
XVII JORNADAS DE PARALELISMO—ALBACETE, SEPTIEMBRE 2006 1

The SGluM Cache for Scalable Glueless
Shared-Memory Multiprocessors

Alberto Ros, Manuel E. Acacio and José M. Garćıa

Resumen— Traditionally, cache coherence in large-
scale shared-memory multiprocessors has been en-
sured by means of a distributed directory structure
stored in main memory. In this way, the access to
main memory to recover the sharing status of the
block is generally put in the critical path of every
cache miss, increasing its latency. Considering the
ever-increasing distance to memory, these cache co-
herence protocols are far from being optimal from
the perspective of performance. On the other hand,
shared-memory multiprocessors formed by connect-
ing chips that integrate the processor, caches, coher-
ence logic, switch and memory controller through a
low-cost, low-latency point-to-point network (glueless
shared-memory multiprocessors) are a reality.

In this work, we propose a novel design for the L2
cache level, at which coherence has to be maintained,
aimed at being used in glueless shared-memory mul-
tiprocessors. Our proposal splits the cache structure
into two different parts: one for storing data and di-
rectory information for the blocks requested by the lo-
cal processor, and another one for storing only direc-
tory information for blocks accessed by remote pro-
cessors. Using this cache scheme we remove the di-
rectory from main memory. Besides saving memory
space, our proposal brings very significant reductions
in terms of total execution time (31% on average).

Palabras clave— Glueless shared-memory multipro-
cessors, cache coherence, L2 cache, memory wall.

I. Introduction

WORKLOAD and technology trends point to-
ward highly integrated “glueless” designs [1].

These designs integrate the processor’s core, caches,
network interface and coherence hardware onto a sin-
gle die. It allows to directly connect these highly in-
tegrated nodes using a high-bandwidth low-latency
point-to-point network leading to glueless multipro-
cessors. Taking advantage of ever faster interconnec-
tion network, more research efforts must be carried
out in low-latency cache coherence protocols for tol-
erating the increasingly wider “memory gap” that
will be suffered in future scalable glueless shared-
memory multiprocessors.

Cache coherence in this kind of architecture has
traditionally been orchestrated on the basis of a dis-
tributed directory stored in the portion of the main
memory included in every system node [2]. In these
designs, whenever a cache miss takes place, it is nec-
essary to access the directory structure placed in the
home node to recover the sharing status of the block,
and subsequently, perform the actions required to en-
sure coherence and consistency.

Hence, this kind of cache coherence protocol
achieves scalability at the cost of putting the access
to main memory in the critical path of the lower-level

Departamento de Ingeniera y Tecnologa de Computa-
dores. Universidad de Murcia. Murcia 30080. e-mail:
{a.ros,meacacio,jmgarcia}@ditec.um.es

Fig. 1. The effect of memory latency on execution time.

cache misses1, which drastically increases the latency
of cache misses when compared to snoopy-based
cache coherence protocols. As an example, Figure
1 presents the execution times that are obtained for
a traditional directory-based shared-memory multi-
processor as main memory latency increases from 80
cycles to 1000 cycles. Additionally, it is also shown
the execution times that would be obtained in the
ideal case, that is to say, when directory informa-
tion is stored in the L2 caches and main memory
is accessed just for those memory blocks that are
not found in any of the caches (blocks in uncached
state). These results are for a 32-node architecture
and several SPLASH-2 benchmarks (see section IV-
A for details).

As observed, as memory latency grows applica-
tions’ execution time becomes significantly greater
for a traditional directory-based cache coherence pro-
tocol. On the contrary, the impact of memory la-
tency is much lower in the ideal case. This is due to
for most of the L2 cache misses either the home node
just uses directory information but not the memory
block or the memory block can be provided by the L2
cache of one of the sharers. In the first case, accesses
to main memory can be avoided by using directory
caches [3], [2]. The second observation constitutes
one of the reasons why the proposed scheme employs
a cache coherence protocol derived from the MOESI
protocol, which has been used extensively in SMP
systems but not in cc-NUMAs.

In this work, we re-consider the design of the L2
caches that will be used in future Scalable Glueless
Multiprocessors and propose a new structure, called
the SGluM cache, that reduces the L2 cache miss
latencies by avoiding unnecessary accesses to main

1By lower-level cache we mean the cache level where coher-
ence is maintained (the L2 caches in this paper).

2 ALBERTO ROS Y COL.

memory. In particular, our proposal removes com-
pletely the directory information from main memory
and stores it in the L2 caches, which are split into two
structures: the data and directory information (or
DDI) and the only directory information (or ODI)
structures. The first one stores data and directory
information for the blocks requested by the proces-
sor. The second one stores only directory informa-
tion for those blocks that other nodes have requested
but that the home node is not currently using.

The key contribution of this paper is the pro-
posal of a new L2 cache design for scalable glue-
less shared-memory multiprocessors that includes all
the information needed to maintain cache coherence,
thus eliminating the need of a directory structure in
main memory. This scheme allows faster L2 cache
misses by removing main memory accesses for most
L2 cache misses (from 65.95% to 99.98%). We have
evaluated our proposal, obtaining improvements of
31% on average in total execution time with respect
to a traditional directory-based architecture. More-
over, we have studied how the miss latency is reduced
for each type of cache miss, obtaining important re-
ductions in each case. Additionally, we compare our
proposal against a system that uses directory caches
in each node, achieving reductions in execution time
of 15% on average.

The rest of the paper is organized as follows. A
review of the related work is presented in section II.
Subsequently, section III shows the design for the L2
cache proposed in this paper, as well as the coher-
ence protocol required by it. Section IV discusses the
evaluation methodology and presents a detailed per-
formance evaluation of the proposal. Finally, Section
V concludes the paper.

II. Related Work

Directory caches [4] can be used for reducing the
latency of L2 misses by obtaining directory informa-
tion from a much faster structure than main mem-
ory. For example, in [5] the integration of directory
caches inside the coherence controllers was proposed
to minimize directory access time. In [6], the remote
memory access latency is reduced by placing caches
in the crossbar switches of the interconnection net-
work to capture and store shared data as they flow
from the memory module to the requesting proces-
sor. Finally, in [3] a 3-level directory organization
was proposed, including a directory cache on chip
and a compressed directory structure in main mem-
ory. Differently from these proposals, we present a
novel design for the L2 cache used in shared-memory
multiprocessors that takes into account coherence
from the beginning.

Other proposals to reduce L2 cache miss latency
in cc-NUMAs have focused on using snooping pro-
tocols with unordered networks. In [7], Martin. et
al. propose a technique that allows SMPs to uti-
lize unordered networks (with some modifications to
support snooping). Bandwidth Adaptive Snooping
Hybrid (BASH) [8] is an hybrid coherence protocol

Convert
Logic

State
Function

Tag V Sharing CodeSt Data

Tag V Sharing CodeSt Data

Tag V Sharing CodeSt Data

V Owner

V Owner

V Owner

���
���
���
���
���
���
���
���
���
���
���

�
�
�
�
�
�
�
�
�
�
�

...

Shared

Tag

Tag

Tag Sharing Code

Sharing Code

Sharing Code

...

VTag

VTag

VTag

Owner

Owner

Owner

Private

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Sharing Code

Tag

/

/
N

N

/
N

/
N

/

//

1

11

1/

2
/
(U, P, S)

Data

State

ODI Structure

DDI Structure

...

M
/

Fig. 2. The L2 cache structure proposed in this paper.

that dynamically decides whether to act like snoop-
ing protocols (broadcast) or directory protocols (uni-
cast) depending on the available bandwidth. Token
coherence protocols [1] avoid both the need of a to-
tally ordered network and the indirection caused by
the directory by using N tokens per memory block.
In this way, a node can read a block if it has at least
one token and can update the block if it has all the
tokens of that block.

Finally, the lightweight directory architecture pro-
posed in [9] adds directory information to the L2
caches, thus removing the directory structure from
main memory. However, this organization increases
the number of cache misses as a result of the prema-
ture invalidations that arise when a particular mem-
ory block is replaced from the L2 cache of the corre-
sponding home node.

III. The SGluM Cache

A. L2 Cache Structure

Besides keeping a copy of the memory blocks that
have been recently referenced by the local proces-
sor, the L2 cache structure in the SGluM design also
stores directory information for the local blocks. In
this way, we avoid accessing main memory for re-
covering directory information, which is now stored
“closer” to the directory controller.

The design for the SGluM cache architecture con-
sist of two structures:

1. The Data and Directory Information (DDI)
structure that maintains both data and direc-
tory information for blocks requested by the pro-
cessor. This structure is organized as a tradi-
tional L2 cache plus two extra fields used for
storing directory information. The first field
maintains the directory state and could take ei-
ther the private or the shared state (1 bit). The
second one keeps track of the sharers (sharing
code).

2. The Only Directory Information (ODI) struc-
ture that stores only directory information for
local blocks requested by remote nodes and not
being used by the local node. This structure
(like an on-chip directory cache) has three main
fields: the tag of the block, the valid bit and
the directory information. The ODI structure

XVII JORNADAS DE PARALELISMO—ALBACETE, SEPTIEMBRE 2006 3

TABLA I

Summary of the actions performed by the directory controller

Directory Information found in

Miss type Not in L2 cache DDI P-ODI S-ODI

Local
Read Allocate an entry in

DDI (dir. inf + data)
Hit Move entry to DDI

and store data in it
Move entry to DDI
and store data in it

Write Allocate an entry in If (state = private) Hit. Move entry to DDI Move entry to DDI

DDI (dir. inf + data) If (state = shared)
Invalidate remote copies
and update entry

and store data in it and store data in it

Remote
Read Allocate an entry in

P-ODI
Update entry Move entry to

S-ODI
Update entry

Write Allocate an entry in
P-ODI

Move entry to P-ODI and
invalidate the copies

Update entry Move entry to P-ODI
and invalidate the
copies

is split into two separate small structures: the
private and the shared portions. The first one
stores directory information for the blocks that
are in private state and it only needs one pointer
per entry to keep the identity of the node.
The second one stores directory information for
blocks in shared state and uses both a precise
sharing code for locating all the copies of ev-
ery block, and a pointer that identifies the node
that has to provide the block when needed (the
owner node). The directory state is implicit in
both structures.

Figure 2 shows the design of the cache structure.
The directory state for a block is uncached if there is
no valid entry for it in any structure. In other case,
the state is derived from the structure in which the
entry is stored (tag match in ODI) or by the state
field (tag match in DDI).

B. Cache Coherence Protocol

The L2 cache proposed in this paper requires also
to design a cache coherence protocol that takes into
consideration the particularities of the new cache
structure. Our protocol has two main challenges: To
avoid main memory accesses by taking advantage of
the current fast interconnection networks that make
the access to another cache less expensive than the
access to main memory, and to handle the directory
information efficiently since we do not have directory
information in main memory.

B.1 How L2 cache misses are satisfied

Each time an L2 cache miss for a block reaches the
directory controller of the home node, the directory
information for the block is looked for in parallel in
each one of the three structures that compose the L2
cache.

If the directory information is not found in the L2
cache (uncached state), the block is obtained from
main memory. Subsequently, a new entry must be
allocated in the L2 cache of the home node for keep-
ing the directory information of that block. If the
miss is a local miss, the directory information is allo-
cated along with data in the DDI structure. In other
case, the new entry is allocated in the private part
of the ODI structure.

If the entry is found in the DDI structure, the miss
is solved by obtaining the block from this structure.
In this case, the miss is solved in only two hops when
invalidations are not needed. As commented before,
we have found that this situation appears frequently
in parallel applications. If the miss were caused by
a write instruction in a remote node, the directory
information is moved to the private part of the ODI
structure and the sharing code will point to the new
owner node.

If the entry is found in the private part of the ODI
structure, the miss is solved with a cache-to-cache
transfer message. For local misses, the directory in-
formation is moved to the DDI structure and the
data is also stored in it. Remote misses cause that
the entry is moved to the shared part of the ODI
structure (read operation), or it is updated with the
new owner (write operation).

Finally, if the entry is found in the shared part
of the ODI structure, the pointer field stored in the
entry of this structure gives the identity of the node
that must provide the block. This node is the first
node that requested the block or the last one that
wrote it. If the block had been evicted from this
node it would be obtained from main memory and
the requesting node must provide it in future misses.
In a local miss, the entry is moved to the DDI struc-
ture. In a remote miss, it is either updated, when
the remote miss is caused by a read instruction, or
moved to the private part of the ODI structure, when
the remote miss is caused by a write instruction.

As observed, main memory is only accessed in our
proposal firstly, when no node has a valid copy of
it, and a few times (approximately 3% of the mem
misses) when the owner node has evicted the block
from the cache. Table I summarizes how L2 cache
misses are solved using our coherence protocol. In
particular, it shows the actions performed for Lo-
cal/Remote misses, caused by Read/Write instruc-
tions for which directory information is not found in
the L2 cache, it is found in the DDI structure, in the
private part of the ODI structure (P-ODI), or in the
shared part of the ODI structure (S-ODI).

B.2 How replacements are managed

As all the directory information has been removed
from main memory, if a directory entry is evicted

4 ALBERTO ROS Y COL.

from the L2 cache of the home node, cache coher-
ence for that block cannot be maintained. To cope
with this problem, it is necessary to invalidate first
all the copies of the block and update main mem-
ory when needed2. Although these invalidations are
not in the critical path of the cache miss that caused
the replacement, it is important to keep these kinds
of replacements low, since they can result into an
increase in the L2 miss rate with respect to conven-
tional architectures.

When a block is evicted from the DDI structure,
the ODI structure is used as a victim cache for the di-
rectory information of this block. This avoids prema-
ture invalidations as a consequence of replacements.
Obviously, if the home node is the only sharer of the
replaced block, after the replacement directory infor-
mation for the block is no longer needed (so that an
entry in the ODI structure is not allocated in this
case) and main memory can be updated (if needed)
without coherence actions.

If a directory entry is evicted from the ODI struc-
ture (either from the private or the shared portions
of it) the remote copies of the corresponding block
must be also invalidated. When all the invalidations
have been performed, the main memory is updated
and the state of the block becomes uncached.

On the other hand, the replacements that take
place in the remote nodes only cause coherence ac-
tions when the block is in the owner state. In this
case, the replacement is sent to the home node and
the owner pointer is disabled. The next miss for this
block will be obtained from main memory.

C. Implementation Issues

We assume that the DDI structure has pipelined
access to the part of the tags and the part of data.
Both the private and shared portions of the ODI
structure have the same latency as the tags’ part of
the DDI structure. The three structures are accessed
in parallel to find directory information.

In this work, we have used a precise sharing code
(particularly full-map) for both the DDI and the
shared portion of the ODI structure. Of course, al-
ternative sharing codes could be used (as compressed
sharing codes or limited pointer ones) but the use
of full-map allows us to concentrate on the impact
that our proposal has on performance, removing any
interference caused by unnecessary coherence mes-
sages.

For the particular implementation of this paper
(a 32-node system with 512KB L2 caches in every
node), the number of bits required for storing the
full-map sharing code is 32 (4 bytes), whereas for
storing a single pointer is log232 = 5 bits (≈ 1 byte).
The total amount of extra memory introduced in the
cache structure represents only a 7.13% of the data

2These invalidations do not introduce additional deadlock
problems, as they are already considered in the original co-
herence protocol. The interconnection network uses two vir-
tual networks (one for requests and another one for replies),
and this is enough to cope with the new deadlock issues that
appear in our new protocol.

TABLA II

Memory overhead introduced by the directory

information

Data Dir. Inf. (+7.13%)
DDI DDI P-ODI S-ODI

Bytes per entry 64 4 1 5

Number of entries 8192 8192 2048 512

Total size (KB) 512 32 2 2.5

Overhead - +6.25% +0.39% +0.49%

TABLA III

System parameters

32-Node System

ILP Processor Parameters

Max. fetch/retire rate 4
Instruction window 128
Branch predictor 2 bit agree, 2048 count

Cache Parameters

Cache block size 64 bytes
Split L1 I & D cache: write-through

Size, associativity 32 KB, direct mapped
Hit time 2 cycles

Unified L2 cache: write-back
DDI (data) 512 KB, 4-way, 9 cycles
DDI (dir. inf) 32 KB, 4-way, 6 cycles
Private ODI 2 KB, 4-way, 6 cycles
Shared ODI 2.5 KB, 4-way, 6 cycles

Directory Parameters

Directory controller cycle 1 cycle (on-chip)
Directory access time 6 cycles (L2 tag)
Message creation time 4 cycles first, 2 next

Memory Parameters

Memory access time 300 cycles
Memory interleaving 4-way

Internal Bus Parameters

Bus width 8 bytes
Bus cycles 1 cycle

Network Parameters

Topology 2-dimensional mesh
Flit size 8 bytes
Non-data message size 2 flits
Channel bandwidth 4 GB/s

part size of the L2 cache. In contrast, the directory
information represents an overhead in the total mem-
ory size from the 3% in the SGI Altix 3000 [2] to 12%
in other systems, and could even reach 100% [10] de-
pending of both the sharing code and the number
of nodes used. Table II shows how this percentage
is distributed among the three structures previously
described.

IV. Evaluation Results and Analysis

In this section, we compare an architecture that
uses the SGluM cache against two configurations
of a 32-node multiprocessor, both of them using a
MESI protocol. The first configuration, named con-
ventional, is a glueless shared-memory multiproces-
sor configured from processors similar to the Alpha
EV7 [11] with all the directory information stored
in main memory (300 cycles). The second configu-
ration, named directory cache, includes a directory
cache on every processor chip for accelerating the
access to the directory information, resulting a con-
figuration similar to the SGI Altix 3000 [2]. The
size of the directory cache used in each node is sim-
ilar to the amount of memory used for storing the
directory information in our proposal (32KB, 8192
entries). Other characteristics of the directory cache
are 6 hit cycles and 4-way associative. Note that for
this configuration directory information is also kept
in main memory.

XVII JORNADAS DE PARALELISMO—ALBACETE, SEPTIEMBRE 2006 5

TABLA IV

Percentage of L2 cache misses for each one of the categories of the taxonomy

Benchmark
Conventional Proposed L2 cache architecture

$-to-$ Inv Mem
Inv+

$-to-$ Inv Mem
Inv+

Mem Mem

Barnes 30.47% 23.44% 44.87% 1.22% 75.41% 21.26% 0.44% 2.89%
Cholesky 18.62% 5.53% 75.58% 0.27% 74.02% 7.18% 18.31% 0.49%
EM3D 33.77% 33.77% 32.46% 0.00% 66.12% 33.79% 0.09% 0.00%
FFT 54.24% 44.61% 0.49% 0.66% 54.43% 44.61% 0.30% 0.66%
Ocean 31.84% 27.54% 39.67% 0.95% 42.38% 26.96% 29.66% 1.00%
Radix 47.73% 12.21% 38.57% 1.48% 56.78% 6.32% 36.05% 0.85%
Unstructured 62.33% 28.29% 9.26% 0.12% 71.66% 28.08% 0.10% 0.16%
Water-NSQ 37.55% 29.71% 32.62% 0.13% 70.85% 28.99% 0.02% 0.15%
Water-SP 8.94% 4.97% 85.53% 0.56% 94.15% 4.87% 0.05% 0.93%

Mean 36.17% 23.34% 39.89% 0.60% 67.31% 22.45% 9.45% 0.79%

A. Simulation Environment

We have used a detailed execution-driven simula-
tor (RSIM) modified to support the configurations
described above. For the SGluM cache, we model
the contention on tags and data cache accesses for
the remote requests. In this way, those remote re-
quests that try to access the tags at the same time
that another request (local or remote) is in progress
will be delayed. Simulations have been performed
using an optimized version of the sequential consis-
tency model with speculative load execution follow-
ing the guidelines given by Hill [12]. Table III shows
the system parameters used to evaluate our proposal.

The benchmarks used in our simulations cover
a variety of computation and communication pat-
terns. Barnes (4096 bodies, 4 time steps), Cholesky
(tk15.O), FFT (256K complex doubles), Ocean
(258x258 ocean), Radix (1M keys, 1024 radix),
Water-NSQ (512 molecules, 4 time steps), and
Water-SP (512 molecules, 4 time steps) are from
the SPLASH-2 benchmark suite [13]. Unstructured
(Mesh.2K, 5 time steps) is a computational fluid dy-
namics application. Finally, EM3D (38400 nodes,
15% remotes, 25 time steps) is a shared memory im-
plementation of the Split-C benchmark. All exper-
imental results reported in this work correspond to
the parallel phase of these benchmarks.

B. Impact on L2 cache miss latencies

This subsection analyzes how our proposal can sig-
nificantly reduce the latency of L2 cache misses. In
particular, we assume the taxonomy for the L2 cache
misses described in [3]. Table IV shows the percent-
age of the L2 cache misses that fall into each category
of the taxonomy.

Comparing the results obtained in both cases (the
conventional multiprocessor and the one that uses
the proposal of this work), we can see that in most
cases, a significant fraction of the memory misses
that appear in cc-NUMA architectures and that re-
quire accessing main memory are converted into $-to-
$ misses, which can obtain data faster from another
cache. The exception is the FFT application. In this
case, memory misses account for a very small fraction
of the total misses in the conventional case, so that
they are not significantly reduced when our proposal
is employed. Finally, a fraction of the memory misses
in Cholesky, Ocean and Radix applications can not

Fig. 3. Average L2 miss latency.

be solved by means of a cache-to-cache transfer, even
when the novel L2 cache architecture is used. This
is due to two factors: the cold misses (77%, 27% and
76% of the mem misses, respectively) and the misses
that occur when the block is only present in main
memory as a result of replacements in the L2 caches.

Figure 3 illustrates the average latency for each
architecture. These figures do not consider the over-
lapping of the misses, and average latencies are cal-
culated considering each miss individuality. Reduc-
tions obtained from the conventional configuration
to the directory cache configuration are due to the
reductions in the cycles need to obtain the direc-
tory information. On the other hand, reductions
obtained from directory cache configuration to the
SGluM cache are mainly due to the conversion of
memory misses to cache-to-cache transfer misses.

C. Impact on execution time

The improvements shown in Section IV-B finally
translate into reductions on applications’ execution
time. The extent of these reductions depends on the
speed-ups previously shown on average miss latency
for the L2 cache misses and the weight that L2 cache
misses have on execution time.

For the applications used in this paper, Figure
4 plots the execution times that are obtained for
both the conventional configuration, the directory
cache configuration and the one using the SGluM
cache. Results in terms of execution times have been
normalized with respect to the base case (the con-
ventional cc-NUMA architecture). In general, the
proposal presented in this paper has been shown
able to reduce the miss latencies since the number
of memory misses, and consequently of accesses to
main memory, has been reduced in several applica-

6 ALBERTO ROS Y COL.

Fig. 4. Normalized execution times.

tions. As a consequence, very important reductions
in terms of execution time are obtained for Barnes
(42%), EM3D (47%), Ocean (43%), Unstructured
(49%) and Water-SP (29%). In these cases, impor-
tant speed-ups have been shown for the L2 cache
misses, and a significant fraction of the execution
time of these applications is spent in the L2 cache
misses. For the rest of applications, reductions rang-
ing from 10% for Water-NSQ to 23% for Radix are
found.

With respect to the directory cache configura-
tion, our proposal obtains improvements in execu-
tion time ranging from 0.5% for FFT to 31% for
Water-SP (15% on average). These improvements
are more important in applications that present a sig-
nificant number of memory misses, as Cholesky and
Water-SP. In these cases, our proposal converts most
of these mem misses into cache-to-cache transfers,
which avoids having to access main memory. Appli-
cations in which cache-to-cache transfer misses are
majority, as FFT, Radix and Unstructured, the di-
rectory cache configuration obtains execution times
close to those of our proposal.

V. Conclusions

In this paper, we take advantage of current tech-
nology trends and propose a new design for the L2
cache (lower-level caches in general) aimed at being
used in future glueless scalable shared-memory mul-
tiprocessors. The proposal presented in this work
avoids unnecessary accesses to main memory by stor-
ing all the directory information in several structures
inside the L2 cache. Additionally, our proposal does
not need to store directory information in main mem-
ory, saving from 3% to 12% of storage in current de-
signs [2].

In particular, our proposal splits the L2 cache
into two structures: the data and directory informa-
tion (or DDI) and the only directory information (or
ODI) structures. The first one stores data and di-
rectory information for the blocks requested by the
local processor. The second one stores only direc-
tory information for those blocks that other nodes
have requested but that the home node is not cur-
rently using. In this way, our L2 cache allows faster
L2 cache misses by removing main memory accesses
for most L2 cache misses (from 65.95% to 99.98%).

On average, the architecture presented in this pa-
per obtains improvements of 31% in execution time

when compared to a conventional glueless shared-
memory multiprocessor consisting of several Alpha
EV7-like processors [11], and 15% when a directory
cache is added to each one of the nodes of the multi-
processor. In this way, we think that the simplicity
and the good results of our proposal make it com-
petitive for future small and medium-scale shared-
memory multiprocessors (16 to 256 processors).

VI. Acknowledgments

This work has been supported by the Spanish
Ministry of Ciencia y Tecnoloǵıa and the European
Union (Feder Funds) under grant TIC2003-08154-
C06-03. A. Ros is supported by a research grant
from the Spanish MEC under the FPU national plan
(AP2004-3735).

Referencias

[1] M. Martin, M. Hill, and D. Wood, “Token Coherence:
Decoupling Performance and Correctness,” in 30th Int’l
Symposium on Computer Architecture (ISCA’03), June
2003, pp. 182–193.

[2] M. Woodacre, D. Robb, D. Roe, and K. Feind, “The
SGI AltixTM 3000 global shared-memory architecture,”
Technical Whitepaper, Silicon Graphics, Inc., 2003.

[3] M.E. Acacio, J. González, J.M. Garćıa, and J. Du-
ato, “An Architecture for High-Performance Scalable
Shared-Memory Multiprocessors Exploiting On-chip In-
tegration,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 15, no. 8, pp. 755–768, August
2004.

[4] A. Gupta, W. Weber, and T. Mowry, “Reducing Memory
Traffic Requirements for Scalable Directory-Based Cache
Coherence Schemes,” in Int’l Conference on Parallel
Processing (ICPP’90), August 1990, pp. 312–321.

[5] A.K. Nanda, A. Nguyen, M.M. Michael, and D.J. Joseph,
“High-Throughput Coherence Controllers,” in 6th Int’l
Symposium on High-Performance Computer Architec-
ture (HPCA-6), January 2000, pp. 145–155.

[6] R. Iyer and L.N. Bhuyan, “Switch Cache: A Frame-
work for Improving the Remote Memory Access Latency
of CC-NUMA Multiprocessors,” in 5th Int’l Symposium
on High-Performance Computer Architecture (HPCA-
5), January 1999, pp. 152–160.

[7] M.M. Martin, D.J. Sorin, A. Ailamaki, A.R. Alameldeen,
R.M. Dickson, C.J. Mauer, K.E. Moore, M. Plakal, M.D.
Hill, and D.A. Wood, “Timestamp Snooping: An Ap-
proach for Extending SMPS,” in 9th Int’l Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS IX), November 2000, pp.
25–36.

[8] M.M. Martin, D.J. Sorin, M.D. Hill, and D.A. Wood,
“Bandwidth Adaptive Snooping,” in 8th Int’l Symposium
on High Performance Computer Architecture (HPCA-8),
January 2002, pp. 251–262.

[9] Alberto Ros, Manuel E. Acacio, and José M. Garćıa,
“A novel lightweight directory architecture for scal-
able shared-memory multiprocessors,” in 11th Interna-
tional Euro-Par Conference, Jos C. Cunha and Pedro D.
Medeiros, Eds., Lisbon (Portugal), Aug. 2005, vol. 3648,
pp. 582–591, Springer-Verlag.

[10] M.E. Acacio, J. González, J.M. Garćıa, and J. Duato,
“A Two-Level Directory Architecture for Highly Scalable
cc-NUMA Multiprocessors,” IEEE Transactions on Par-
allel and Distributed Systems, vol. 16, no. 1, pp. 67–79,
January 2005.

[11] L. Gwennap, “Alpha 21364 to Ease Memory Bottleneck,”
Microprocessor Report, vol. 12, no. 14, pp. 12–15, Octo-
ber 1998.

[12] M.D. Hill, “Multiprocessors Should Support Simple
Memory-Consistency Models,” IEEE Computer, vol. 31,
no. 8, pp. 28–34, August 1998.

[13] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and
A. Gupta, “The SPLASH-2 Programs: Characteriza-
tion and Methodological Considerations,” in 22nd Int’l
Symposium on Computer Architecture (ISCA’95), June
1995, pp. 24–36.

