
Efficient Cache Coherence Protocol in Tiled

Chip Multiprocessors
Alberto Ros, Manuel E. Acacio and José M. Garćıa

Abstract— Although directory-based cache coher-
ence protocols are the best choice when designing
large-scale chip multiprocessors (CMPs), they in-
troduce indirection to access directory information,
which negatively impacts performance. In this work,
we present DiCo-CMP, a cache coherence protocol
aimed at avoiding indirection to the directory infor-
mation. In DiCo-CMP, the role of storing up-to-date
sharing information and ensuring totally ordered ac-
cesses for every memory block is assigned to the cache
that must provide the block on a miss. Therefore,
DiCo-CMP reduces the miss latency compared to a
directory protocol by sending coherence messages di-
rectly from the requesting caches to those that must
observe them, and reduces the network traffic com-
pared to broadcast-based protocols by sending just
one request message for each miss. Using an extended
version of GEMS simulator we show that DiCo-CMP
achieves improvements in execution time of up to 8%
on average over a directory protocol, and reductions
in terms of network traffic of up to 42% on average
compared to Token-CMP.

Keywords—Tiled CMPs, cache coherence protocols,
DiCo-CMP, direct coherence, indirection.

I. Introduction

TILED CMP architectures have recently emerged
as a scalable alternative to current CMP de-

signs, and future CMPs will be probably designed as
arrays of replicated tiles connected over a switched
direct network [1], [2].

Directory-based cache coherence protocols have
been typically employed in systems with point-to-
point unordered networks (as tiled CMPs are). Un-
fortunately, these protocols introduce indirection
to obtain coherence information from the directory
(commonly on chip as a directory cache), thus in-
creasing cache miss latencies. An alternative ap-
proach that avoids indirection is Token-CMP [3].
Token-CMP is based on broadcasting requests to all
last-level private caches. In this way, caches can
directly provide data when they receive a request
(no indirection occurs). Unfortunately, the use of
broadcasting increases network traffic and, therefore,
power consumption in the interconnection network,
which has been previously reported to constitute a
significant fraction (approaching 50% in some cases)
of the overall chip power [4].

In this work, we present DiCo-CMP, a cache co-
herence protocol for tiled CMP architectures that
meets the advantages of directory and Token-CMP
protocols and avoids their problems. DiCo-CMP as-
signs the role of storing up-to-date sharing informa-
tion and ensuring totally ordered accesses for every
memory block to one of the caches that actually

Departamento de Ingenieŕıa y Tecnoloǵıa de Computadores.
Universidad de Murcia. 30100 Espinardo, Murcia. e-mail:
{a.ros,meacacio,jmgarcia}@ditec.um.es

shares the block, particularly the one that provides
the block on a miss (the owner cache in a MOESI
protocol). Indirection is avoided by directly sending
the requests to the owner cache instead of to the di-
rectory structure kept in the home tile in directory
protocols. In our proposal, the identity of the owner
caches is recorded in a small structure associated to
every core called the L1 coherence cache. Since the
owner cache changes on write misses, another struc-
ture called the L2 coherence cache keeps up-to-date
information about the identity of the owner cache.
This L2 coherence cache is accessed each time a re-
quest fails to locate the owner cache.

In this way, DiCo-CMP reduces the latency of
cache misses compared to a directory protocol by
sending coherence messages directly from the re-
questing caches to those that must observe them,
and reduces network traffic compared to Token-CMP
by sending just one request message on every cache
miss. Detailed simulations using GEMS and several
scientific applications show that DiCo-CMP achieves
improvements in total execution time of 8% on av-
erage over a directory protocol and of 3% on aver-
age over Token-CMP. Moreover, our proposal obtains
reductions in terms of network traffic (and, conse-
quently, in power consumption) compared to Token-
CMP of 28%.

The rest of the paper is organized as follows. In
Section II we present a review of the related work.
DiCo-CMP is described in Section III. Section IV
introduces the methodology employed in the evalu-
ation. Section V shows the performance results ob-
tained by our proposal. And finally, Section VI con-
cludes the paper.

II. Related Work and Background

In this paper, we compare DiCo-CMP against two
cache coherence protocols aimed at being used in
CMPs: Token-CMP and an implementation of a di-
rectory protocol for CMPs. The next two subsections
give some details regarding these two protocols. First
of all we comment on some of the related works.

Acacio et al. propose to avoid the indirection for
cache-to-cache transfer misses [5] and upgrade misses
[6] separately by predicting the current holders of ev-
ery cache block. Predictions must be verified by the
corresponding directory controller, thus increasing
the complexity of the protocol on miss-predictions.
In contrast, our proposal is applicable to all types of
misses and just the identity of the owner cache is pre-
dicted. We avoid predicting the current holders by
storing the up-to-date directory information in the
owner cache.

Martin et al. propose to use destination-set
prediction to reduce the bandwidth required by a
snoopy protocol [7]. Differently from DiCo-CMP,
this proposal is based on a totally-ordered inter-
connect, which does not scale with the number of
nodes. Destination-set prediction is also used by
Token-M with unordered networks [8]. However, on
miss-predictions, requests are solved by resorting on
broadcasting after a time-out period. Differently, in
DiCo-CMP miss-predictions are resent immediately
to the owner cache, thus reducing latency and net-
work traffic.

More recently, Cheng et al. have proposed con-
verting 3-hop read misses into 2-hop read misses for
memory blocks that exhibit the producer-consumer
sharing pattern [9] by using extra hardware to de-
tect when a block is being accessed according to this
pattern. In contrast, our proposal obtains 2-hops
misses for read, write and upgrade misses without
taking into account sharing patterns.

A. Directory-CMP

Directory-based coherence protocols have been
widely used in shared-memory multiprocessors.
Now, several Chip Multiprocessors, as Piranha [10],
also use directory protocols to keep cache coherency.
In this paper, we compare our proposal against a di-
rectory protocol similar to the intra-chip coherence
protocol used in Piranha, which is based on MOESI
states in the caches. In this implementation, on-
chip directory caches are used for accelerating the
accesses to directory information for blocks stored in
the L1 caches. Moreover, the protocol implements a
migratory-sharing optimization [11], in which a cache
holding a modified cache block invalidates its copy
when responding with the block, thus granting the
requesting processor read/write access to the block
(even when only read permission was requested).

B. Token-CMP

Token coherence [12] is a framework for design-
ing coherence protocols whose main asset is that it
decouples the correctness substrate from several dif-
ferent performance policies. Token coherence pro-
tocols can avoid both the need of a totally ordered
network and the introduction of additional indirec-
tion caused by the directory in the common case of
cache-to-cache transfers. Token coherence protocols
keep cache coherence by assigning T tokens to every
memory block, where one of the T is the owner to-
ken. Then, a processor can read a block only if it
holds at least one token for that block and has valid
data. On the other hand, a processor can write a
block only if it holds all T tokens for that block and
has valid data. In this paper, we compare our co-
herence protocol against Token-CMP [3], which tar-
gets CMP systems, and uses a distributed arbitration
scheme for persistent requests to optimize the access
to contended blocks.

2

4

3

1

R

D

O

FWD

DATA

GETS/GETX
ACK

a)

1

2

O&D

R

b)

GETS/GETX

DATA

Fig. 1. a) Cache-to-cache transfer in a directory protocol.
b) Cache-to-cache transfer in DiCo-CMP. (R=Requester;
D=Directory; O=Owner).

31

O

D

S

4

2

INV

ACK

UPGRADE

a)

ACK(n)
2

S
1

b)

ACK
O&D

INV

Fig. 2. a) Upgrade in a directory protocol. b) Upgrade in
DiCo-CMP. (O=Owner; D=Directory; S=Sharers).

III. The DiCo-CMP Coherence Protocol

As shown in Figure 1.a, in directory-based proto-
cols it is necessary to obtain the directory informa-
tion before any coherence action can be performed
(1). This information is obtained either from the
L2 cache or from a directory cache (commonly on
chip). Moreover, the access to the directory infor-
mation serializes the requests to the same block is-
sued by different processors. In case of a cache-to-
cache transfer, the request is subsequently sent to the
owner cache where the miss is solved (2). It can be
observed that first, the miss is solved in three hops,
and second, another request for the same block can-
not be processed by the directory until it receives
the acknowledgement from the owner cache (3). In
contrast, DiCo-CMP (Figure 1.b) assigns the role of
storing up-to-date sharing information and ensuring
totally ordered accesses for every memory block to
the owner cache. Indirection is avoided by directly
sending the request to the owner cache. Moreover,
by keeping together the owner and the directory in-
formation the owner cache does not need to receive
any acknowledgement to process the next request to
the same block, thus saving some control messages
and reducing the latency of requests.

Another example of the advantages of DiCo-CMP
is shown in Figure 2. This diagram represents an
upgrade that takes place in the owner node, which
happens frequently in common applications. In a
directory protocol, upgrades are solved sending the
request to the directory (1), which replies with the
number of acknowledgements that must be received
before the block can be modified (2), and sends in-
validations (3). In DiCo-CMP only invalidations (1)
and acknowledgements (2) are required, thus solving
the miss with just two hops in the critical path.

DiCo-CMP extends the tags’ part of the L1 and L2
caches with a new field used to keep the identity of
the sharers for blocks in owned state. Additionally,
DiCo-CMP needs two extra hardware structures that
keeps a pointer which identifies the owner cache:

R
o

u
te

r

CPU Core

L1D$

L1I$

L2$ (Tags)

L2$ (Tags)

L2$ (Data)

L2$ (Data)

L1C$

L2C$

Fig. 3. Organization of a tile (black boxes are the elements
added by DiCo-CMP) and a 4×4 tiled CMP.

• L1 coherence cache (L1C$): The pointer stored
in this structure is used to directly send local
requests to the owner cache, thus avoiding in-
direction. Therefore, this structure is located
close to each processor’s core. Our cache co-
herence protocol can update this information in
several ways based on network usage (see Sec-
tion III-C).

• L2 coherence cache (L2C$): Since the owner
cache can change on write misses, this struc-
ture must keep the identity of the current owner
cache for each block allocated in any L1 cache.
Therefore, this information must be updated
whenever the owner cache changes through con-
trol messages. This structure is accessed each
time a request fails to locate the owner cache.

A. Architecture of Tiled CMPs

The tiled CMP architecture assumed in this work
consists of a number of replicated tiles connected
over a switched direct network. Each tile contains
a processing core with primary caches (both instruc-
tion and data caches), a slice of the L2 cache, and a
connection to the on-chip network. The L2 cache is
shared among the different processing cores, but it is
physically distributed among them. Therefore, some
accesses to the L2 cache will be sent to the local slice
while the rest will be serviced by remote slices (L2
NUCA architecture [13]). Moreover, the L1 and L2
caches are non-inclusive to exploit the total available
cache capacity on chip. Figure 3 shows the organi-
zation of a tile (left) and a 16-tile CMP (right).

The protocols evaluated in this work follow this de-
sign. However, each tile in DiCo-CMP adds the two
structures introduced in the previous section: the L1
and L2 coherence caches (see black boxes in Figure
3, left). Moreover, to keep the directory information
within the owner cache it is necessary to add a new
field in the tags’ part of the L1 caches. In contrast,
DiCo-CMP does not need to keep directory informa-
tion in on-chip directory caches.

B. Description of the cache coherence protocol

B.1 Requesting processor

When a processor issues a request that misses in
its private L1 cache, the request is directly sent to
the owner cache in order to avoid indirection. The
identity of the potential owner cache is obtained from
the L1C$, which is accessed at the time that the

cache miss in detected. If there is a hit in the L1C$,
the request is sent to the owner cache. Otherwise,
the request is sent to the L2 cache where the L2C$
will be accessed to find out the identity of the current
owner cache.

B.2 Request received by a non-owner cache

When a request arrives at a cache that is not the
owner of the block, the request is simply re-sent to
the owner cache. If the cache that receives the re-
quest is an L1 cache, it re-sends the request to the
L2 cache. On the other hand, if it is the L2 cache
and there is a hit in the L2C$, the request is sent to
the current owner cache. Finally, if there is a miss in
the L2C$ and the L2 cache is not the owner of the
block, the request is solved by providing the block
from main memory, where, in this case, a fresh copy
of the block resides. The requested block is allocated
in the requesting L1 cache, which gets the ownership
of the block, but not in the L2 cache (as occurs in the
directory protocol). Moreover, it is necessary to allo-
cate a new entry in the L2C$ pointing to the current
L1 owner cache.

B.3 Request received by the owner cache

If the owner is the L2 cache all requests (reads and
writes) are solved by deallocating the block from the
L2 cache and allocating it in the private L1 cache
of the requester. Moreover, the identity of the new
owner cache must be stored in the L2C$.

When the owner is an L1 cache, read misses are
completed by sending a copy of the block to the
requester and adding it to the sharing code field.
As our protocol is also optimized for the migratory-
sharing pattern, read misses for migratory blocks in-
validate the copy in the owner cache and send the
exclusive data to the L1 requesting cache.

For write misses, the owner cache sends invalida-
tion messages to all the caches that hold a copy of
the block, and then, data to the requester. Acknowl-
edgement messages are collected at the requesting
cache. Upgrade misses that take place in the owner
cache just need to send invalidations and receive ac-
knowledgements (two hops in the critical path).

Finally, since the L2C$ must have up-to-date in-
formation regarding the location of the owner cache,
every time that the owner cache changes, it is also
sent a control message to the L2C$ indicating the
identity of the new owner. These messages should
be processed by the L2C$ in the very same order
in which they were generated. Otherwise, the L2C$
could fail to store the identity of the current owner.
To ensure this order, once the L2C$ processes the
message reporting an ownership change from the old
owner, it sends a confirmation response to the new
owner. Until this confirmation message is not re-
ceived by the new owner, it could use the block (if
already received), but cannot give the ownership to
another cache. The cache miss is considered finalized
once this confirmation response (besides the message
with data) has been received.

C. Updating the L1 coherence cache

DiCo-CMP uses the L1C$ to avoid indirection by
keeping a pointer that identifies the owner cache.
Several policies can be used to update the value of
this pointer. A first approach is to store the last pro-
cessor that invalidated the previous copy of the block
from cache (the last processor that wrote the block).
When a block is invalidated from an L1 cache, the
L1C$ stores the identity of the processor that re-
quests the block. We call this policy as the base

policy and it does not imply extra messages. An-
other approach, with higher network usage, sends
some hints to update the L1C$s whenever the owner
changes. In this approach, each owner cache keeps a
set of frequent sharers (i.e. all the cores that have re-
quested the block). When the owner changes all the
frequent sharers are informed by means of a control
message, and the list of frequent sharers is trans-
ferred to the new owner. We name this policy as the
hints policy. Finally, to find out the potential of our
proposal, we have also implemented an oracle policy
in which the L1C$ always provides the identity of
the current owner cache on every cache miss.

D. Preventing starvation

In DiCo-CMP each write miss implies that the
cache that keeps cache coherence for a particular
block changes, and therefore, some cache misses can
take some extra time to find out this cache. If a
memory block is repeatedly written by several pro-
cessors, a request could take some time to find the
owner cache ready to process the request. Hence,
some processors could be solving their requests while
other requests are starved.

DiCo-CMP avoids starvation by using a simple
mechanism. In particular, each time that a request
must be re-sent to the L2 cache, a counter into the re-
quest message is increased. The request is considered
starved when this counter reaches a certain value (i.e.
two accesses to the L2 cache). When the L2 cache de-
tects a starved request, it re-sends the request to the
owner cache, but records the address of the block. If
the starved request reaches the current owner cache,
the miss is solved, and then the L2 cache is notified,
ending the starvation situation if there is not any
additional starved request for such address. Other-
wise, when the message informing about the change
of the ownership arrives at the L2 cache, the block
is detected as suffering from starvation and the ac-
knowledgement message required on every ownership
change is not sent. This ensures that the identity of
the owner does not change until the starved request
completes.

IV. Simulation Environment

We evaluate our proposal with full-system simula-
tion using Virtutech Simics extended with Multifacet
GEMS. GEMS provides a detailed memory system
timing model which accounts for all protocol mes-
sages and state transitions. In order to model pre-
cisely the interconnection network, and thus, obtain

TABLE I

System parameters.

4x4 tiled CMP

In-order Processor Parameters

Processor speed 2 GHz
Max. fetch/retire rate 4

Memory Parameters

Cache block size 64 bytes
Split L1 I & D caches 128KB, 4-way
L1 cache hit time 4 cycles
Shared unified L2 cache 16MB (1MB/tile), 4-way
L2 cache hit time 6 + 9 cycles (tag + data)
L1 Coherence cache 1 KB, 4-way, 2 hit cycles
L2 Coherence cache 1 KB, 4-way, 2 hit cycles
Memory access time 160 cycles

Multicast Network Parameters

Topology 4x4 Mesh
Switching technique Wormhole
Link latency (one hop) 4 cycles
Routing time 2 cycles
Flit size 4 bytes
Link bandwidth 1 flit/cycle

more accurate results, we have replaced the origi-
nal (not very detailed) network simulator offered by
GEMS with the SICOSYS detailed interconnection
network simulator. The simulated system is a tiled
CMP organized as a 4×4 array of replicated tiles, as
described in Section III-A. Table I shows the values
of the main parameters of the architectures evaluated
in this work.

We have implemented the three policies described
in Section III-C: base, hints and oracle. We compare
our proposal against the Token-CMP protocol de-
scribed in [3] and a directory protocol similar to the
intra-chip coherence protocol used in Piranha [10].

The eight scientific applications used in our sim-
ulations cover a variety of computation and com-
munication patterns. Barnes (8192 bodies, 4 time
steps), Cholesky (tk16.O), FFT (256K complex dou-
bles), Ocean (258x258 ocean), Radix (1M keys,
1024 radix), Raytrace (teapot) and Water-NSQ (512
molecules, 4 time steps) are from the SPLASH-2
benchmark suite [14]. Unstructured (Mesh.2K, 5
time steps) is a computational fluid dynamics ap-
plication. We account for the variability in mul-
tithreaded workloads by doing multiple simulation
runs for each benchmark and injecting random per-
turbations in memory systems timing. Results cor-
respond to the parallel phase of each program.

V. Evaluation Results

A. Impact on the number of misses with indirection

DiCo-CMP improves the performance of parallel
applications by avoiding indirection. Figure 4 shows
the percentage of cache misses that suffer indirection.
We consider that a read miss is free from indirection
when it is directly sent to the cache that keeps the di-
rectory information for the corresponding block and
that can provide a copy of the block (the L2 cache
in a directory protocol or the owner cache in DiCo-
CMP). Write misses are free from indirection when
the condition for read misses is fulfilled and invali-
dations are not required. Finally, an upgrade miss
avoids indirection when it takes place in the owner
cache (only for DiCo-CMP). In all the cases, indirec-
tion avoidance leads to two-hop misses.

Barnes

Cholesky
FFT

Ocean
Radix

Raytra
ce

Unstru
ctured

Water-N
SQ

Average
0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

M
is

se
s

w
ith

 in
di

re
ct

io
n

(%
)

Directory
DiCo-Base
DiCo-Hints
DiCo-Oracle

Read Misses

Barnes

Cholesky
FFT

Ocean
Radix

Raytra
ce

Unstru
ctured

Water-N
SQ

Average
0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

M
is

se
s

w
ith

 in
di

re
ct

io
n

(%
)

Directory
DiCo-Base
DiCo-Hints
DiCo-Oracle

Write Misses

Barnes

Cholesky
FFT

Ocean
Radix

Raytra
ce

Unstru
ctured

Water-N
SQ

Average
0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

M
is

se
s

w
ith

 in
di

re
ct

io
n

(%
)

Directory
DiCo-Base
DiCo-Hints
DiCo-Oracle

Upgrade Misses

Barnes

Cholesky
FFT

Ocean
Radix

Raytra
ce

Unstru
ctured

Water-N
SQ

Average
0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

M
is

se
s

w
ith

 in
di

re
ct

io
n

(%
)

Directory
DiCo-Base
DiCo-Hints
DiCo-Oracle

Total Misses

Fig. 4. Percentage of cache misses with indirection.

Considering the type of misses, we can see that for
read misses indirection can be more easily avoided
than for write misses. This is due to the fact that
sometimes write misses require invalidations, thus
preventing that the miss can be solved in two hops.
On the other hand, the three configurations of DiCo-
CMP obtain the same results for upgrade misses,
since when a copy of the block resides in the request-
ing cache the identity of the owner is always known.

Finally, comparing the three configurations of
DiCo-CMP, we can see that the DiCo-base config-
uration has some miss-predictions when the miss is
sent to the owner cache. In some cases, when a block
must be invalidated due to a write miss (or a read
miss for a migratory block), the owner cache has the
only valid copy of the block. This is the case of
the migratory-sharing pattern and it does not require
sending invalidations. Thus, the processor that fre-
quently shares the block cannot update the pointer
stored in the L1C$, and subsequent misses will fail
to find the correct owner cache. As can be observed
in Figure 4, the DiCo-hints configuration avoids this
situation by sending hints to the frequent sharers.

B. Impact on execution time

The ability of avoiding indirection that DiCo-CMP
shows, translates into reductions in applications’ ex-
ecution time. Figure 5 plots the average execution
times that are obtained by the applications evaluated
in this paper. All the results have been normalized
with respect to those observed for the Token-CMP
protocol.

In general, we can see from Figure 5 that Token-
CMP achieves improvements of 5% on average in ex-
ecution time with respect to a directory protocol. As
already discussed, Token-CMP avoids indirection by

Barnes

Cholesky
FFT

Ocean
Radix

Raytra
ce

Unstru
ctured

Water-N
SQ

Average
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Token-CMP
Directory
DiCo-Base
DiCo-Hints
DiCo-Oracle

Multicast Network

Fig. 5. Normalized execution times.

broadcasting requests to all caches. DiCo-CMP does
not rely on broadcasting but requests are just sent
to the potential owner cache. It is clear that the per-
formance achieved by DiCo-CMP will depend on its
ability to find the actual owner cache. We observe
slight improvements in execution time for DiCo-base

compared to the directory protocol. As commented
on in the previous section, just a small fraction of
the misses with indirection could be converted into
two-hop misses for DiCo-base. On the other hand,
the significant fraction of two-hop misses that can be
achieved when DiCo-hints is considered, and the fact
that our proposal removes some of the inefficiencies
that Token-CMP introduces (broadcasting and per-
sistent requests) translate into improvements of 3%
on average over Token-CMP. Finally, the DiCo-hints

policy can obtain virtually the same results than the
unimplementable DiCo-oracle policy.

C. Impact on network traffic

Figure 6 compares the network traffic generated
by the configurations considered in this paper for

Barnes

Cholesky
FFT

Ocean
Radix

Raytra
ce

Unstru
ctured

Water-N
SQ

Average
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

N
or

m
al

iz
ed

 n
et

w
or

k
tr

af
fic

Token-CMP
Directory
DiCo-Base
DiCo-Hints
DiCo-Oracle

Multicast Network

Fig. 6. Normalized network traffic.

the two networks evaluated. In particular, each bar
plots the number of bytes transmitted through the
interconnection network (the total number of bytes
transmitted by all the switches of the interconnect)
normalized with respect to the Token-CMP case. As
we can see, the fact that Token-CMP needs to broad-
cast requests makes this protocol obtain the highest
traffic levels.

Network traffic can be dramatically reduced when
the directory protocol is employed (28% on aver-
age). This is due to requests are sent to the direc-
tory controller at the L2, which in turn sends coher-
ence messages just to the L1 caches that must ob-
serve them. Since DiCo-CMP removes the commu-
nication between the directory and the owner cache,
less coherence messages are needed to solve cache
misses. This reduction in the number of messages
translates into lower network traffic compared to a
directory protocol (8% for DiCo-base and 11% for
DiCo-oracle). DiCo-hints, however, shows higher
network traffic due to the use of hints to keep up-
dated the information stored in the L1C$ structures.
In some cases, this results in traffic levels higher
than the observed in the directory protocol (but al-
ways lower than those reached by Token-CMP), as
occurs for Raytrace and Unstructured, but on aver-
age DiCo-hints generates virtually the same network
traffic than a directory protocol would do, and 28%
less traffic than Token-CMP.

VI. Conclusions

Tiled CMP architectures (i.e. arrays of replicated
tiles connected over a switched direct network) have
recently emerged as a scalable alternative to current
small-scale CMP designs, and will be probably the
architecture of choice for future CMPs. The techno-
logical parameters and power constrains entailed by
CMPs demand new solutions to the cache coherency
problem.

In this work, we present DiCo-CMP, a cache coher-
ence protocol for tiled CMP architectures that meets
the advantages of directory and Token-CMP proto-
cols and avoids their problems. In DiCo-CMP the
role of storing up-to-date sharing information and
ensuring totally ordered accesses for every memory
block is assigned to the owner cache. Compared to
a directory protocol, our proposal avoids the indi-

rection that the access to the directory entails and,
therefore, reduces the latency by directly sending the
requests to the owner cache (as it would be done in
Token-CMP). In this way, DiCo-CMP achieves im-
provements in total execution time of 8% on average
over a directory protocol and of 3% over Token-CMP.
DiCo-CMP also reduces network traffic compared to
Token-CMP to 28% by sending just one request mes-
sage per miss, and consequently, the total power con-
sumed in the interconnection network. These results
confirm DiCo-CMP as a promising alternative to cur-
rent cache coherence protocols for tiled CMPs.

Acknowledgements

This work has been jointly supported by Spanish
MEC under grant “TIN2006-15516-C04-03” and Eu-
ropean Comission FEDER funds under grant “Con-
solider Ingenio-2010 CSD2006-00046”. A. Ros is sup-
ported by a research grant from Spanish MEC under
the FPU national plan (AP2004-3735).

References

[1] Michael B. Taylor, Jason Kim, and Jason Miller, et al,
“The raw microprocessor: A computational fabric for
software circuits and general purpose programs,” IEEE
Micro, vol. 22, no. 2, pp. 25–35, May 2002.

[2] Michael Zhang and Krste Asanovic, “Victim replication:
Maximizing capacity while hiding wire delay in tiled chip
multiprocessors,” in ISCA, June 2005, pp. 336–345.

[3] Michael R. Marty, J. Bingham, Mark D. Hill, A. Hu,
Milo M.K. Martin, and David A. Wood, “Improving
multiple-cmp systems using token coherence,” in HPCA-
11, Feb. 2005, pp. 328–339.

[4] Nir Magen, Avinoam Kolodny, Uri Weiser, and Nachum
Shamir, “Interconnect-power dissipation in a micropro-
cessor,” in SLIP, Feb. 2004, pp. 7–13.

[5] Manuel E. Acacio, José González, José M. Garćıa, and
José Duato, “Owner prediction for accelerating cache-to-
cache transfer misses in cc-NUMA multiprocessors,” in
SC, Nov. 2002.

[6] Manuel E. Acacio, José González, José M. Garćıa, and
José Duato, “The use of prediction for accelerating up-
grade misses in cc-NUMA multiprocessors,” in PACT,
Sept. 2002, pp. 155–164.

[7] Milo M.K. Martin, Pacia J. Harper, Daniel J. Sorin,
Mark D. Hill, and David A. Wood, “Using destination-
set prediction to improve the latency/bandwidth tradeoff
in shared-memory multiprocessors,” in ISCA, June 2003,
pp. 206–217.

[8] Milo M.K. Martin, Token Coherence, Ph.D. thesis, Uni-
versity of Wisconsin-Madison, Dec. 2003.

[9] Liqun Cheng, John B. Carter, and Donglai Dai,
“An adaptive cache coherence protocol optimized for
producer-consumer sharing,” in HPCA-13, Feb. 2007,
pp. 328–339.

[10] Luiz A. Barroso, Kourosh Gharachorloo, Robert McNa-
mara, Andreas Nowatzyk, Shaz Qadeer, Barton Sano,
Scott Smith, Robert Stets, and Ben Verghese, “Piranha:
A scalable architecture based on single-chip multiprocess-
ing,” in ISCA, June 2000, pp. 12–14.

[11] Per Stenstrom, Mats Brorsson, and Lars Sandberg, “An
adaptive cache coherence protocol optimized for migra-
tory sharing,” in 20st Int’l Symp. on Computer Archi-
tecture (ISCA’93), May 1993, pp. 109–118.

[12] Milo M.K. Martin, Mark D. Hill, and David A. Wood,
“Token coherence: Decoupling performance and correct-
ness,” in ISCA, June 2003, pp. 182–193.

[13] Changkyu Kim, Doug Burger, and Stephen W. Keckler,
“An adaptive, non-uniform cache structure for wire-delay
dominated on-chip caches,” in ASPLOS X, Oct. 2002,
pp. 211–222.

[14] Steven C. Woo, Moriyoshi Ohara, Evan Torrie,
Jaswinder P. Singh, and Anoop Gupta, “The SPLASH-2
programs: Characterization and methodological consid-
erations,” in ISCA, June 1995, pp. 24–36.

