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Abstract—

The probability of parametric and wear-out failures

exacerbates due to the increase of static and dynamic

variations. Specifically, caches that dominate the area

of modern processors and are built with minimum-

sized SRAM cells are very susceptible to faults.

In this paper, we present an analytical model for

determining the implications on cache miss-rate due

to the use of block-disabling, a mechanism which dis-

ables faulty portions of the cache, to mitigate random

cell failure. Whereas previous proposals are based

on the simulation of different fault-maps, our model

avoids them and provides exact measures rather than

approximations.

Our evaluation reveals, for the assumptions, pro-

grams and cache configuration used in this study,

that a relative small number of random fault maps,

100-1000, is sufficient to obtain accurate mean and

standard-deviation values for the miss-rate.

I. Introduction

Over the past 50 years, technological advances
have enabled continuous miniaturization of circuits
and wires. Unfortunately, the scaling of device area
has been followed by at least two negative conse-
quences: a slowdown of both voltage scaling and
frequency increase, due to slower scaling of leakage
current as compared to area scaling [1], [2] and a
shift to probabilistic design and less reliable silicon
primitives as a result of static [3] and dynamic [4]
variations.
A recently published resilience roadmap under-

lines the magnitude of the problem we are confronted
with [5]. Table I shows the predicted pfail (probabil-
ity of failure) for inverters, latches and SRAM cells
due to random dopant fluctuations as a function of
technology node. This study clearly shows that, for
all types of circuits, the pfail increases at a much
faster rate than the area scaling. However, not all cir-
cuits are equally vulnerable: SRAM cells, which are
usually built with minimum-sized devices, are highly
more likely to fail. These alarming trends are lead-
ing to forecast that the performance and cost bene-
fits from area scaling will be hindered unless scalable
techniques are developed to address the power and
reliability challenges. Thus, the development of re-
liability techniques for future processors which are
both scalable and performance-effective is essential,
especially for caches that take most of the real-estate
in processors and contain numerous SRAM vulnera-
ble cells.
One option is to rely on the error-correction-codes

(ECC) already in place to detect and correct soft-
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TABLE I

Predicted pfail for different types of circuits and

technologies.

Technology Inverter Latch SRAM

45nm ≈ 0 ≈ 0 6.1e-13
32nm ≈ 0 1.8e-44 7.3e-09
22nm ≈ 0 5.5e-18 1.5e-06
16nm 2.4e-58 5.4e-10 5.5e-05
12nm 1.2e-39 3.6e-07 2.6e-04

errors. However, ECC is not a performance-friendly
mechanism for permanent errors because, poten-
tially, every access to a faulty block will incur the
ECC repair overhead. Furthermore, ECC soft-error
capabilities are reduced when some bits protected by
the ECC code are already faulty. Thus, ECC may
not be the best option to repair a large number of
parametric or wear-out faults in a cache.

Another approach is to disable cache portions such
as blocks or words [6], [7], [8] that contain faulty bits
upon permanent error detection (at manufacturing
or in the field). These disabled blocks are not re-
placed with a spare1, which results in a reduction of
cache capacity. Block disabling is an attractive op-
tion because of its low overhead, e.g., 1 bit per cache
block2, but the reduced cache capacity can degrade
performance. Therefore, it is important to determine
the performance implications of block disabling to
assess its usefulness.

Previous block disabling-based studies (such as [7],
[9], [10], [11], [12], [13], [14], [15]) rely on the use of
an arbitrary number (small or large) of random fault-
maps. Each random fault-map indicates faulty cache
cell locations and determines the disabled faulty
cache blocks. The fault-maps are used either to
obtain the performance degradation of a program
through cycle accurate simulation, or to determine
the impact on miss-rate of a program’s address trace.
However, the number of fault maps used in these
studies is very small as compared to the number of
all possible maps. Therefore, the accuracy of previ-
ous work in predicting expected performance has not
been established.

Our proposition to address this shortcoming is an
analytical model that calculates the Expected Miss
Ratio (EMR) for a given address trace of an ap-
plication, cache configuration and random probabil-
ity of permanent cell failure. Furthermore, we show

1Disabling can be employed after spares have been ex-
hausted.

2This logical bit needs to be resilient either through circuit
design or extra protection, because if faulty it renders whole
cache faulty.
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how to obtain the standard deviation for the EMR
(SD MR) which provides an indication for the range
of expected degradation of the cache. Finally, we ex-
plain how to produce a probability distribution for
the EMR for a given number of faulty blocks. All
these are accomplished without producing or using
fault-maps. This analytical model can be useful for
manufacturers to analyze the impact of permanent
faults in caches and tune their designs by using an
appropriate number of spares or modifying the gran-
ularity of disabling techniques.

The model capabilities are demonstrated through
an analysis of the trends of the cache miss-rate mean
and standard deviation with smaller feature size (and
pfail) for L1 data caches.

The remainder of the paper is organized as follows:
Section II presents our model to calculate the EMR
and SD MR. In Section III we describe the method-
ology and the evaluation results. Finally, Section IV
resumes the main conclusions of this work.

II. Exact Model for Cache Miss Rate

Behavior with Faults

In this section, we present an analytical model
that can determine the Expected Miss Ratio (EMR),
standard deviation of the Miss Ratio (SD MR), and a
probability distribution of miss-ratios (PD MR) for a
given program address trace, cache configuration and
random probability of permanent cell failure. The
EMR captures the average cache performance degra-
dation due to random faulty cells. The SD MR pro-
vides indication about the range of this performance
degradation, whereas PD MR reveals its shape (dis-
tribution). These characteristics can be used to as-
sess the implications of faults in a cache and compare
different cache reliability schemes.

A. Assumptions and Definitions

The model assumes that permanent faulty cells oc-
cur randomly (uncorrelated) with probability pfail.
This random fault behavior is indicative of faults due
to random-dopant-fluctuations [16] and line-edge-
roughness [17], two prevalent sources of static vari-
ations. The systematic component of process vari-
ation manifests itself at a larger scale (e.g., at the
granularity of microarchitectural units or whole core)
and can be addressed by coarse-grain techniques like
body biasing [3]. The random variation occurs at a
finer grain and cannot be handled with manufactur-
ing process tuning or coarse grain techniques [18].
The model presented in this work assumes that the
systematic failures have been addressed and exam-
ines the implications of random faults in memory
cells.

A cache configuration is defined by the number
of sets (s), ways per set (n), and block size in bits
(k). We consider a block containing one or more per-
manently damaged bits as faulty. In that case, the
faulty block is disabled, reducing the capacity of the
cache. Faults are assumed to be detected with post-
manufacturing and/or boot time tests, ECC, and

built-in self tests. The model is suited for policies
that induce total priority order in the replacement.
In our case, we have focused on a basic LRU policy.
Each program address trace is simulated through

a cache simulator to obtain, for a given cache con-
figuration, the vector M . This vector contains n+ 1
elements, an element more than the number of cache
ways. Mi corresponds to the total misses when there
are only n − i valid ways in each set in the cache.
More specifically, Mi equals to sum of all the refer-
ences which hit in the i least recently used blocks
in each set, plus the misses of the fault free cache.
For example, M0 equals to the misses of a fault-free
cache, Mn represents the misses of a cache in which
every way is entirely faulty, meaning all accesses are
misses, and M1 equals to the misses of the fault-free
plus all the hits in the LRU position.

B. EMR and SD MR

This section shows how the model obtains the
EMR and SD MR given a cell’s pfail, cache configu-
ration and the miss vector of an address trace. The
model calculates the probability for a cache block
failure using the following expression (based on well-
known binomial probability):

pbf = 1− (1− pfail)
k (1)

Although pbf provides information about the frac-
tion of blocks that are expected to fail in the cache,
the impact on the miss ratio is unknown, as it de-
pends on the fault location and the amount of ac-
cesses which maps to faulty block locations. How-
ever, with the pbf we can obtain the probability dis-
tribution pei for the number of faulty ways in a set:

pei =

�

n

i

�

pibf (1− pbf )
n−i (2)

which provides, for every possible value of i [0...n],
the probability of having n− i non-faulty ways. This
distribution is very useful because it provides in-
sight about how likely it is to lose a given num-
ber of ways in a set and, what is more impor-
tant, it can be used to obtain the expected num-
ber of misses. The expectation of a random variable
X = x0, x1..., xm in which each possible value has
probability p = p0, p1, ..., pm is calculated as:

E[X ] =

m
�

i=0

xi · pi (3)

In our case, the random variable X corresponds to
the total number of misses for a cache with faults; xi

corresponds to the total misses when there are only
n− i valid ways in each set in the cache; and pi the
probability of having i faulty ways in a set. There-
fore, we can express the expectation of the number
of cache misses with disabled blocks as:

Emisses =
n
�

i=0

Mi · pei (4)
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and obtain the expected miss ratio of the cache
using:

EMR =
Emisses

accesses
(5)

This simple formula can be used to obtain the ex-
act EMR without using fault-maps. I.e. it deter-
mines the EMR as if all possible fault-maps for a
given random pfail had been taken into account. The
key insight behind this formula, expressed better in
Eq. 2, is that caches have a useful property: for the
same number of faulty blocks f in a set, the reduced
associativity will be the same n− f . I.e., for analyz-
ing block-disabling, what matters is the number of
faulty-ways in a set, not which specific ways in the
set are faulty. Thus, the complexity of the problem
is reduced.
The EMR provides a useful indication about the

average case performance for a given pfail. However,
we have no information about the variation in the
miss ratio. Variation is useful for assessing whether
disabled blocks lead to caches with wide variation
(less predictable) miss rate.
One way to measure this variation is through the

standard deviation of the MR or SD MR. Unfortu-
nately, the standard deviation cannot be directly ob-
tained for the whole cache. However, given that we
already know the probability distribution of faulty
blocks in a set, we can calculate variation as:

∀j[0...s], V AR Emissesj =

n
�

i=0

pei · (xij − Emissesj )
2

(6)
where xij is the number of misses obtained when

having n− i non-faulty ways in the jth set.
Although the total EMR is equal to the sum of

individual sets EMRj :

EMR =

s
�

j=1

EMRj (7)

we cannot combine the variation of each set in the
same way. Instead, we compute the deviation for the
misses of the whole cache SD MR by using the root
mean square in the form:

SD MR =

�

s
�

j=1

V AR EMRj

accesses
(8)

C. MR probability distribution

The SD MR only provides the range of deviation
of the miss ratio. But, what may be more useful
to know is a probability distribution of cache misses
(PD MR) within the deviation range.
We propose to build a probability distribution of

misses in a stepwise manner. We first calculate
the EMR for every possible number of faulty blocks
(from 0 to the number of cache blocks), and then
we combine this information with the probability of
that given number of faulty blocks to occur.

Equation 9, similar to Equation 2, gives the prob-
ability of x number of faulty blocks, for a given block
probability failure:

�

s · n

x

�

pxbf (1− pbf )
s·n−x (9)

This equation can be evaluated for different x val-
ues to obtain a probability distribution. Then, we
need to calculate the EMR for every possible num-
ber of faults. So far, this problem has been solved
by means of random fault-maps [9].

For a given number of faults, this problem is anal-
ogous to selecting at random n balls from an urn
that contains dk balls without replacement, where d

is the number of unique colours and k is the number
of balls of each color. The urn represents the cache,
the variable n the faults, d the number of blocks and
k the number of bits in each block. The mean num-
ber of distinct blocks, u, that contains at least one
faulty cell in a cache with n faulty cells can be ap-
proximated with high accuracy [19]:

u = d− d(1− pfail)
k (10)

This means that we can obtain the PD MR analyt-
ically, without fault-maps, by simply using Equation
10 to convert the number of faulty blocks to pfail.
This, gives us the expression:

pfaili = 1− k

�

s · n− xi

s · n
(11)

This way, we can calculate which pfail results in
xi faults in the cache. Then, every pfaili can be
used to calculate the EMR associated to each number
of faulty blocks, therefore, generating a probability
distribution.

III. Evaluation

A. Methodology

The input to our model is a map of accesses to a
cache for every application. To produce these maps
we have used an algorithm called all-associativity
simulation [20], previously used in [9]. This algo-
rithm has a complexity order of O(n2). However,
in practice, the complexity is much lower because of
access locality, which limits the length of searches
dramatically. Due to space limitations, we have not
discussed this but refer to [20] for details. It is impor-
tant to note, though, that the algorithm is applied
offline and, with a single run per benchmark, is able
to produce the data our model needs to evaluate any
desired cache configuration.

The all-associativity algorithm takes as input a
trace of memory requests which converts into a map
of cache accesses for any desired configuration (sets
and ways) following a given replacement policy (LRU
in our case). This allows us to obtain the number of
accesses per way and per set within a single run. The
output of the algorithm is a matrix in which each row
corresponds to a set and each column to a position
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in the LRU sequence. Each value of the matrix in-
dicates the number of accesses to every position in
the LRU sequence for every set. This information
is very useful for offline analysis given that we can
determine the number of misses for a given number
of ways w in our cache by simply adding the accesses
for the last n− w columns of the matrix.

We can also use this matrix to compute the misses
with faulty cells. For this purpose, and according
to Equation 5, we need to calculate the number of
misses if a given number of ways were disabled in
the cache due to permanent faults. First, we accu-
mulate the number of accesses in every position per
set. Then, we perform the same operation per set
to obtain a vector which indicates the exact number
of misses our cache would suffer as a consequence of
losing from 0 to w ways.

For our experiments, we have simulated a proces-
sor architecture by means of Virtutech Simics [21]
and GEMS [22]. Simics is a functional simulator ex-
ecuting a Solaris 10 Unix distribution simulating the
UltraSPARC-III ISA. GEMS is a timing simulator
which, coupled to Simics, provides detailed results
for the memory system. We have performed several
modifications to the simulator to extract cache ad-
dress traces. Then, these traces are used to generate
the map of accesses for every possible cache configu-
ration by means of the all-associativity algorithm as
explained previously.

We have conducted our experiments by executing
different applications from the SPECcpu-2000 [23]
(bzip2, gap, gzip, parser, twolf, vpr). Benchmarks
are run for 1 billion of cycles. In all cases, the warm-
ing up of caches has been taken into account.

The different pfails used for the evaluation of the
caches are shown in Section I with the exception of
6.1e-13, which produces virtually no faulty blocks in
our experiments. Additionally, we have evaluated
pfail of 1e-03 which is considered in many related
papers.

B. Random Fault Map Methodology

Before proceeding to determine the EMR using
the proposed methodology we determine how well
randomly generated fault-maps approximate the ex-
pected number of faults obtained using Eq. 1.

In Figure 1 we can see the probability distribution
of the number of faulty blocks for different pfails (we
have omitted 7.3e-09 and 1.5e-06 because they offer
from 0 to 1 and 0 to 4 faulty blocks, respectively)
in a 32KB, 2-way associative cache with 558 bits per
block3. Results show the estimated faulty blocks ob-
tained analytically (analytical line) and by different
numbers of faulty maps (from 100 to 10 millions). As
it is observed, few faulty maps are not able to capture
the exact behaviour of the analytical model. How-
ever, when the number of maps increases (1K maps
or more), the number of faulty blocks becomes more

3We consider blocks comprised of: 64 bytes for data and 11
bits for its ECC, 25 bits for the tag and 7 bits for its ECC,
and 3 control bits for valid, disable and dirty states.

accurate. Nonetheless, this study cannot conclude
how well random maps approximate the expected
misses of a cache, since misses directly depend on
the location of faults among the different cache sets.

C. EMR and SD MR for SPEC applications

In this section we show the calculated EMR and
SD MR for several benchmarks and a 2-way 32KB
L1 cache with different pfails.
Surprisingly we can see in Figure 2 that a small

number of faulty maps, 100-1000, is enough to ap-
proximate the EMR and SD MR provided by the
model. The reason for this is the access homogeneity
to the different sets of the cache. In other words, for
the applications we have evaluated, there are no par-
ticular sets that are clearly more accessed than others
during the overall execution of the benchmark. This
makes the EMR and SD MR virtually independent
from the fault locations and that is the reason why
fault maps are able to provide such good estimations.
We establish the cache access homogeneity with a

study of the correlation of accesses between all the
sets in our cache by calculating the Pearson correla-
tion coefficient. When the Pearson coefficient is close
to 0, it means that there is no correlation between
variables, whereas when it is close to 1, it means a
correlation between them. We have calculated the
matrix of correlations of the number of accesses for a
2-way 32KB L1 cache for the evaluated benchmarks.
Table II reflects the average value for the Pearson co-
efficients as well as its standard deviation. As we can
see, all coefficients are very close to 1, which means
that the accesses among sets are highly correlated.

TABLE II

Pearson Coefficient Matrix for each benchmark.

Benchmark Mean Pearson Coeff. DEV
bzip2 .993 .007
gap .9 .086
gzip .997 .002
parser .998 .003
twolf .943 .119
vpr .995 .006

The key insight from this study is that, because
of the high correlation, a small number of random
fault maps is sufficient to obtain accurate expected
cache behavior with faults. If data accesses among
sets are not highly correlated, a few fault maps would
not be able to provide an accurate prediction of the
expected behaviour with faults.

D. PD MR for SPEC applications

In Section II-C, we have developed a method to
calculate a PD MR for the expected values of the
EMR. As explained, we follow a constructive ap-
proach, calculating the different pfail from 0 to n

faulty blocks. Then, for each of these values we cal-
culate its EMR.
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Fig. 1. Probability distribution of the number of faulty blocks obtained by our model and by random fault-maps in a 2-way
associative 32KB cache.
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Fig. 2. EMR and SD MR for different applications in a 2-way associative 32KB L1 cache with different pfails.
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Fig. 3. PD MR for different applications and pfails in a 2-way associative 32KB L1 cache.
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The probability distribution results in Figure 3
provides valuable information. As a consequence of
the increasing number of faulty blocks, the shape of
the distribution is wider with higher pfails. Within a
single chart we can infer the likelihood of a miss rate
in our cache to occur according to the used tech-
nology scale. As a conclusion, this study reveals
that, in the future, the performance of caches will be
more un-predictable due to permanent errors. This
model could be used by chip manufacturers to ana-
lytically determine what is going to be the expected
percentage of chips that should be discarded because
of faulty cells.

IV. Conclusions

This paper proposes an analytical model to de-
termine the Expected Miss Ratio (EMR) and its
Standard Deviation (SD MR) for a given applica-
tion when it is executed in a cache with a random
probability of cell failure. This analytical model en-
ables designers to perceive the real impact of faults
in caches without the need of executing any exper-
iments with random fault maps. We have also pre-
sented an analytical model which provides the proba-
bility distribution for the EMR which represents an-
other valuable information for designers about the
shape of the miss-rate distribution of faulty cache
units for a given process technology.

In the evaluation we show, for the benchmarks
and configurations used, that the random fault map
methodology provides high accuracy when using 100-
1000 maps for an L1 data cache. This is due to the
high homogeneity of accesses to the different sets of
a cache which makes the EMR and SD MR virtually
independent of the allocation of faults.
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