
Virtualization technologies: An overview
Fernando Terroso Sáenz, Ricardo Fernández-Pascual y José M. Garćıa1

Abstract— Virtualization spans through many as-
pects of computer architecture. Over the years, vir-
tual machines have been researched and built by op-
erating system developers, compiler developers, lan-
guage designers, and hardware designers. And re-
cently, it has become again a hot topic in the com-
puter research panorama.

In this paper we show the complexity and impor-
tance of this field in the current computer research
world. We consider that, to have a wide vision of the
general computer research world, it is crucial under-
stand and learn some aspects of how virtualization
works, its characteristics and the main solutions for
some of its problems.

Therefore, we present a global vision of the state of
the art in the computer virtualization field.

Key words— paravirtualization, full virtualization,
virtualization overview, virtual machines

I. Introduction

BROADLY speaking, the term virtualization de-
scribes the separation of a resource or request

for a service from the underlying physical delivery of
that service [1]. So, when a system is virtualized, its
interface and all resources visible through that inter-
face are mapped onto the interface and resources of a
real system actually implementing them. Formally,
virtualization involves the construction of an isomor-
phism that maps a virtual guest system to a real host
[2]. Figure 1 illustrates the isomorphism that maps
the guest state to the host state (function V in the
figure). For a sequence of operations, e, that modifies
the guest’s state, there is a corresponding sequence of
operations e’ in the host that performs an equivalent
modification to the host’s state.

Fig. 1. Isomorphism between a guest and a host system

The above definition may suggest that virtualiza-
tion is the same as abstraction, but this is not always
true. Virtualization differs from abstraction in that
virtualization does not necessarily hide details [3];

1Departamento de Ingenieria y Tecnologia de Computa-
dores, Facultad de Informatica. Universidad de Murcia, e-
mail: {fernando, r.fernandez, jmgarcia}@ditec.um.es

the level of detail in a virtual system is often the
same as that in the underlying real system.

Fig. 2. Overview of a virtual machine environment

When the concept of virtualization is applied to an
entire machine (CPU, Memory and I/O devices) then
we talk of a System Virtual Machine (VM). A virtual
machine is implemented by adding a software layer
to an execution platform to give it the appearance of
a different platform, or for that matter, to give the
appearance of multiple platforms. A virtual machine
may have an operating system (OS), an instruction
set, or both, differing from those implemented on the
underlying real hardware [4]. Usually, the software
added to give the appearance of a different platform
is called Virtual Machine Monitor (VMM): a virtual
machine is the environment created by the Virtual
Machine Monitor [2]. Figure 2 gives a basic idea of
a virtual machine environment.

On the other hand, Process Virtual Machines have
the purpose of providing a virtualized environment
to application programs to improve their portability.
This is made emulating a guest ISA and I/O features.

But there are other levels in a system architecture
where virtualization is useful. This is the case of
the so called High-Level Language Virtual Machines
(HLL VM) which provide an abstract platform which
is more convenient for implementing certain com-
puter languages. This platform may provide an ab-
stract ISA, operating system abstractions (eg. via a
library), memory management and other services.

In this paper we offer an historical perspective of
the virtualization field and the past and current rea-
sons that have made virtualization a hot topic in
the research panorama. Furthermore, we explain
the most important virtualization problems and the
different techniques that resolve them. Each of the
techniques are illustrated with real software or hard-
ware products that implement it.

The rest of the paper is organized as follows: In
section II we expose an historical perspective of why
virtualization is, nowadays, an important research



topic. In section III the main virtualization tech-
niques are explained. In section IV an HLL VMs
overview is offered and finally in section V we ex-
pose some conclusions of this work.

II. Why use virtualization?

A. An historical approach

With the earliest machines, before the 1950’s, soft-
ware and hardware were developed very close each
other: software was written specifically for the hard-
ware. This included operating systems, compilers,
and application programs. This was not a problem
insofar as the computer systems were used in small
communities, especially by scientists and engineers,
and the basic concepts of the stored program com-
puter were still evolving.

But this state of the affairs changed quickly when
machines began to be used as individual tools, and
used for more general tasks, because user communi-
ties grew, operating systems became more complex,
and the number of application programs rapidly ex-
panded; hence rewriting and distributing software
for each new computer system became a major bur-
den [4]. In other words, it was necessary that soft-
ware had a new characteristic: portability. It was
not until the IBM System/360 family in the early
1960s, that the importance of full software compat-
ibility was fully recognized and articulated. With
the recognition that architecture interface and im-
plementation could be separated, common machine
architectures were established. The need to separate
software and hardware brougth the concept of the
Instruction Set Architecture (ISA) [5].

But that was not the only interface standard-
ized. At a higher level of abstraction, operating sys-
tems began to both shield application programs from
hardware specifications and to protect running appli-
cations and user data, supporting controlled sharing.

With the two interfaces mentioned, software ex-
perimented a great evolution and could be made
much more flexible and portable than would oth-
erwise be possible. However, incompatibilities be-
tween ISAs and operating systems limited software
portability to the group of platforms that conform
to the same or very similar standards as the ones for
which the software was developed, specially in the
case of binary portability. Software was restricted to
a specific operating system (or family of operating
systems) and a specific ISA. This was an unpleasant
restriction when newer, cheaper and better platforms
were available but the software being used required
an older platform.

The basic problem was that software was associ-
ated with a physical machine with specific charac-
teristics. To achieve real software portability, a new
layer in the computer system hierarchy was needed.
That new layer had the purpose of giving an execu-
tion platform the appearance of a different platform,
or for that matter, to give the appearance of multi-
ple different platforms, at the same time. Since then,
we could talk about virtual machines instead of real

machines.
Furthermore, virtual machines allowed to improve

backward compatibility of new computer systems.
Because a virtual machine was capable of hiding the
physical characteristics of a system, it was possible
to run on a new machine application programs and
operating systems that were developed for older sys-
tems (with its own physical characteristics and ISA).
This was an important advance in the administration
of data centers.

B. Current state

Comparing modern computer systems with the
ones from a decade ago, we see a spectacular im-
provement both in performance and storage capacity.
Even more, a simple modern laptop has more pow-
erful resources than a data center from four decades
ago. The problem is that we risk wasting those hard-
ware resources. This is because, nowadays, it is quite
usual to have a system with just a single OS which
is only used by a single user. So, to avoid wasting
resources one can use the system to do more than
one thing at once. And this is the point where vir-
tualization enters the scene of modern data centers,
because they have the same utilization problem than
we have explained for a laptop, among others. You
can improve the resource utilization of a system if
you share it among different OSes, by means of vir-
tualization.

Virtualization techniques can be applied to many
of the IT infrastructure layers, including networks,
storage, laptop or server hardware, operating sys-
tems and applications.

Virtualization has allowed easier administration of
data centers thanks to the isolation between logical
and physical infrastructure. It is also possible to iso-
late in a safe way different service environments on
the same physical machine (each environment runs
on a different virtual machine) with the security ben-
efits that this implies. For example, if one of the
environments on a machine is hacked and it is neces-
sary to restart it, that action will not affect the other
environments.

Virtualization also eases system updates. If dif-
ferent services are running on virtual machines then
system administrators can start up a new virtual ma-
chine with the new version of the service, test it and
when everything has been tested, stop the virtual
machine with the old version of the service and set
the virtual machine with the new version as the de-
fault service. Doing that, users see a much shorter
period of downtime.

Virtualization techniques are also useful for mul-
tiprocessors. They allow to divide the resources of a
multiprocessor over different partitions, each of them
running independently of the others.

As system virtual machines can improve portabil-
ity of OSes, High-Level Language Virtual Machines
can also improve portability of application programs.
With this kind of virtualization, it is not necessary
to have a binary version of an application program



for each OS where we want to run it. The virtual
machine is responsible for providing a virtual ISA
to the application and hide the details of the host
operating system.

III. Virtual machines

Popek and Goldberg’s 1974 paper [2] establishes
three essential characteristics for system software to
be considered a VMM, and be able to provide a cor-
rect and practical virtualization environment:

• Fidelity. Software on the VMM executes identi-
cally to its execution on hardware.

• Performance. A majority of guest instructions
are executed by the hardware without interven-
tion of the VMM.

• Safety. The VMM manages all hardware re-
sources.

A more precise criterion for good VM performance
would be that most instructions were executed with
similar performance as in a physical machine.

The main challenges to be overcome for achieving
the requisites mentioned above are [6]:

• Virtual machines must be isolated from each
other.

• Virtual machines must to be capable to share
the physical resources of the host machine.

• The performance overhead introduced by virtu-
alization should be small.

In this section we show the different technologies
that solve these items and we also describe software
and hardware products that implement them.

A. Virtual machine isolation

With correct isolation, each OS and application
program which runs on a virtual machine has the
same behaviour as it would have if it ran in native
mode despite sharing the system with other VMs.
Being able to store and recover the state of a VM is
crucial when there are several VMs running on the
same host machine and it is necessary to carry out
context switches between VMs. A way to model the
state of a virtual machine is proposed in [3]. In this
proposal the state of a virtual machine is modeled as
a 4-tuple, S=(E, M, P, R), where E refers to the ex-
ecutable storage, M refers to the model of operation,
P is the program counter, and R is a pair denot-
ing the physical location and the size of the virtual
memory space.

For example, both Intel VT-X [7] and AMD-
V [8] technologies, the two extensions to the IA-
32 architecture for supporting virtualization, have
data structures that encapsulate all the information
needed to capture the state of a virtual machine or
to resume a virtual machine.

In the case of Intel VT-X technology, the name of
this structure is Virtual Machine Control Structure
(VMCS). The VMCS includes a guest-state area and
a host-state area, each of which contains fields corre-
sponding to different components of processor state

[9]. The guest-state area of the VMCS is used to con-
tain elements of the state of virtual CPU associated
with that VMCS. This includes those IA-32 registers
that manage operation of the processor, such as the
segment registers, and many others. The guest-state
area does not contain fields corresponding to regis-
ters that can be saved and loaded by the VMM itself
(e.g., the general-purpose registers). The host-state
area contains a number of fields that specify the in-
structions and events that cause VM exits.

In the case of AMD-V technology, an analogous
data structure called Virtual Machine Control Block
(VMCB) is used. The VMCB consists of two areas
too. The first area contains control bits including the
intercept enable mask. This mask determines which
conditions cause a VM exit. The second area main-
tains the guest state. This save state area preserves
the segment registers and most of the virtual mem-
ory, but not the general purpose or floating point
registers, like with Intel VT-X [10].

The two solutions shown in the last paragraph are
hardware solutions, or so-called VM-assists because
its main purpose is to help to achieve an efficient vir-
tualization environment in an easier way. But these
solutions still need a software complement like a soft-
ware VMM which was introduced in section I.

A.1 Security

Security requires virtual machine isolation. When
a VM is active, it should not be able to execute any
privileged instructions on the host machine which
would let it to either access data of other VMs or
gain total control of the machine.

For example, the privileged instruction SPT (Set
CPU Timer) of the IBM System/370 [11] replaces
the CPU interval timer with the contents of a loca-
tion in memory. If a malicious program had privi-
leges to execute that instruction, it would be able to
replace periodically the CPU interval timer, avoid-
ing the periodic intervention of the VMM, and get
the total control of the machine. Hence, the VMM
needs to have some control over which instructions
can be executed directly by the guest systems. To
do this, both guest OS and application programs are
executed on a non-privileged mode in the host ma-
chine. This way, the possibility that a malicious ap-
plication program could get the control of the system
by means of privileged instructions is avoided.

To do this, IBM Power 5 [12] systems have a priv-
ileged state of the processor, called hypervisor mode,
introduced in the Power4 processors. The proces-
sor must be in this state in order to be able to ex-
ecute privileged instructions or to have write access
to some of the processor system registers, such as
the register that defines the location and size of the
hardware page table associated with the partition.
Hypervisor mode is accessed via a hypervisor call
function (hcall), which is generated by the operat-
ing system kernel running in a partition. Hypervisor
mode allows for a mode of operation that is required
for various system functions where logical partition



integrity and security are required. When required,
the Hypervisor validates that the partition has own-
ership of the resources it is attempting to access, such
as processor, memory, or I/O; and then completes
the function on behalf of the guest.

On the other hand, both AMD-V and Intel VT-X
introduce two new modes of operation. One, called
VMX root operation in Intel VT-X and host mode
in AMD-V, is largely similar to its function in a
normal IA-32 processor without virtualization tech-
nology, the main difference is the inclusion of a set
of new instructions for entering and exiting to this
mode of operation. The other mode, called VMX
non-root operation in Intel VT-X and guest mode in
AMD-V, is limited in some aspects from the behavior
on a normal processor. The limitations ensure that
critical shared resources are kept under the control of
a VMM running in VMM root operation/host mode.

However, executing the guest OS in a non-
privileged mode implies that each privileged instruc-
tion that the guest OS wants to execute must to
be trapped-and-emulated by the VMM. The VMM
will intercept the execution of the privileged instruc-
tion and perform the appropriate actions to simulate
the results of the instruction without affecting other
VMs.

There are two possible solutions to handle the ex-
ecution of privileged instructions and the consistent
processing by the VMM: full virtualization and par-
avirtualization.

Full virtualization provides total emulation of the
underlying physical system and creates a complete
virtual platform in which the guest OS can be exe-
cuted without modifications.

In contrast, paravirtualization presents each VM
with an abstraction of the hardware that is similar
but not identical to the underlying physical hard-
ware. Paravirtualization requires modifications to
the guest OSes that are running on the VMs [13]. An
interesting fact in this technology is that the guest
machines are aware of the fact that they are run-
ning in a virtualized environment. Paravirtualiza-
tion achieves performance closer to non-virtualized
hardware than full virtualization because there is less
emulation overhead [14].

There is a number of VMMs that implement full
virtualization: VMwares’s ESX Server [15], KVM
[16] and Virtual Box [17], among others. Xen [18]
and the VMMs in IBM iSeries, pSeries and zSeries
take the paravirtualization approach.

B. Resource sharing

When different VMs are running on the same phys-
ical machine, they need to share the hardware re-
sources while maintaining isolation. In this section
we show the different solutions to achieve a efficient
resource virtualization for memory and I/O devices.

B.1 Memory virtualization

In a typical virtual environment we distinguish
three types of memory [3]:

• Virtual memory: virtual memory of the guest
OS.

• Real memory: memory which is regarded by the
guest OS as the physical memory.

• Physical memory: the physical memory of the
host machine.

The addition of another level in the memory hi-
erarchy requires additional mechanisms for memory
management because the total size of real memory of
all the guests can be bigger than the actual physical
memory on the system.

Full virtualization solves this problem with archi-
tected page tables that are used in most ISAs, in-
cluding IA-32 and IBM/370, using a structure called
shadow page tables to keep the virtual-to-physical
mapping for each VM. To make this work, the page
table pointer register is virtualized.

For instance, the approach explained above is
taken by VMwares’s ESX Server. Furthermore, ESX
Server implements a technique called transparent
page sharing which stores the pages with identical
content in physical locations which are shared by all
the VMs with read-only privileges. As soon as any
VM tries to modify a shared page, it gets its own pri-
vate copy. This approach is completely transparent
to the guest OS.

Using paravirtualization the solution is easier
thanks to the collaboration between the guest OS
and the VMM. This way, the guest OS indicates to
the VMM whenever it wants to modify the page ta-
bles and then the VMM performs the appropriate
actions.

For example, Xen registers guest OS page tables
directly with the memory-management unit (MMU),
and restricts guest OSes to read-only access. Page
table updates are passed to Xen via a hypercall. This
is one of the advantages of paravirtualization, at the
cost of having to modify the guest OS.

B.2 I/O virtualization

Virtualizing I/O devices is complicated by the fact
that the number of different devices of a given type
is often large and continuously growing. The tech-
niques to share I/O devices have been developed
since the early days of time sharing with the appear-
ance the IBM VM/370 [11].

Like memory virtualization, I/O virtualization is
transparent to the guest system when using full vir-
tualization. This means that all I/O requests ex-
ecuted by the VM are trapped by the VMM and
redirected to the specific device after modifying it
(or not) to follow the specifications of the particular
specific physical device.

One example of the solution explained above is
found in VMwares’s ESX Server. With this product,
the first way to virtualize an I/O device is to emulate
the device in the VMMonitor which runs natively on
the hardware. If the device to be virtualized already
has a physical counterpart on the host, the job of em-
ulating is simply one of converting the parameters in
some virtual device interface (VDI) into parameters



of the actual hardware device interface (HDI). If the
requested device is not natively supported by VM-
Monitor but is supported by the host OS, the request
is converted into a host OS call.

Paravirtualization can achieve better performance
typically because the VM and the VMM collaborate.
The guest OS sends an I/O request directly to the
VMM (or to a special VM with access rights to the
physical devices) which analyzes it and performs the
appropriate actions to satisfy the guest OS demand.

The above solution is implemented by Xen which
provides a special VM called domain 0 which is the
unique virtual machine running on the Xen hypervi-
sor that has rights to access physical I/O resources
as well as to interact with the other virtual machines
running on the system [18]. Everytime a VM wants
to access some I/O device, it opens an event chan-
nel with the domain 0 VM, that allows it to make
requests via asynchronous inter-domain interrupts in
the Xen hypervisor.

Finally, it is interesting to show how the I/O de-
vices are handled in IBM Power5 system which also
provides partitioning. In that platform, the system
allows that each peripheral component interconnect
(PCI) slot in the system can be individually assigned
to a VM. The hypervisor ensures that each logical
partition can access only the PCI slots assigned to
it. The IBM Power5 uses a component, which runs
in its own VM, called Virtual I/O Server (VIOS)
whose function is to provide virtual devices to be
used by other virtual machines. Moreover, to re-
duce the complexity of the hypervisor, the support
for I/O adapters is delegated to the operating system
running in each logical partition. This eliminates the
need for updates to the hypervisor to support new
I/O devices. Hence, a virtual machine can be con-
figured either to use direct access to a device or to
access that device though VIOS in a similar way as
accessing a device though domain 0 in Xen.

B.3 Multiprocessor Virtualization

In a multiprocessor system resource sharing is
more complex than in an uniprocessor one. A multi-
processor can be partitioned so that multiple applica-
tions can simultaneously exploit the resources of the
system. The I/O virtualization techniques described
above essentially perform resources multiplexing in
time. Multiprocessor systems provide a new dimen-
sion, that of multiplexing resources in space.

There are two basic ways to perform multipro-
cessor partitioning: physical partitioning and logical
partitioning. In physical partitioning each image uses
resources, processors in particular, that are physi-
cally distinct from the resources used by the other
OS images. With the latter, images share some of
the physical resources, usually in a time-multiplexed
manner.

Logical partitioning is more flexible and needs ad-
ditional mechanisms to provide the needed services
to share resources in a safe and efficient way.

The IBM Power5 implements the two types of par-

tition, both logical and physical. In this system, each
partition (called a logical partition, LPAR) running
on the system can be either a dedicated or a shared
partition [12] and views processors as virtual proces-
sors. The virtual processor of a dedicated proces-
sor partition has a physical processor allocated to
it, while the virtual processor of a shared processor
partition shares the physical processors of a shared
processor pool with virtual processors of other shared
processor partitions.

C. Performance overhead

Hardware and software virtualization techniques
suffer different overheads. While software virtualiza-
tion requires careful engineering to ensure efficient
execution of guest kernel code, hardware virtual-
ization delivers near native speed for anything that
avoids certain operations, like starting an I/O oper-
ation which requires the intervention of the VMM.

In this sense, paravirtualization improves the exe-
cution time of the modified guest OS and application
programs, because this technique allows an interac-
tion between the guest and the VMM through which
the guest can notify the VMM when a privileged op-
eration needs to be executed.

IV. High level languages virtual machines

The primary goal of a High-Level Language Vir-
tual Machine is to provide an abstract ISA which is
free of quirks and requirements of any specific hard-
ware platform. Because it is not designed for a real
processor, it is a called virtual ISA (V-ISA). This vir-
tual ISA can be designed so that it reflects important
features of a specific high-level language (HLL) or a
class of HLLs. Furthermore, a V-ISA considers data
aspects are at least at the same level of importance
as the instructions. For example, these ISAs usu-
ally have richer type systems than traditional ISAs,
sometimes very similar to the type system of the high
level language which is being implemented.

HLL VMs usually also provide higher level run-
time services to the applications than traditional
ISAs. These services include garbage collection, data
persistence (serialization), threading, exception han-
dling and others depending on the languages being
implemented.

Using a HLL VM, applications can be distributed
in a V-ISA form. At execution time on a HLL VM,
a VM loader is invoked and converts the program
into a form that is dependent on the virtual machine
implementation. Finally the VM interprets and/or
translates from the V-ISA to the host ISA.

This increases portability of application programs
and eases the development of the compiler for that
language. Also, using the same HLL-VM to imple-
ment several languages enables code sharing between
the compilers of each language since all languages
will benefit from the same optimizations performed
by the virtual machine, usually by means of just
in time (JIT) compilation [19]. Using a virtual ma-
chine to execute a program instead of compiling it



directly to native code also enables new opportuni-
ties to improve performance, because a JIT compiler
has more precise information about the actual ex-
ecution environment and the dynamic behavior of
the application than an ahead of time compiler. For
example, JIT compilers usually gather profile infor-
mation to decide which methods should be compiled
with the highest optimization level and to perform
speculative inlining.

Virtual ISAs are also useful even when no virtual
machine is used to perform the execution either as a
portable binary distribution format [20] or as part of
a standard compilation workflow [21].

The Pascal P-Code Virtual Machine [22], the Java
Virtual Machine (JVM) [23] and the Common Lan-
guage Runtime (CLR) [19] are three examples of
HLL VMs.

V. Conclusion and future work

Virtualization provides separation between the use
of a resource or a service and the underlying phys-
ical layer. Virtual machines apply this concept to
computing platforms to improve flexibility, backward
compatibility, resource utilization and administra-
tion of data centers

Historically, virtualization has offered backward
compatibility of computer systems and, nowadays,
it offers some features that make the work of data
center administrators easier. These benefits are the
main reason why virtualization is, again, an impor-
tant hot topic in computer engineering.

The different techniques used to achieve a correct
and efficient virtualization can be divided, on the
one hand, into hardware and software solutions and,
on the other hand, into paravirtualization and full
virtualization proposals.

These techniques can be used to achieve strong
isolation between VMs, to supply security avoiding
access from a VM to the data of another VM and
preventing that any guest system from gaining total
control of the physical machine. Furthermore, a vir-
tualization environment should allow resource shar-
ing between VMs running on that environment, and
this includes memory, I/O devices and processors.

Virtualization techniques can be used to imple-
ment HLL VMs, which are useful to ease compiler de-
velopment, increase application portability and pro-
vide a number of runtime services to the applications.

Finally, there are many open topics of interest
in vitualization. As future work, we want to men-
tion the following: improvement of resource man-
agement for virtual machines, designing hardware to
ease the implementation of virtual machines (both
system virtual machines and HLL VMs), using vir-
tualization for heterogeneous component abstraction
(in heterogeneous CMPs, for example), using virtu-
alization to achieve global system optimization and
designing new memory models better suited for vir-
tualization than current ones.

VI. Acknowledgements

This work has been jointly supported by the Fun-
dación Seneca under grant 00001/CS/2007, and the
Spanish MEC under grant ”Consolider Ingenio-2010
CSD2006-00046”, and also by the EU FP6 NoE
HiPEAC IST-004408. Fernando Terroso Sáenz is
also supported by a research grant from the Fun-
dación Séneca.

References

[1] “Virtualization Overview,” Tech. Rep.,
www.wmware.com, 2006.

[2] G. J. Popek and R. P. Goldberd, “Formal requeriments
for Virtualizable Third-Generation Architectures,” Com-
munications of the ACM, 1974.

[3] J. E. Smith and R. Nair, Virtual Machines. Versatile
plataforms for systems and processes, Morgan Kaufmann
Publishers, 2005.

[4] J. E. Smith and R. Nair, “An Overview of Virtual Ma-
chine Architectures,” copyright by Elsevier Science, 2003.

[5] J. L. Hennessy and D. A. Patterson, Computer Archi-
tecture: A quantitative Approach, Morgan Kaufmann
Publishers, 4 edition, 2007.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen
and the Art of Virtualization,” Proc. 19th ACM Symp.
on Operating System Principles, 2003.

[7] Intel, “Intel Vanderpool Technology for IA-32 Processors
(VT-x) Preliminary Specification,” 2005.

[8] AMD, “AMD64 Architecture Programmer’s Manual Vol-
ume 2: System Programming,” 2007.

[9] G. Neiger, A. Santoni, F. Leung, D. Rodgers, and R. Uh-
lig, “Intel Virtualization Technology: Hardware Support
for Efficient Processor Virtualization,” Intel Technology
Journal, vol. 10, 2006.

[10] M. Myers and S. Youndt, “An Introduction to
Hardware-Assisted Virtual Machine (HVM) Rootkits,”
http://crucialsecurity.com/, 2007.

[11] P.H. Gum, “System/370 Extended Architecture: Facili-
ties for Virtual Machines,” IBM Journal Res. Develop-
ment, vol. 27, no. 6, 1983.

[12] W. J. Armstrong, R. L. Arndt, D. C. Boutcher, R. G. Ko-
vacs, D. Larson, K. A. Lucke, N. Nayar, and R. C. Swan-
berg, “Advanced virtualization capabilities of POWER 5
systems,” IBM Journal Res. and Dev., vol. 49, no. 4/5,
2005.

[13] T. Abels, P. Dhawan, and B. Chandrasekaran, An
overview of Xen virtualization, pp. 109–111, Dell Power
Solutions, 2005.

[14] J. S. Reuben, “A Survey on Virtual Machine Security,”
TKK T-110.5290 Seminar on Network Security, 2007.

[15] S. Devine, E. Bugnion, and M. Rosenblum, “Virtual-
ization system including a virtual machine monitor for
a computer with a segmented architecture,” US Patent
63971242, 1998.

[16] Qumranet Inc, KVM: Kernel-Based Virtualization Ma-
chine. White Paper, 2006.

[17] The VirtualBox architecture,
http://www.virtualbox.org/wiki, 2008.

[18] The Xen Project, Xen Architecture Overview, 1.2 edi-
tion, 2008.

[19] Ecma, “Common Lenguage Infrastructure (CLI),” Stan-
dar Ecma-335, 2006.

[20] M. Cornero, R. Costa, R. Fernández-Pascual, A. Orn-
stein, and E. Rohou, “An Experiemental Environment
Validating the Suitability of CLI as an Effective Deploy-
ment Format for Embedded Systems,” Proc. of the 2008
International Conference on High Performance Embed-
ded Architectures Compilers (HiPEAC-2008), 2008.

[21] C. Lattner and V. Adve, “LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation,”
Proc. of the 2004 International Symposium on Code
Generation and Optimization (CGO’04), 2004.

[22] K.V. Nori, U. Ammann, K. Jensen, H. H. Nageli, and
C. Jacobi, “The Pascal P-Compiler: Implementation
Notes,” Tech. Rep., Institut fur Informatik ETH, Zurich,
1975.

[23] J. Gosling, B. Joy, and G. Steele, The Java Lenguage
Specification, Addison-Wesley, 1996.


