disabled state (both

VP data and the local counter are shut off): an

access to the entry will change it to the

enabled state.

 Regarding the pre-defined values used for the

increasing and decreasing thresholds, it is

important to note that setting the decreasing

threshold to small values will make AVPD sure

that there are few re-enabled entries before

lowering the decay interval, resulting in a more

conservative policy. On the other hand, setting the

decreasing threshold to high values will make

AVPD to decrease the decay interval more

frequently, resulting in a more aggressive policy.

Finally, the power overhead associated to the

AVPD mechanism can be divided into three main

components. The first component is associated to

the dynamic and static power derived from the

two-bit local counters inserted into every entry of

the predictor (same overhead as for the static

decay scheme). The second component comes

from the three global counters: one is part of the

two-level decay interval counter (also appears in

the static decay scheme) and the other two

counters are particular of the adaptive decay

scheme. The third component overhead, is derived

from the induced VP misses (when a VP entry is

prematurely disabled) that increase program

execution time. These extra cycles that the

program is running will also lead to additional

static and dynamic power dissipation. Note that

this third component (also appears in the static

decay scheme) is highly destructive since each

extra cycle accounts for the overall processor

dynamic and static power and can easily cancel

whatever leakage energy savings provided by

AVPD.

4. Experimental Results

4.1. Simulation Methodology

To evaluate the energy-efficiency of the AVPD,

we have used the SPECint2000 benchmark suite.

All benchmarks were compiled with maximum

optimizations (-O4 -fast) and they were run using

a modified version of HotLeakage power-

performance simulator that includes the dynamic

and static power model for the evaluated Value

Predictors (Stride, FCM and DFCM) as well as

the power overhead associated to AVPD. The VP

access latency is 5 cycles.

 Due to the large number of dynamic

instructions in some benchmarks, we reduced the

input data set while keeping a complete execution.

Table 1 shows the configuration of the simulated

architecture. Leakage related parameters have

Table 1. Configuration of the simulated processor.

Processor Core

Process Technology:

Frequency:

Instruction Window:

Decode Width:

Issue Width:

Functional Units:

Pipeline:

70 nanometers

5600 Mhz

128 RUU, 64 LSQ

8 inst/cycle

8 inst/cycle

8 Int Alu; 2 Int Mult

8 FP Alu; 2 FP Mult

2 Memports

22 stages

Memory Hierarchy

L1 Icache:

L1 Dcache:

L2 cache:

64KB, 2-way

64KB, 2-way

2MB, 4-way, unified

XVIII Jornadas de Paralelismo, Zaragoza 2007 111

been taken from the Alpha 21264 processor,

provided with the HotLeakage simulator suite, and

using a process technology of 70 nanometers.

4.2. Leakage-efficiency of AVPD Mechanism

This section presents the leakage-efficiency

evaluation of the proposed AVPD mechanism for

the Stride, FCM and DFCM predictors. Each

figure shows the VP leakage energy savings4

respect to not applying a decay scheme for some

representative configurations of the adaptive

mechanism as well as the best static decay

configuration (512-cycle decay interval) for

comparison purposes.

 For the evaluation of AVPD, we carried out a

comprehensive set of experiments for many

configurations defined by using different

decreasing and increasing threshold values. In

this work we only present the most representative

configurations:

x Configuration 00/100 (decreasing threshold

set to 0% / increasing threshold set to 100%):

this is the most conservative policy since

AVPD will try to decrease the decay interval

only if none of the entries are re-activated; and

it will only try to increase the decay interval

when all the entries are re-activated. It works

pretty well for all studied predictors as it does

not take any risks when changing the decay

interval.

x Configuration 50/50: this is the most

aggressive configuration as it keeps changing

the decay interval continuously, increasing or

decreasing the decay interval according to the

re-activation ratio. This configuration is so

aggressive that the constant changes on the

decay interval neutralize, for many

benchmarks, the VP energy savings with the

overhead of the extra execution cycles.

x Configurations 40/60 and 70/100: they are the

best ones we have found for the different

predictors. The 40/60 is quite aggressive but

works well with the Stride predictor, as it

balances long decay intervals with short ones.

4
Total processor leakage-energy results are not

presented due to HotLeakage limitations that only

provides static-power models for regular array structures

(caches, predictors and register file).

15

25

35

45

55

65

75

85

95

2.5KB 5.18KB 10,5KB 21,25KB 43KB 87KB

Predictor Size (KB)
V

P
 L

e
a

k
a

g
e

 E
n

e
rg

y
 S

a
v

in
g

s
(%

)

Best Static AVPD 70/100 AVPD 00/100
AVPD 50/50 AVPD 40/60

Figure 3. DFCM leakage energy savings (SPECint2000).

Figure 5. FCM leakage energy savings (SPECint2000).

15

25

35

45

55

65

75

85

95

2.3KB 4.6KB 9.5KB 19.25KB 39KB 78KB

Predictor Size (KB)

V
P

 L
e

a
k

a
g

e
 E

n
e

rg
y

 S
a

v
in

g
s

(%
)

Best Static AVPD 70/100 AVPD 00/100
AVPD 50/50 AVPD 40/60

15

25

35

45

55

65

75

85

95

4,6KB 9,25KB 18,5KB 37KB 74KB

Predictor Size (KB)

V
P

 L
e

a
k

a
g

e
 E

n
e

rg
y

 S
a

v
in

g
s

(%
)

Best Static AVPD 70/100 AVPD 00/100
AVPD 50/50 AVPD 40/60

Figure 4. STP leakage energy savings (SPECint2000).

112 Arquitectura del Procesador, Multi-núcleo y Multiprocesadores

The 70/100 configuration has the trend to

shorten the decay interval whenever is

possible, only raising it when all decayed

entries are re-activated.

Figure 3 shows the average leakage energy

savings for the DFCM predictor and the cited

adaptive configurations as well as for the best

static decay interval (512 cycles). For this

predictor, the best adaptive configuration is

70/100 that surpasses the best static decay scheme

for all evaluated predictor sizes. For an average

size of 10.5 KB, AVPD obtains 64% leakage

energy savings versus the 55% of the static

scheme. For the smaller size of 5 KB, the

difference between the adaptive and static

schemes is even more evident: AVPD provides

additional leakage energy savings of 14% respect

to the static scheme (AVPD obtains 55% and the

static scheme just 41% of leakage energy

savings). It can be observed that, as size grows,

the differences between the adaptive and static

schemes disappear, both obtaining 80% leakage

energy savings for a size of 87 KB. In such big

size predictors, there is no need for an adaptive

scheme as there are very low generational

changes, and they can be easily identified by the

static scheme. The 70/100 configuration is the

best one we have found since its trend is to reduce

the decay interval towards its lower limit of 256

cycles. In general, we have seen that whatever

configuration that tends to shorten the decay

interval will perform well with DFCM, but

constant changes of the decay interval, like in the

50/50 configuration, will result in a loose of net

leakage energy savings.

 Figure 4 shows the average leakage energy

savings for the STP predictor. As cited in section

3, the AVPD mechanism tries to decrease the

decay interval in order to reduce the leakage

energy. The STP predictor is especially

susceptible to these trials of reducing the decay

interval since a big interval reduction degrades the

STP accuracy enough to make the power overhead

due to the induced extra cycles equal to the power

savings provided by AVPD. This results in the

adaptive scheme to behave similarly to the static

scheme. The STP predictor works better with

configurations that change the decay interval

quickly, like 50/50 or 40/60, because

configurations with a trend to shorten the decay

interval (like 70/100) decrease the predictor’s

accuracy too much, making the overhead even

greater than the provided energy savings.

 Figure 5 shows the average leakage energy

savings for the FCM predictor. This predictor

behaves very similarly to DFCM, with the same

best configuration (70/100), but obtaining even

greater leakage energy savings. In addition, the

differences compared to the best static decay

scheme are also higher. For a predictor size of 4.6

KB, the static approach obtains 50% leakage

energy savings whereas the adaptive scheme

obtains 74% (an additional 24%). For greater

sizes, the differences between the static and

adaptive schemes keep lowering until they

converge to the same leakage energy savings for

very big predictor sizes (close to 90% leakage

energy savings for a size of 78 KB). If we focus

on moderated FCM sizes (around 10 KB), the best

static scheme gets 64% leakage energy savings

whereas AVPD obtains 77% (13% of additional

savings). Note that FCM, like DFCM, performs

well with any configuration that tends to decrease

the decay interval, due to the negligible impact on

its accuracy.

5. Related Work

In order to reduce leakage power in processors,

many proposals have focused on reducing the

leakage power by switching off unused portions of

large array structures. These techniques have been

categorized into state-preserving and non-state

preserving [1][7][12].

 Studies by Powell et al. [10] proposed gated-

VDD as a technique to limit static leakage power

by banking and providing “sleep” transistors

which dramatically reduce leakage current by

gating off the supply voltage. This technique,

known as decay, reduces the leakage power

drastically at the expense of losing the cell’s

contents, being necessary to apply it very

carefully since the loose of information can result

in an increase of the dynamic power to retrieve it

again. Kaxiras et al. [8] successfully applied

decay techniques to individual cache lines in order

to reduce leakage in cache structures (67% of

static power consumption can be saved with

minimal performance loss). This technique has

also been applied to conditional branch predictors

and BTB structures. On the other hand, drowsy

techniques try to reduce leakage without losing

XVIII Jornadas de Paralelismo, Zaragoza 2007 113

the cell’s information. Drowsy caches [4] use

different supply voltages according to the state of

each cache line. The lines in drowsy mode use a

low-voltage level, retaining the data, while

requiring a high voltage level to access it again.

 Li et al. [7] evaluated the use of state and non-

state preserving techniques in caches. The authors

showed that for a fast L2 cache decay techniques

are superior in terms of both performance loss and

energy savings to drowsy ones.

6. Conclusions

This paper proposes Adaptive Value Prediction

Decay (AVPD), a mechanism able to reduce the

leakage energy of traditional Value Predictors

with negligible impact on prediction accuracy nor

processor performance by dynamically locating

VP entries that have not been accessed for a

noticeable amount of time. Once those unused

entries have been located, AVPD switches them

off to prevent them from leaking. The proposed

AVPD extends the static decay approach in order

to better exploit the program behaviour as well as

the differences between sections of code where

the VP can be under-utilized.

 The AVPD mechanism requires just slight

modifications, with virtually no extra hardware

overhead compared to the static decay scheme

(just two additional global counters). In addition,

in our scheme, the aggressiveness of the

adaptation is easily controlled by two parameters

(increasing and decreasing thresholds).

 The average leakage energy savings for the

best known configuration of the adaptive

mechanism for a moderated predictor size of

around 10 KB are 32%, 64% and 77% for the

three evaluated predictors, Stride, DFCM and

FCM, respectively. Compared to the best static

decay scheme, AVPD provides additional average

leakage energy savings (e.g., 14% for a 5 KB

DFCM and 24% for a 5 KB FCM).

7. ACKNOWLEDGMENTS

This work has been supported by the Ministry of

Education and Science of Spain under grants

TIN2006-15516-C04-03 and CSD2006-00046.

References

[1] J.A. Butts and G. Sohi. “A static power model for

architects”. In Proc. of the 33rd Int. Symp. on

Microarchitecture, 2000.

[2] B. Calder, G. Reinman and D.M. Tullsen. “Selective

Value Prediction”. In Proc. of the 26th Int. Symp. on

Comp. Arch., May 1999.

[3] J.M. Cebrián, J.L. Aragón and J.M. García.

“Leakage Energy Reduction in Value Predictors

through Static Decay”. In Proc. of the Int.

Workshop on High-Performance, Power-Aware

Computing HP-PAC’07 (in conjunction with

IPDPS'07), March 2007.

[4] K. Flautner et al. “Drowsy Caches: Simple

Techniques for Reducing Leakage Power”. In Proc.

of the 29th Int. Symp. on Computer Architecture,

2002.

[5] M.J. Flynn and P. Hung. “Microprocessor Design

Issues: Thoughts on the Road Ahead”. IEEE Micro,

vol. 25, no. 3, pp. 16-31, May/Jun, 2005.

[6] B. Goeman, H. Vandierendonck and K. de

Bosschere. “Differential FCM: Increasing Value

Prediction Accuracy by Improving Table Usage

Efficiency”. In Proc. of the 7th Int. Symp. on High-

Performance Comp. Architecture, 2001.

[7] Y. Li et al. “State-Preserving vs. Non-State-

Preserving Leakage Control in Caches,” In Proc. of

the DATE Conference, Feb. 2004.

[8] S. Kaxiras, Z. Hu and M. Martonosi. “Cache Decay:

Exploiting Generational Behavior to Reduce Cache

Leakage Power”. In Proc. of the 28th Int. Symp. on

Computer Architecture, 2001.

[9] N.S. Kim, T. Austin et al. “Leakage Current:

Moore’s Law Meets Static Power”. IEEE Computer,

2003.

[10] M.D. Powell et al. “Gated-Vdd: A Circuit

Technique to Reduce Leakage in Deep-Submicron

Cache Memories”. In Proc. of the Int. Symp. on Low

Power Electronics and Design, 2000.

[11] Y. Sazeides and J.E. Smith. “The predictibility of

data values”. In Proc. of the 30th Annual Int. Symp.

of Microarchitecture, Dec 1997.

[12] S. Yang et al. “An integrated circuit/architecture

approach to reducing leakage in deep-submicron

high-performance I-Caches”. In Proc. of the 7th Int.

Symp. on High-Performance Comp. Architecture,

2001.

114 Arquitectura del Procesador, Multi-núcleo y Multiprocesadores

