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Abstract—In the last few years, Graphics Processing Units
(GPUs) have become a great tool for massively parallel com-
puting. GPUs are specifically designed for throughput and
face several design challenges, specially what is known as the
Power and Memory Walls. In these devices, available resources
should be used to enhance performance and throughput, as
the performance per watt is really high. For massively parallel
applications or kernels, using the available silicon resources for
power management was unproductive, as the main objective
of the unit was to execute the kernel as fast as possible.

However, not all the applications that are being currently
ported to GPUs can make use of all the available resources, ei-
ther due to data dependencies, bandwidth requirements, legacy
software on new hardware, etc, reducing the performance per
watt. This new scenario requires new designs and optimizations
to make these GPGPU’s1 more energy efficient. But first
comes first, we should begin by analyzing the applications we
are running on these processors looking for bottlenecks and
opportunities to optimize for energy efficiency.

In this paper we analyze some kernels taken from the
CUDA SDK2 in order to discover resource underutilization.
Results show that this underutilization is present, and resource
optimization can increase the energy efficiency of GPU-based
computation. We then discuss different strategies and proposals
to increase energy efficiency in future GPU designs.

Keywords-Power Dissipation, Energy Efficiency, GPU,
GPGPU.

I. INTRODUCTION

GPGPU computing and GPUs in general have become
one of the hottest trending topics in computer architecture
research, but that’s not the only thing that is getting hot. As
with future exascale microprocessors, the increasing amount
of transistors in the same area due to technology scaling is
causing power dissipation problems. In the near future it
is uncertain if all the transistors of the chip are going to be
available in a given cycle due to temperature constraints [1].

In terms of energy efficiency, GPUS are considered to
be one of the most power-efficient architectures up to
date [2]. However, as the number of available resources
increases their optimal assignment and utilization becomes
harder, lowering the overall performance per watt. There are
several key factors that reduce the performance per watt of
massively parallel microprocessors:

1General Purpose Graphics Processing Units
2Software Development Kit

• Memory bandwidth (on-board and off-board).
• Power dissipation and power supply.
• Scalability and data dependencies.
• Legacy software.
• Legacy graphic applications and engines.
NVIDIA Fermi GPU family has around 340-512 available

computation units while ATI HD7xxx cards offer 2048+
computation units, depending on the analyzed model. Even
though the number of available cores will increase in the
next generations of GPUs (nVidia Kepler promises to double
the cores) their total number will eventually saturate. This
is mainly because of memory bandwidth problems, power
dissipation problems and inter-core data dependencies.

If we consider the internal memory bandwidth (GPU to
on-board memory) of current GPUs3, like, for example:

• nVidia GeForce GTX 465: 102.592 GB/sec (256 bit bus). Per
core bandwidth, 102.592/352 = 0.2914 GB/sec.

• nVidia GeForce GTX 480: 177.408 GB/sec (384 bit bus). Per
core bandwidth, 177.408/480 = 0.3696 GB/sec.

• nVidia GeForce GTX 580: 192.384 GB/sec (384 bit bus). Per
core bandwidth, 192.384/512 = 0,37575 GB/sec.

we can see that the per/core bandwidth is very limited, and
increasing the amount of available cores without increasing
the bandwidth at the same rate may cause starvation for
certain applications. Moreover, technology scaling reduces
die size, allowing manufactures to reduce production costs
by obtaining more GPU dies per wafer. However, smaller
dies mean less surface area for interconnection buses, thus
further reducing the total memory bandwidth. This not only
affects on-board memory bandwidth, if we take a look to the
available bandwidth between the GPU and main memory,
numbers are far worse. Nevertheless, these periods of low
core usage may be slightly hidden by using background
memory transfers or by running several kernels simulta-
neously, but still offer many chances to increase energy
efficiency.

From the power point of view, core scaling is also limited.
As stated in [1], it is uncertain that all the cores of massively
parallel microprocessors can be used simultaneously due
to temperature constraints and leakage power, even if we
use low voltages and frequencies. Moreover, even nVidia
is having problems with the additional power requirements

3In our work we have only analyzed nVidia GPUs.



of multi-kernel execution and background memory transfers
on their cards [3]. This is not only due to thermal problems,
but also because of the need to ensure that enough power
is provided to the board during background transfers. To
solve these problems a power budget matching mechanism
is required to ensure certain levels of power consumption
for stability (available in the latest 5xx Fermi boards).

We must also notice that, for the first years of the
big “boom” of the GPU computing, the vast majority of
applications ported to GPUs were massively parallel, with
almost no data dependencies or synchronization between
execution threads. However, programmers are running out
of “simple” problems and regular parallel applications are
currently being ported to GPUs. For these applications
scalability is limited to a certain number of processors,
depending on the input size. This leads to high amounts
of power being wasted in useless work, idle cores or just
spinning.

On the other hand we have legacy software. In order
to squeeze all the GPU performance, programmers usually
rely on fine-grain code optimizations for the specific hard-
ware/compiler they are using. However, when there is a
generational change in GPUs, these fine-grain optimizations
are unable to make use of new resources. Recompiling is
usually not enough, and re-optimizing the code for the new
set of available cores/memory is required. This is a serious
problem that not all companies can handle. Optimizing the
GPU resources to match the program requirements in order
to improve energy efficiency is an open field that may solve
these problems.

Another source of wasted power are legacy graphic ap-
plications and engines. These applications usually produce
huge amounts of frames per second (FPS) in modern hard-
ware that the monitor cannot handle, and it has to randomly
drop the frames that it cannot display. This sometimes causes
a feeling of bumpy movement on the player. Wang already
proposed to apply power gating in addition to DVFS to
address this issue [4].

With the analysis performed in this paper we want to
discover if this underutilization of resources is already hap-
pening and discuss different strategies that can be used do
to improve energy efficiency and, if possible, performance.
These strategies include, but are not limited, to voltage
and frequency scaling and SM power gating. Results not
only show that this underutilization is present, but also that
resource optimization can increase the energy efficiency of
GPU-based computation.

The rest of the paper is organized as follows. Section
II provides some background on power and power-saving
techniques and summarizes the related work. Section III re-
ports our evaluation methodology and the main experimental
results. Finally, Section IV shows our concluding remarks
and future work.

II. BACKGROUND AND RELATED WORK

In this section we will provide some background about
power and power control mechanisms as well as discuss
some related work in order to improve the energy efficiency
of GPUs.

A. Power Dissipation

Like any other transistor-based electronic device, GPUs
have two sources of power dissipation, dynamic and static
power dissipation (or leakage). Dynamic power dissipation
is proportional to usage (every time we access a structure),
due to the constant charge and discharge of transistors. On
the other hand, static power dissipation is derived from gate
leakage and subthreshold leakage currents that flow even
when the transistor is not in use.

As process technology advances toward deep submicron,
the static power component becomes a serious problem,
especially for large on-chip array structures such as caches or
prediction tables. The leakage component is something that
many studies do not take into consideration when dealing
with temperature, but it cannot be ignored. For current
technologies (under 32nm), even with gate leakage under
control by using high-k dielectrics, subthreshold leakage has
a great impact in the total power dissipated [5].

More specifically, for the GPU scenario, the total power
dissipated by the GPU (without the DDRx4 memory power)
can be estimated as:

GPUPower = IdlePower+(SMsPower+MemPower)

where SMsPower is the power dissipated by the SM5 units of
the GPU and MemPower is the power dissipated by the on-
die memory of the GPU (Instruction Cache, Shared Memory,
L1 and L2).

SMsPower can be also decomposed into:

SMsPower =

NumSMs∑
i=0

(A ∗ SMPower)

where A is the activity factor (or usage, that varies between
0 and 1), and SMPower is the combined power dissipated
by each SM hardware (Fetch, Decode, Schedule stages plus
the power disspated its Registers, FP, Integer, Load-Store
and Special units).

B. Power Control Mechanisms

1) Dynamic Voltage and Frequency Scaling: Dynamic
Voltage and Frequency Scaling (DVFS) has been widely
used since the early 90’s [6] offering a great promise to
reduce energy consumption in microprocessors. DVFS relies
on the fact that dynamic power dissipation depends on both

4Double Data Rate
5Streaming Multiprocessor



voltage and frequency (PD ≈ V 2
DD · f ), and it dynamically

scales these terms to save dynamic power [7][8].
However, as the building process goes into deep submi-

cron, the margin between VDD (supply voltage) and VT
(threshold voltage) is reduced, and as this margin decreases,
the processor’s reliability is reduced (among other unde-
sirable effects). Moreover, the transistor’s delay (switching
speed) depends on: δ ≈ 1/(VDD − VT )α, with α > 1. This
means that we can lower VDD for DVFS as long as we keep
the margin between VDD and VT constant, so we can obtain
the desired speed. However, the counterpart of reducing VT
is twofold: a) leakage power increases as it exponentially
depends on VT , which makes leakage an important source
of power dissipation as the process technology scales below
65nm [9][10][11]; and b) processor reliability is further
reduced.

Multicore architectures exhibit some peculiarities when
running parallel workloads, especially in terms of power and
performance. In such workloads threads must periodically
synchronize (e.g., for communication purposes) and any
delay introduced in one of the threads may end up delaying
the whole application. Nevertheless, it is uncertain if future
GPUs will implement per-core DVFS, as current generation
of GPUs (i.e., Fermi from nVidia) even has limitations on
manually setting frequencies for all the cores due to the
complexity of the clock trees [12].

2) Clock Gating and Power Gating: Clock gating [13]
adds an AND gate to the clock signal that powers an specific
unit or structure with a control signal. If the control signal
is on, the unit will be clocked as expected. If the unit is
unneeded for a cycle or more, the control signal can be set
to 0, in which case the unit will not be clocked.

On the other hand, power gating [14] is a hardware
mechanism that turns off the supply voltage of a circuit block
to lower leakage power dissipation by applying a “sleep”
signal to the gate of the header or footer transistor of the
circuit. This signal should be removed in order to restore
the voltage of the circuit back to normal. Power gating is
able to lower the leakage power dissipation of the circuit
close to zero [15]. However, power gating is not free, as
it implies area and energy overheads. The main source of
area overhead comes from the header or footer transistor,
that depends on the overall switching current of the target
circuit (x3 according to [16]). We need that the circuit block
stays in sleep mode long enough in order to compensate for
the energy used in the header-footer transistor switching.
This time is determined by the circuit design limits [17].

C. The Problem of Energy Efficiency on GPUs

As mentioned in the previous sections, energy efficiency
in GPUs is high as long as the application uses the available
resources, but there are almost no hardware mechanisms to
optimize resources to application needs. Hong et al. [18]
proposes a power and performance model that is used to

Table I: System Specs.

Core System
Proc.: Core2 duo 6850@3Ghz
GPU 0: nVidia 7300GT
Memory: 4GB DDR2 @ 333Mhz

GPU 1: GTX 465
GPU: GTX 400
Process: 40 nm
Core Clock: 607 MHz
Memory Size: 1024 MB
Memory Clock: 1603 MHz
Memory Bus Type: 64x4 (256 bit)
Memory Bandwidth: 102.592 GB/sec
SMs: 11 (32 SPsa each)
Max Power Draw: 200 W

GPU 2: GTX 480
GPU: GTX 400
Process: 40 nm
Core Clock: 700 MHz
Memory Size: 1536 MB
Memory Clock: 1848 MHz
Memory Bus Type: 64x6 (384 bit)
Memory Bandwidth: 177.408 GB/sec
SMs: 15 (32 SPs each)
Max Power Draw: 250 W

aStreaming Processor

select the number of optimal cores, based on the available
memory bandwidth, however, this is not the only limitation
as we mentioned previously, as input size, legacy software or
data dependent software, may need different optimizations.
In [19], Sheaffer et al. studied a thermal management for
GPUs. Fu et al. [20] also presented some experimental data
evaluation of GPUs. More recently Wang [21] et al. proposes
an instruction-level energy estimation methodology for the
GPU.

III. EXPERIMENTAL RESULTS

A. Evaluation Environment

In this section we will describe our evaluation environ-
ment. We decided to use real hardware in order to perform
the evaluation analysis of performance, temperature, power
and energy of GPUs. Table I shows our main system
specifications. GPU 0 is always present in the system during
all tests, and is used only for graphics, while GPUs 1 and
2 are used to run CUDA kernels, but only one of them is
connected to the motherboard during the tests. The reason
we decided to use these cards is that both of them are
equipped with same chip, codenamed GTX400, with 3200
million transistors in 529mm2 but with different bandwidth,
memory size and, more importantly, number of active SMs.
The GTX465 has 11 SMs enabled from the total 16 of the
GTX400 chip, while the GTX480 has 15 active SMs. This
will allow us to estimate the impact of power gating on the
analyzed benchmarks.



Table II: Evaluated kernels and working sets.

Benchmark Size Benchmark Size

SPLASH-2

CUDA C Monte Carlo: Single Asian Option default Eigenvalues default
Simple Multi Copy and Compute default Vector Addition default
CUDA C 3D FDTD default Scalar Product default
Discrete Cosine Transform (DCT) (8x8) default Line of Sight default
1D Discrete Haar Wavelet Decomposition default CUDA Histogram default
Fast Walsh Transform default

Dct8x8
DwHaar

EigenValues
FastWalshTransform

Fdtd3d
Histogram

LineOfSight
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Figure 1: Avg. GPU power with (bottom) and without (top) memory transfers for different pairs of GPU/Frequency.

Power dissipation numbers will be provided by Watts up?
.Net power meter [22]. This device is connected between
the power source and the power supply of the system, and
provides power dissipation information every second (at-
the-wall power). Power information is logged by a different
machine on the same room. Room temperature is controlled
and set to 26oC during the measurements to minimize
temperature impact on static power. We decided not to
isolate power dissipated by the GPU from the rest of the
system (CPU, Motherboard, Memory, etc), as the hardware
used in our experiments is always the same, and is required
to execute the GPU kernels, so it’s fair to account this
hardware when optimizing for energy efficiency (Energy
and Energy Delay Square Product -ED2P- results). Some
benchmarks may look more energy efficient with certain
configurations if GPU power is isolated, but that’s not true
(Amdahl’s Law). However, we will also provide isolated
GPU power dissipation numbers to compare with the full
system energy numbers.

We will use MSI Afterburner [23] tool to modify the

working frequency of the SMs, as nVidia decided to remove
the official support for frequency settings at a driver level.
MSI Afterburner is only available for Microsoft Windows,
so we will perform our analysis under Windows 7, using
nVidia’s driver v285.62.

Due to this software limitation we couldn’t use GPU
benchmarks such as Rodinia or Parboil as there is no
Windows version, however, we would like to test these
benchmarks in the future. We will be testing 11 kernels
(see Table II) from the CUDA SDK v4.0.19 [24]. Kernels
were randomly selected from a subset of 27 “potentially”
useful kernels in real applications [25]. The SDK kernels
are meant for performance measurements (execution takes
miliseconds) and our logging hardware is only able to
capture power at a coarse grain (every second). We decided
to tweak the kernels increasing the inputs and iterating on
the kernel calls so that the base execution lasted around 5
minutes. Due to time restrictions we had to leave 16 kernels
out of this analysis, but we pretend to tweak them later on
for our future work. Looping will be analyzed both with and
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Figure 2: Total execution time with (bottom) and without (top) memory transfers for different pairs of GPU/Frequency.

without memory transfers.

B. Kernel Analysis

In this section we will analyze how the different kernels
behave in terms of power, time, energy, energy delay square
product, and temperature, both with and without accounting
for memory transfers in the code. In addition, we will also
compare the advantages and disadvantages of increasing
frequency when compared to increasing the number of
computation nodes (SMs) for the studied kernels.

Figure 1-top shows the isolated GPU power dissipation
for different frequencies on both the GTX 465 and 480
graphic cards when we don’t consider the memory transfers
in the iterative kernel calls. We can clearly see that there
are three benchmarks that don’t make high usage of the
available resources of the GPU, DwHaar, EigenValues and
LineOfSight. The increment on power dissipation (∼ 18W )
for these three benchmarks when changing from the GTX
465 to the 480 is mainly because of the additional leakage
power from the 4 extra SMs and the additional 512MB of
memory. We can also see a huge increment on power dissi-
pation when changing cards in VectorAdd, however, for this
benchmark, is mainly because of the additional bandwidth
that allows more computation and also increments the power
dissipation from the memory. Figure 1-bottom shows the
isolated GPU power but considering memory transfers in the
iterative kernel calls, so data is moved from main memory to
device memory on every execution. With this configuration
the real bottleneck is the PCI-e bandwidth, and that reduces
the computation times and average power dissipation of

the two cards. Only four benchmarks are left over 150W,
Dct8x8, Histogram, Montecarlo and SimpleMultiCopy. This
is important because, for the rest of the analyzed kernels, the
card could be executing a different GPU-intensive kernel
while the main one is moving data from-to memory or,
as it happens with SimpleMultiCopy, overlapping kernel
execution with memory transfers, doing small pieces of
the problem and performing a “pipelined” execution of the
problem.

Figure 2-top shows a performance analysis for the an-
alyzed cards with different frequencies when not consid-
ering memory transfers. Please note that the number of
iterations in the memory transfer and non-memory transfer
charts vary in order to match the five minute execution
to measure power, so do not try to compare execution
time between them. As it happened with power, DwHaar
and LineOfSight show almost no performance gains from
neither frequency, bandwidth or core scaling. FastWalsh-
Transform and VectorAdd obtain great benefits from the
additional cores, memory and bandwidth, but less benefit
from frequency scaling (because they are memory bound and
memory frequency is not scaled). For Dct8x8, Histogram,
Montecarlo, ScalarProduct and SimpleMultiCopy, the per-
formance benefits of frequency scaling and additional cores
are consistent. Numbers also show that we can trade 4 SMs
for 150Mhz of frequency, and obtain similar performance
numbers. More importantly we can see how EigenValues
behaves exactly the same despite the number of available
SMs. This is a clear example of a kernel that is running
on less SM cores that it was designed for (legacy code),
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Figure 3: Normalized energy with (bottom) and without (top) memory transfers for different pairs of GPU/Frequency.
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Figure 5: Average temperature with (bottom) and without (top) memory transfers for different pairs of GPU/Frequency.

trading cores for frequency could improve it’s performance
and energy efficiency. For Fdtd3d it is even worst, as having
more core results on less performance, mainly because of
data sharing. This is an example of applications that don’t
scale any further than a certain number of cores, at least
for the analyzed inputs. We will discuss more in detail
how can we optimize cores/frequency later on this section,
with the performance/costs analysis. Results when consid-
ering transfers are similar (Figure 2-bottom), except for
FastWalshTransform and VectorAdd, where the performance
improvement from the internal memory bandwidth and cores
is hidden by the slow external memory transfers.

Figure 3 shows normalized energy numbers for the full
system (i.e., motherboard, CPU, GPU, etc) both without
(top) and with (bottom) including memory transfers on the
iterative kernel calls. Results are normalized to the GTX
480 card running at default frequency (700Mhz). In terms of
energy, maximizing both the number of cores and frequency
provides the best results for the majority of the kernels, only
kernels like Fdtd3d, DwHaar and LineofSight obtain net
energy benefits from a core reduction if we don’t consider
memory transfers. However, when transfers are considered,
ScalarProduct and VectorAdd that had energy loses of 30-
40% experience net benefits of 5% in terms of energy. We
obtain similar results when using the metric energy delay
square (Figure 4), with even lower net benefits from core
reduction when we don’t consider transfers. These results
give us an idea on how much we need to optimize power on
the GPU without incurring on any performance degradation

if we want to obtain net energy benefits. The leakage power
of the system every additional second (∼ 138W ) accounts
for much more than what we can save from removing one
SM or reducing frequency by 50Mhz.

Finally, Figure 5 shows the temperatures of the two
analyzed cards when running the studied kernels, with and
without considering memory transfers. In order to measure
temperature we forced the GPU fan to 70% of its capacity.
Temperatures are obtained from the internal sensors of the
GPU. Looking at the temperature numbers we can see that
for most of the kernels the GPU resources are underutilized.
Please note that the benchmarks have been running at least
5 minutes on the GPU so the temperature has been rising
during the first 2-3 minutes and after 3 minutes is stable. In
fact, only three benchmarks go over 70C, with only one
benchmark reaching a peak temperature of 85C (Monte-
Carlo), potentially giving us the chance of further increasing
the frequency in most of the benchmarks. However, we must
to be careful because these are coarse-grain sensors, and
further increasing frequency may cause damage to the chip
due to hot-spots. A more detailed modeling of the die (layout
and power maps) is required to ensure proper “overclocking”
without damaging the GPU.

C. Resource Optimizations for Energy Efficiency

This section analyzes the power costs and performance
improvements of two different strategies to improve energy
efficiency, increasing/decreasing frequency and/or available
SMs. Figure 6 shows the speedup provided by an increment
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Figure 6: Speedup obtained by increasing frequency by 50Mhz or increasing the number of SMs by one vs Power costs for the GTX
465 (top) and the GTX 480 (bottom) with (right) and without (left) memory transfers.

of 50Mhz on the analyzed kernels (bars). Improvements of
SMs frequency are not linear because memory frequency
is not scaled at the same rate as cores in our analysis. On
top of the speedup we draw two lines that represent the
GPU power increment of increasing frequency by 50Mhz
(black), or adding an extra SM (gray). As we mentioned
in the previous section (time analysis), the high increment
in performance from FastWalshTransform and VectorAdd is
not only due to the additional SM, but because of the total
available memory and the increased memory bandwidth, so
let us ignore these benchmarks in the analysis.

For the both the GTX 465 and 480 cards when not
considering memory transfers it is clear that we could
trade cores for frequency on benchmarks like DwHaar,
EigenValues, Fdtd3d and ScalarProduct. For Montecarlo, the
cost of frequency is higher than adding an additional SM,
but also the performance improvement, so in terms of energy
it is balanced. SimpleMultiCopy can get benefits if it trades
cores for frequency at low frequencies, as the performance
increase is similar but the power costs of the additional SM
is higher. Please note that the SM performance estimations
also consider an increase in memory bandwidth. For a
fairer comparative we should be also increasing memory
bandwidth by increasing memory frequency, or just consider
the bar that corresponds to the frequency increase from 400
to 450Mhz, as it is the one less affected by bandwidth
limitations. Similar results are obtained when considering
memory transfers on both cards. In order to optimize energy

efficiency of the GPU we require an scheduler that is able to
detect the kernel requirements and modify frequency (SMs
& memory) and available SMs.

IV. CONCLUSIONS AND FUTURE WORK

GPUs are massively parallel processors that have proved
to be a useful tool in scientific research. Up until now GPU
design has focused on performance and throughput, as the
applications executed on the GPU were able to use all the
available resources. However, due to memory bandwidth
limitations, problem sizes, synchronization, legacy software,
etc, GPUs can be underutilized, and have almost no power-
saving hardware to optimize energy efficiency (besides
coarse grain DFS and clock gating). In this paper we analyze
performance, power, energy and temperature in order to
confirm this hypothesis.

Results show that different kernels have different resource
requirements. Off-card bandwidth is a key limiting factor
when memory transfers are taken into account for half of
the analyzed kernels. Moreover, dynamically modifying the
working frequencies and available SMs GPU computation
can be more energy efficient than it is right now. This
optimization not only affects power, but sometimes also
performance if the application is not optimized for new
hardware. The next step would be to design a dynamic
scheduler that analyzes kernel requirements at runtime and
selects the optimal amount of cores/frequency.
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