XIIT JORNADAS DE PARALELISMO—LLEIDA, SEPTIEMBRE 2002 1

DualFS
Toward A New Journaling File System

Juan Piernas’, Toni Cortest, José M. Garcial
1 Computer Engineering Department — Universidad de Murcia
tComputer Architecture Department — Universitat Politécnica de Catalunya
E-mail: {piernas, jmgarcia}@ditec.um.es, toni@Qac.upc.es

Abstract— In this paper we introduce DualFS, a
new high performance journaling file system that puts
data and meta-data on different devices (usually, two
partitions on the same disk or on different disks), and
manages them in a very different way. The meta-data
device is organized as a log-structured file system,
whereas the data device is organized as an FFS-like
file system. This new structure will allow DualFS to
recover its consistency quickly after a system crash,
and to improve the overall file system performance
as compared to other file systems. In effect, we have
implemented and evaluated a DualFS prototype, and
we have found that DualFS greatly reduces the total
I/O time taken by the file system in most cases: up
to 76% with respect to Ext2 (a FFS-like file system
with asynchronous meta-data writes), and up to 90%
compared to Ext3 (a journaling file system derived
from Ext2).

Keywords— DualF'S, file system performance, meta-
data management, consistency recovery.

I. INTRODUCTION

ETA-DATA management is one of the most

important issues to be taken into account in
the design of a file system. This management is espe-
cially important when the file system has to be recov-
ered after a system crash, because it must be possible
to return the file system to a consistent state. In or-
der to guarantee this, file systems have traditionally
written meta-data in a synchronous way, and have
used tools (like fsck) which scan the entire disk,
after a crash, to solve potential inconsistencies.

The problem with fsck-like tools is that they can
take a long time to scan an entire disk. In recent
years, several solutions have been proposed [1], [2],
[3] that keep some kind of log of the last meta-data
updates, which allows us to recover the file system
consistency quickly by analyzing only the log.

The synchronous write problem has also been
studied at length [4], [5]. Synchronous writes are
used to enforce a specific order among meta-data
writes. However, they downgrade the file system
performance significantly, since they normally cause
small T/O transfers at the speed of the underlying
device.

To solve the aforementioned problems, current file
systems treat data and meta-data somewhat differ-
ently while they are, in fact, completely different.
Moreover, we will show that meta-data, even being
a very small part of the file system, can have a great

This work has been supported by the Spanish Ministry of
Science and Technology and the European Union (FEDER
funds) under the TIC2000-1151-C07-03 and TIC2001-0995-
C02-01 CICYT grants.

impact on the overall file system performance. It
should, therefore, receive a special treatment.

The objective of this paper is to introduce DualFS
[6], a new high performance journaling file system
which separates completely data and meta-data, and
places them on different devices (possibly two parti-
tions on the same disk). Once completely separated,
data will be treated as regular Unix systems do [7],
while meta-data will be treated as a log-structured
file system [1]. This new structure will allow DualFS
to both recover its consistency quickly after a system
crash and to improve the overall file system perfor-
mance with respect to other (journaling or not) file
systems.

II. RATIONALE FOR A NEW FILE SYSTEM

Since the new journaling file system is based on the
separation between data and meta-data, we need to
know if that separation makes sense. Hence, we have
analyzed the disk I/O traffic for different common
workloads over several days, and we have separated
data requests from meta-data requests. The results
(taken from [8]) can be seen in Table I.

It is important to note that meta-data, even being
a very small part of the file system, can have a great
impact on the overall file system performance. Also
note that the greater part of meta-data requests are
writes.

Hence, if we want to design a new file system to
be better than others, we must take into account the
special behavior of meta-data. The new file system
must improve meta-data writes, without damaging
data writes, or data and meta-data reads.

III. DESIGN AND IMPLEMENTATION OF DUALFS

The main idea of this new file system is to man-
age data and meta-data in completely different ways,
giving a special treatment to meta-data. Meta-
data blocks will be located on the meta-data de-
vice, whereas data blocks will be located on the data
device. Although the separation between data and
meta-data is not new [9], [10], it is the first time
that a file system takes advantage of that separation
without needing extra hardware.

A. Data Device

Data blocks of regular files are on the data device,
and they are treated as many Unix file systems do.
The data device uses the concept of group of data
blocks (similar to a cylinder group) in order to or-

TABLE I

PIERNAS, CORTES, GARCIA: DUALFS, TOWARD A NEW JOURNALING FILE SYSTEM

DISTRIBUTION OF DATA AND META-DATA TRAFFIC FOR DIFFERENT WORKLOADS

Workload I/0 Requests (%) I/0 Time (%)
Data (R/W) Meta-data (R/W) Data | Meta-data
Root+Mail | 28.41 (23.07/76.93) 71.59 (6.45/93.55) | 20.47 79.53
Web+FTP | 52.11 (63.37/36.63) 47.89 (23.45/76.55) | 50.64 49.36
Disk Backup | 90.72 (99.94/00.06) 9.28 (71.08/28.92) | 86.17 13.83
NFS 30.26 (63.06/36.04) | 69.74 (27.14/72.86) | 57.87 | 42.13

ganize data blocks. Grouping is performed in a per
directory basis, i.e., data blocks of regular files in
the same directory are in the same group (or in near
groups if the corresponding group is full).

From the file-system point of view, data blocks
are not important for consistency, so they are not
written synchronously and do not receive any spe-
cial treatment, as meta-data does [2], [3], [5]. How-
ever, they must be taken into account for security
reasons. When a new data block is added to a file,
it must be written to disk before writing meta-data
blocks related to that data block. Missing out this
requirement would not actually damage the consis-
tency, but it could potentially lead to a file containing
a previous file’s contents after crash recovery, which
is a security risk. DualFS meets this requirement.

B. Meta-data Device

Meta-data blocks are in the meta-data device.
Since we want to greatly improve meta-data writes,
the meta-data device is organized as a log-structured
file system, that is, there is only one log where meta-
data blocks are written sequentially. It is impor-
tant to clarify that as meta-data we understand all
these items: i-nodes, indirect blocks, directory “data”
blocks, and symbolic link “data” blocks (sometimes
a symbolic link needs “data” blocks). Obviously,
bitmaps, superblock copies, etc., are also meta-data
elements.

DualFS can be seen as an evolution of a journal-
ing file system, but with two important differences.
On the one hand, meta-data blocks do not have to
be written twice (once in the file system, once in the
log), because there is only one copy of every meta-
data element. On the other hand, meta-data writes
are not spread across the file system, they are se-
quentially performed in big chunks in the meta-data
device. This increases the average size of meta-data
write requests and, hence, the average size of all write
requests. If write requests are greater, the number
of them will be lower. We hope that these two dif-
ferences improve the DualFS performance for many
workloads.

Since data and meta-data blocks are separate, we
suppose that a workload which will not take advan-
tage of the DualFS features will be a read-only one,
but only when both data and meta-data are on the
same disk. In that case, data blocks and their re-
lated meta-data blocks will be far from each other,
and DualFS will lead to long seeks. Nevertheless, we
can always put the meta-data device on a separate

disk. The idea of using another device for meta-data
is not new; some journaling file systems allow us to
put the log on a specific device [2] in order to improve
the file system performance.

Our implementation of a log-structured file sys-
tem for meta-data is based on the BSD-LFS one [11].
However, it is important to note that, unlike BSD-
LFS, our log does not contain data blocks, only meta-
data ones. Another difference is the IFile. Our IFile
implementation has two additional elements which
manage the data device: the data-block group de-
scriptor table, and the data-block group bitmap table.
The former basically has a free data-block count per
group, while the latter indicates which blocks are free
and which are busy, in every group.

Finally, note that the structure of the meta-data
device allows us to recover the file system consistency
very quickly from the last checkpoint after a system
crash. Like other file systems [2], [3], [4], DualFS only
guarantees meta-data consistency recovery. Data is
not important for file system consistency (it is im-
portant for users), so some loss of data is allowed in
the event of a system crash .

C. Cleaner

Like log-structured file systems, we need a seg-
ment cleaner for the meta-data device. Our cleaner is
started in two cases: (a) every 5 seconds, if the num-
ber of clean segments drops below a specific thresh-
old, and (b) when we need a new clean segment, and
all segments are dirty.

At the moment our attention is not on the cleaner,
so we have implemented a simple one, based on
Rosenblum’s cleaner [1]. The threshold we have cho-
sen is also very simple (it is a fixed number), though
it should depend on both the meta-data device size
and the workload in a production file system.

IV. EXPERIMENTAL METHODOLOGY
A. Benchmarks

The benchmarks we have performed to study the
viability of our prototype are described below. Note
that we have chosen environments that are currently
representative.

o Kernel Compilation for 1 Process (KC-
1P): resolve dependencies (make dep) and com-
pile the Linux kernel 2.2.19, given a common
configuration. Kernel and modules compilation
phases are done by 1 process (make bzImage,
and make modules).

XIIT JORNADAS DE PARALELISMO—LLEIDA, SEPTIEMBRE 2002 3

o Kernel Compilation for 8 Processes (KC-
8P): the same as before, but for 8 processes
(make -j8 bzImage, and make -j8 modules).

e Video Compression (VC): compress a video
stream frame by frame. The video stream has
400 frames. Every frame is made up of three
files, and is compressed into one file. See [12]
for further details.

o Specweb99 (SW99): the SPECweb99 bench-
mark. We have used two machines: a server,
with the file system to be analyzed, and a client.
Network is a FastEthernet LAN.

o PostMark (PM): the PostMark benchmark,
which was designed by Jeffrey Katcher to model
the workload seen by Internet Service Providers
under heavy load [13]. We have run our ex-
periments using version 1.5 of the benchmark.
With our configuration, the benchmark initially
creates 150,000 files with a size range of 512
bytes to 16 KB, spread across 150 subdirecto-
ries. Then, it performs 20,000 transactions with
no bias toward any particular transaction type,
and with a transaction block of 512 bytes.

B. Tested Configurations

The benchmarks have been run for three file sys-
tems:

e DualFS: our new file system on one disk with
two partitions. The inner partition is the data
device. The outer (and faster) partition is the
meta-data device. It is 10% of the total disk
space.

o Ext2: the default Linux file system on one disk
with only one partition.

o« Ext3: a journaling file system derived from
Ext2, on one disk with only one partition.

The logical block size is always 4 KB for the three
file systems. For DualFS, the cleaner is enabled in all
tests, although it hardly works because the number
of clean segments is almost always above the thresh-
old (10 segments).

We have compared DualFS with Ext2 because it
is an FFS-like file system [7] (a very common kind
of file system in the Unix world). Ext2, however,
writes modified meta-data elements asynchronously,
according to a specific order.

On the other hand, Ext3 allows us to compare Du-
alFS to a file system with similar consistency guar-
antees. Ext3 provides different consistency levels
through mount options. In our tests, the mount op-
tion used has been “-o data=ordered”, which pro-
vides Ext3 with a behavior similar to the DualFS
one. Therefore, only Ext3 and DualFS will be truly
comparable in the experimental results.

C. Cleaner Evaluation

One of the main drawbacks of a log-structured file
system is the cleaner [14]. Since our meta-data de-
vice is implemented as an LFS, we must evaluate
the impact of the cleaner on the performance. The

TABLE II

SysTEM UNDER TEST

Linux Platform
Two 450 Mhz Pentium III
256 MB, PC100 SDRAM

Two 4 GB IDE 5,400 RPM Seagate ST-
34310A.

Two 4GB SCSI 10,000 RPM FUJITSU
MAC3045SC.

SCSI disk 1: Operating system, swap and
trace log.

SCSI disk 2: trace log.

IDE disks: test disks

oS Linux 2.2.19

Processor

Memory
Disk

benchmarks described above are not suitable for eval-
uating the DualFS cleaner, because they do not pro-
duce enough half-full dirty segments. Hence, we need
a new test.

In this new experiment (which we have denoted
write-del), a directory tree is copied and then, 87.5%
(7/8) of its regular files are deleted. This process is
repeated 20 times.

This experiment is carried out for DualFS under
two configurations: without cleaner, and cleaning a
segment every five seconds. The latter case is very
intrusive, but it gives us a conservative estimation of
the impact of the cleaner on performance.

D. System Under Test

All tests are done in the same machine (Table IT).

In order to trace disk activity, we have instru-
mented the operating system (Linux 2.2.19) to record
when a request starts and finishes. The messages
generated by our trace system are logged in an SCSI
disk which is not used for evaluation purposes. The
overhead of these messages is very small (< 1%), es-
pecially if compared to the time needed to perform
a disk access.

V. EXPERIMENTAL RESULTS

We are interested in the total time taken for all
disk I/O operations. The total I/O time gives us an
idea of how much the storage system can be loaded.
A file system that loads a disk less than other file
systems makes it possible to increase the number of
applications which do disk operations concurrently.

It is important to note that all benchmarks have
been run with a cold file system cache (that is, the
computer is restarted after every test run).

A. Benchmarks

Results of benchmarks are shown in Figure 1.
We have represented the confidence intervals for the
means as error bars, for a 95% confidence level. For
comparison purposes, the absolute Ext2 I/O time
has been written inside each Ext2 bar. The numbers
inside the other bars are the I/O times, normalized
with respect to the Ext2 I/O time.

The superiority of DualFS over Ext2 and Ext3 is
due to the fact that there are a lot of write operations

4 PIERNAS, CORTES, GARCIA: DUALFS, TOWARD A NEW JOURNALING FILE SYSTEM

Fig. 1. Benchmarks results

N
&

N

EExt2
WEXt3
ODualFS

[
I

Normalized Disk /0 Time
=
3

o
&)l
|
51.65 sec
0.56
84.87 sec
0.63
62.36 sec
1.01
309.06 sec
0.24
982.19 sec
0.57

o
I
%]
=
©
©

PM

=
Q
N
B

KC-8P \Ye

Benchmark

TABLE III

RESULTS OF THE WRITE-DEL TEST

File System | Total I/O Time Average (secs) |

Ext2 44.90 (0.42)
Ext3 64.04 (2.59)
DualFS-Cleaner 42.16 (1.61)
DualFS+Cleaner 44.41 (2.01)

in these tests, and DualFS improves write operations
greatly, especially in workloads where Ext2 and Ext3
have data and meta-data blocks spread across the
disk.

In the video compression test, however, Ext2 wins
because this test is a very good one for Ext2. This
test only uses 2 directories: one for files to be read,
and another for files to be written. These two di-
rectories are right next to each other, so data and
meta-data blocks are not spread across the device,
and Ext2 is not obligated to do long seeks to write,
and read, data and meta-data. However, DualFS
has to do a lot of long seeks from the data parti-
tion to the meta-data one, and vice versa, due to
the separation between data and meta-data blocks in
DualFS. This prevents DualFS from clearly winning
over Ext2. Despite that, performance of DualFS is
still much better than Ext3, because Ext3 also has
to do long seeks between the journal and the regular
file system.

B. Cleaner Evaluation

The results of the write-del test are shown in Ta-
ble III. The value in parenthesis is the confidence
interval given as percentage of the mean. As we can
see, the cleaner, even when it is very intrusive, has a
very small impact on the DualFS performance.

Although DualFS is much better than Ext2 in
write tests, in this test it is only slightly better.
The main reason is that DualFS (as Ext3) writes
new data blocks to disk more frequently than Ext2.
Hence, data blocks of short-lived files in Ext2 have
more probability of being assigned to a new file be-
fore being written to disk, thus saving a disk write.

Based on these results, we can suppose that the
cleaner will not be a great problem for DualFS. More-

over, since the number of meta-data blocks is usually
much smaller than the number of data blocks, if our
meta-data device is large enough, there will be al-
ways a lot of clean segments or a lot of dirty seg-
ments with few live bytes. Hence, either our cleaner
will hardly be required to work, or it will clean seg-
ments quickly.

VI. CONCLUSIONS

In this paper we have introduced DualFS, a new
journaling file system that places data and meta-data
on different devices and manages them in a very dif-
ferent way. While data is organized much as it is by
traditional Unix file system, meta-data is organized
like a log-structured file system. This new structure
supplies DualFS with the following features: (a) a
quick consistency recovery after a system crash, (b)
one-copy meta-data blocks, and (c) a less amount of
write requests (hence, a greater performance).

We have performed several benchmarks to com-
pare DualFS with Ext2 (an FFS-like file system), and
Ext3 (a journaling file system derived from Ext2).
Internet System Providers should pay special at-
tention to the results achieved by DualFS in the
SpecWeb99 and PostMark benchmarks. In the for-
mer, DualFS performance is simply impressive (up
to 76% better than Ext2, and up to 90% better than
Ext3). In the latter, DualF'S achieves twice as many
transactions per second as Ext2 and Ext3. Research
centers must also observe the great results obtained
by DualFS in the kernel compilation benchmarks.

On the other hand, we have also evaluated the
impact of the meta-data device cleaner on DualFS
performance, and we have found that it is very small
(less than 6%).

Finally, note that meta-data blocks which are cre-
ated or modified at the same time, are written to-
gether in the log. We think that this high temporal
meta-data locality achieved by DualFS can be ex-
ploited to improve DualFS performance even more.
We are working on this issue.

A. Availability

For more information about DualFS, please visit
the Web site at:
http://www.ditec.um.es/ piernas/dualfs.

REFERENCES

[1] M. Rosenblum and J. Ousterhout, “The design and imple-
mentation of a log-structured file system,” ACM Trans-
actions on Computer Systems, vol. 10, no. 1, pp. 26-52,
Feb. 1992.

[2] Adam Sweeney, Doug Doucette, Wei Hu, Curtis Ander-
son, Mike Nishimoto, and Geoff Peck, “Scalability in the
XFS file system,” In Proc. of the USENIX 1996 Annual
Technical Conference: San Diego, California, USA, Jan-
uary 1996.

[3] “Veritas Software. The VERITAS File System (VxFS),”
http://www.veritas.com/products, 1995.

[4] Marshall Kirk McKusick and Gregory R. Ganger, “Soft
updates: A technique for eliminating most synchronous
writes in the fast filesystem,” In Proc. of the 1999 USE-
NIX Annual Technical Conference: Monterey, Califor-
nia, USA, June 1999.

[5] Margo I. Seltzer, Gregroy R. Ganger, M. Kirk McKusick,
Keith A. Smith, Craig A. N. Soules, and Christopher A.

XIIT JORNADAS DE PARALELISMO—LLEIDA, SEPTIEMBRE 2002

Stein, “Journaling versus soft updates: Asynchronous
meta-data protection in file systems,” In Proc. of the
2000 USENIX Annual Technical Conference: San Diego,
California, USA, June 2000.

[6] Juan Piernas, Toni Cortes, and José M. Garcia, “DualFS:
a new journaling file system without meta-data duplica-
tion,” In Proc. of the 16th Annual ACM International
Conference on Supercomputing, June 2002.

[7] M. McKusick, M. Joy, S. Leffler, and R. Fabry, “A fast
file system for UNIX,” ACM Transactions on Computer
Systems, vol. 2, no. 3, pp. 181-197, Aug. 1984.

[8] Juan Piernas, Toni Cortes, and José M. Garcia, “Bursting
file-system performance by disk specialization,” Technical
Report UM-DITEC-2000-3, July 2000.

[9] Keith Muller and Joseph Pasquale, “A high performance
multi-structured file system design,” In Proc. of 13th
ACM Symposium on Operating Systems Principles, pp.
56—67, Oct. 1991.

[10] Darrel C. Anderson, Jeffrey S. Chase, and Amin M. Vah-
dat, “Interposed request routing for scalable network
storage,” In Proc. of the Fourth USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
pp. 259-272, Oct. 2000.

[11] Margo Seltzer, Keith Bostic, Marshall Kirk McKusick,
and Carl Staelin, “An implementation of a log-structured
file system for UNIX,” In Proc. of the Winter 1993 USE-
NIX Conference: San Diego, California, USA, pp. 307—
326, January 1993.

[12] T. Olivares, F. J. Quiles, P. Cuenca, L. Orozco-Barbosa,
and I. Ahmad, “Study of data distribution techniques
for the implementation of an mpeg-2 video encoder,” In
Proc. of the Eleventh IASTED International Conference.
MIT, Cambridge, Massachusetts (USA), pp. 537-542,
November 1999.

[13] Jeffrey Katcher, “PostMark: A new file system bench-
mark,” Technical Report TR3022. Network Appliance
Inc., october 1997.

[14] Margo Seltzer, Keith A. Smith, Hari Balakrishnan,
Jacqueline Chang, Sara McMains, and Venkata Padman-
abhan, “File system logging versus clustering: A per-
formance comparison,” In Proc. of the 1995 USENIX
Technical Conference: New Orleans, Louisiana, USA,
pp. 249-264, Jan. 1995.

