
Noname manuscript No.
(will be inserted by the editor)

A Fault-Tolerant Architecture for Parallel Applications

in Tiled-CMPs

Daniel Sánchez · Juan L. Aragón ·

José M. Garćıa

Received: date / Accepted: date

Abstract Nowadays, hardware reliability is considered a first-class issue along
with performance and energy efficiency. The increasing scaling technology and
subsequent supply voltage reductions, together with temperature fluctuations,
augment the susceptibility of architectures to errors.

With the development of CMPs, the interest for using parallel applications
has increased. Previous proposals for providing fault detection and recovery
have been mainly based on redundant execution over different cores. RMT
(Redundant Multi-Threading) is a family of techniques based on SMT (Si-
multaneous Multi-Threading) processors in which two independent threads
(master and slave), fed with the same inputs, redundantly execute the same
instructions, in order to detect faults by checking their outputs. In this pa-
per, we study the under-explored architectural support of RMT techniques to
reliably execute shared-memory applications in tiled-CMPs.

Initially, we show how atomic operations induce serialization points be-
tween master and slave threads, degrading the execution time by 35% for sev-
eral parallel scientific and multimedia benchmarks. To address this issue, we
introduce REPAS (Reliable Execution of Parallel ApplicationS in tiled-CMPs),
a novel RMT mechanism to provide reliable execution in shared-memory ap-
plications in environments prone to transient faults. REPAS architecture only
needs few extra hardware since the redundant execution is performed within
2-way SMT cores in which the majority of hardware is shared. Experimental
results show that REPAS is able to provide fault tolerance against soft-errors
with a lower execution time overhead (around 25% including the cost of re-
dundancy) in comparison to a non-redundant system than previous proposals
while using less hardware resources. Additionally, we show that REPAS sup-

D. Sanchez · J. L. Aragón · J. M. Garćıa
Departamento de Ingenieŕıa y Tecnoloǵıa de Computadores
Universidad de Murcia, 30100 Murcia (Spain)
E-mail: {dsanchez,jlaragon,jmgarcia}@ditec.um.es

2 Daniel Sánchez et al.

ports huge fault ratios with negligible impact on performance (less than 2%
for a fault ratio of 100 faults per million cycles).

Keywords Fault tolerance · Soft errors · SMT architectures · Parallel
Systems

1 Introduction

The advance in the scale of integration allows to increase the number of transis-
tors in a chip, which are used to build powerful processors such as CMPs (Chip
Multiprocessors) [30,20,23,4]. At the same time, manufacturers have started
to notice that this trend along with voltage reduction and temperature fluc-
tuation are challenging CMOS technology because of several reliability issues.
Among others, we can cite the increasing appearance of hardware errors and
other related topics such as process-related cell instability, process variation or
in-progress wear-out. Another fact to take into account is that the fault ratio
increases due to altitude [17,35]. Therefore, reliability has become a major
design problem in the aerospace industry.

Hardware errors are classified as transient, intermittent or permanent [18,
7]. On the one hand, Permanent faults, which are usually caused by electro-
migration, remain in the hardware until the damaged component is replaced.
On the other, Voltage variation and thermal emergencies are the main cause
of intermittent faults. Transient faults, also known as soft-errors, appear and
disappear by themselves. They can be induced by a variety of sources such as
transistor variability, thermal cycling, erratic fluctuations of voltage and radia-
tion external to the chip [18]. Radiation-induced events include alpha-particles
from packaging materials and neutrons from atmosphere. It is well established
that the charge of an alpha particle or a neutron strike over a logical device
can overwhelm the circuit inducing its malfunction.

It is hard to find documented cases concerning soft errors in commercial
systems. This is because both the difficulty which involves detecting a soft error
and the convenient silence of manufacturers about their reliability problems.
However, several studies show how soft errors can heavily damage industry. For
instance, in 1984 Intel had certain problems delivering chips to AT&T as a re-
sult of alpha particle contamination in the manufacturing process [18]. In 2000,
a reliability problem was reported by Sun Microsystems in its UltraSparc-II
servers deriving from insufficient protection in the SRAM [18]. A report from
Cypress Semiconductor showed how a car factory was halted once a month
because of soft errors [36].

Nowadays, several measures have been introduced in microarchitectural
designs in order to detect and recover from transient errors such as error de-
tection and correction codes. They are created by specific rules of construction
to avoid information loss in the transmission of data. ECC (Error Correction
Codes) codes are commonly used in dynamic RAM. However, these mecha-
nisms cannot be extensively used across all the hardware structures. Instead,
at the architecture level, DMR (Dual Modular Redundancy) or TMR (Triple

A Fault-Tolerant Architecture for Parallel Applications in Tiled-CMPs 3

Modular Redundancy) have been proposed. In these approaches, fault detec-
tion is provided by means of dual and triple execution redundancy.

In this fashion, we find RMT (Redundant Multi-Threading), a family of
techniques in which two threads redundantly execute the program instructions.
Simultaneous and Redundantly Threaded processors (SRT) [22] and SRT with
Recovery (SRTR) [31] are two of them, implemented on SMT (Simultaneous
Multi Threading) processors in which two independent and redundant threads
are executed with a delay respect to the other which speeds up their execution.
These early approaches are attractive since they do not require many design
changes in a traditional SMT processor. In addition, they only add some ex-
tra hardware for communication purposes between the threads. However, the
major drawback of SRT(R) is the inherent non-scalability of SMT processors
as the number of threads increases.

In order to provide more scalability, several approaches were designed on
top of CMP architectures. Among them, it is worth mentioning proposals
such as Reunion [26], Dynamic Core Coupling (DCC) [11] or High Decoupled
Thread Level Redundancy (HDTLR) [21]. However, solutions using this kind
of redundancy achieve a severe degradation in terms of power, performance
and specially in area since they use twice the number of cores to support
DMR. Therefore, these approaches are not well suited for general markets as
industry claims that a fault tolerant mechanism should not impose more than
10% of area overhead in order to be effectively deployed [25]. Hence, solutions
based on redundant multithreading using SMT cores seem a good approach
to achieve fault tolerance without sacrificing too much hardware [12].

Although there are different proposals based on SRTR with either sequen-
tial or independent multithreaded applications [31][10], the architectural sup-
port for redundant execution with shared-memory workloads is not well suited.
As we will show in Section 4.1, in shared-memory parallel applications, the use
of atomic operations may induce serialization points between master and slave
threads affecting performance depending on the memory consistency model
provided by the hardware.

To address all these issues, in this paper we propose REPAS Reliable Exe-
cution of Parallel ApplicationS in tiled-CMPs. The main contributions of this
paper are: a) identification of a performance problem of traditional RMT im-
plementations; b) design of a scalable RMT solution built on top of dual SMT
cores to form a tiled-CMP; c) implementation of our proposal in a full-system
simulator to measure their effectiveness and execution time overhead. We show
that REPAS is able to reduce the execution time overhead down to 25% with
respect to a non fault-tolerant architecture while significantly outperforming a
traditional RMT mechanism by 13%. Previous proposals such as DCC results
in a better performance for specific environments such as Multimedia and Web
Server applications. However, REPAS achieves the same goal by using half the
hardware used in DCC. Additionally, our mechanism is able to recover from
transient faults with negligible performance impact even with extremely high
and unrealistic fault rates.

4 Daniel Sánchez et al.

In [29], we presented a preliminary version of REPAS. This article extends
our previous work by thoroughly introducing our ideas in order to improve
the reader’s understanding. The evaluation section has been extended with
the study of several new applications from the ALPBench benchmark suite in
addition to web server applications such as Apache and SpecJBB. Additionally,
we have included a sensitivity analysis as well as an stress study for the L1
cache size.

The rest of the paper is organized as follows: Section 2 reviews some related
work. In Section 3 we introduce DCC, a fault tolerant mechanism, for compar-
ison purposes. Section 4 introduces CRTR and presents its major drawbacks
in a parallel shared-memory environment. We present REPAS’s architecture
in Section 5. Section 6 analyzes the performance of REPAS in fault-free and
faulty environments. Finally, Section 7 summarizes the main conclusions of
this work.

2 Related work

There is a large body of literature on detection of soft errors which can be
classified in Error Coding, Redundancy and Symptom-based techniques as we
can see in Figure 1.

­

	�����������
���

���
�
�����

�����­���������­	­

���������­
����­

���������������­

����������­­

­­

�������������­­

����������­

����������­

�������­
��������­

�������­

Fig. 1 Fault Tolerant mechanisms.

Error detection and correction codes are based on the use of extra bits
appended to some data in a way that if a fault corrupts the information,
this event can be detected or even corrected. In this category, we can include
detection techniques (such as parity, checksum, CRC) and recovery techniques
(such as ECC) which are implemented in a large variety of memory devices
from CDs and DVDs to dynamic RAM. However, these techniques can not be
easily deployed in functional units [18].

Another approach to fault detection follows a scheme based on symptoms
[12] which is inspired in ReStore [32]. This study presents a characterization of
how errors affect either application or OS behaviour with almost no hardware

A Fault-Tolerant Architecture for Parallel Applications in Tiled-CMPs 5

Table 1 Main characteristics of several redundant architectures.

SoR Synchronization
Input Output

Replication Comparison
SRT(R) Pipeline, Staggered Strict Instruction by
CRT(R) Registers execution (Queue-based) instruction

Reunion
Pipeline,

Loose coupling
Relaxed input
replication

FingerprintsRegisters,
L1Cache

DCC
Pipeline,

Thousands of
instructions

Consistency
window

Fingerprints,
Checkpoints

Registers,
L1Cache

HDTLR
Pipeline,

Thousands of
instructions

Sub-epochs
Fingerprints,
Checkpoints

Registers,
L1Cache

overhead. The detection mechanism is based on the observation of abnormal
events such as fatal hardware traps, application exits or hangs in either the
program or the OS. Upon a fault is detected, the execution is rolled-back to a
previous safe state. However, these approaches cannot provide a solution for
those errors which do not modify the behaviour of applications such as those
affecting values but not control flow.

Finally, we can find redundancy-based techniques which are, so far, the
most studied and those in which we focus on. Unlike error correction codes in
which each structure is individually protected, these mechanisms are able to
cover multiple hardware structures. Therefore, they are usually used to provide
fault tolerant architectures.

When comparing different redundancy mechanisms, we can point out four
main characteristics. Firstly, the sphere of replication (SoR) [22], which de-
termines the components in the microarchitecture that are replicated. Sec-
ondly, the synchronization, which indicates how often redundant copies com-
pare their computation results. Thirdly, the input replication method, which
defines how redundant copies observe the same data. Finally, the output com-
parison method, which defines how the correctness of the computation is as-
sured. Table 1 summarizes the main characteristics of the proposals described
in this section.

One of the first approaches to full redundant execution is Lockstepping
[1], a proposal in which two statically bound execution cores receive the same
inputs and execute the same instructions step by step. Later, the family of
techniques Simultaneous and Redundantly Threaded processors (SRT) [22],
SRT with Recovery (SRTR) [31], Chip-level Redundantly Threaded proces-
sors (CRT) [19] and CRT with Recovery (CRTR) [6] were proposed, all of
them based on a previous approach called AR-SMT [24]. In SRT(R) redun-
dant threads are executed within the same core. The SoR includes the entire
SMT pipeline but the first level of cache. The threads execute in a staggered
execution mode, using strict input replication and output comparison on every
instruction.

Other studies have chosen to allocate redundant threads in separate cores.
This way, if a permanent fault damages an entire core, a single thread can

6 Daniel Sánchez et al.

still be executed. Among these studies it is worth mentioning CRT(R) [19,6],
Reunion [26], DCC [11] and HDTLR [21]. In all these proposals, a fundamental
point is how redundant pairs communicate with each other, as we summarize
next.

In Reunion, the vocal core is responsible for accessing and modifying shared-
memory coherently. However, the mute core only accesses memory by means of
non-coherent requests called phantom requests, providing redundant access to
the memory system. This approach is called relaxed input replication. In order
to detect faults, the current architectural state is interchanged among redun-
dant cores by using a compression method called fingerprinting [27] through
a dedicated point-to-point fast bus. Relaxed input replication leads to input
incoherence which are detected as faults. As a result, checking intervals must
be short (hundred of instructions) to avoid excessive penalties. Violations in
relaxed input replication induce to a serialized execution (very similar to lock-
stepped execution) between redundant cores, affecting performance with a
degradation of 22% over a base system when no faults are injected.

Dynamic Core Coupling (DCC) [11] does not use any special communica-
tion channel and reduces the overhead of Reunion by providing a decoupled
execution of instructions, making larger comparison intervals (thousand of
instructions) and reducing the network traffic. At the end of each interval,
the state of redundant pairs is interchanged and, if no error is detected, a new
checkpoint is taken. As shown in [11], the optimal checkpoint interval for DCC
is 10,000 cycles, meaning that the time between a fault happens and its de-
tection is usually very high. Input incoherences are avoided by a consistency
window which forbids data updates, while the members of a pair have not
observed the same value. However, DCC uses a shared-bus as interconnection
network, which simplifies the consistency window mechanism. Nevertheless,
this kind of buses are not scalable due to area and power constraints. In [28],
DCC is studied using a direct-network, and in this environment it is shown
that the performance degradation rises 19%, 39% and 42% for 8, 16, and 32
core pairs.

Recently, Rashid et al. proposed Highly-Decoupled Thread-Level Redun-
dancy (HDTLR) [21]. HDTLR architecture is similar to DCC, in which the
recovery mechanism is based on checkpoints which reflect the architecture
changes between epochs, and modifications are not made visible to L2 until
verification. However, in HDTLR each redundant thread is executed in dif-
ferent hardware contexts (computing wavefront and verification wavefront),
maintaining coherency independently. This way, the consistency window is
avoided. However, the asynchronous progress of the two hardware contexts
could lead to memory races, which result in different execution outcomes.
These events are masked by the architecture as a transient fault. In a worst-
case scenario, not even a rollback would guarantee forward progress. Thus, an
order tracking mechanism, which enforces the same access pattern in redun-
dant threads, is proposed. This mechanism implies the recurrent creation of
sub-epochs by expensive global synchronizations. Finally, as well as in DCC,

A Fault-Tolerant Architecture for Parallel Applications in Tiled-CMPs 7

the interconnection network used in this study is a non-scalable shared-bus,
which makes the communication process easier than in a direct-network.

3 Dynamic Core Coupling in a direct network environment

Dynamic Core Coupling (DCC) [11] is a fault tolerant mechanism for both
sequential and parallel applications. DCC implements dual modular redun-
dancy (DMR) by binding pairs of cores in a CMP connected by a shared-bus.
To provide fault tolerance, cores in a pair re-executes the program instructions
to verify each other’s execution. In this section we deeply analyze the major
benefits and drawbacks of DCC. In particular, we focus on the impact over
the coherence and consistency systems that DCC has when it is ported from
a shared-bus to a more scalable direct-network.

3.1 DCC in a shared-bus

In DCC, a pair is formed by two cores: the master core and the slave core. To
verify the correct execution, at the end of a checkpoint interval each master-
slave pair interchange the compressed state of their register file and all the
updates performed to memory. In order to amortize the compression time and
save bandwidth these checkpoints intervals are in the order of 10,000 cycles.

Both, master and slave cores are allowed to read memory. However, only
the master is allowed to modify and share memory values. Writes to memory
values are marked in L1 cache by means of an unverified bit [16]. This bit
indicates that the modification of the block has not been verified yet. In order
to avoid the propagation of errors, unverified blocks are not allowed. At the
end of every checkpoint interval all the unverified bits are cleared.

To provide a correct execution in a parallel environment, DCC needs several
changes in both the coherence and consistency system. As said before, the
master core is the responsible to share unverified data. From the point of view
of coherence, this means that the slave core is not allowed to response to
forwarded requests (request from other cores), although invalidations should
be taken accordingly by evicting blocks from cache (without updating lower
levels of the memory hierarchy). A complete list of changes to the coherence
protocol can be found in the original paper [11].

However, the major difficulty is to provide the master-slave consistency.
This means to assure that both cores obtain the same view of the memory at
all times. The pair consistency is violated if between the time a redundant read
is performed, an intervening write modifies the value, preventing the second
read to obtain the same value than the first one. This problem is solved in
DCC by a set of constraints referred to the master-slave consistency window.
Logically, a window represents a time interval in which any remote intervention
could cause a violation of the consistency. For example, a consistency read
window is open on any master read and is closed once the slave core commits

8 Daniel Sánchez et al.

the same read. To avoid consistency violations, it must be assured that no
write windows are opened for an address in which another window has been
previously open.

DCC implements this mechanism by means of an age table. The age table
keeps for every load and store, the number of committed loads and stores since
the last checkpoint. In Figure 2(a) we can see how this mechanism works. A
node requests an upgrade or a read-exclusive for a block through the shared-
bus (the request is seen by all nodes) (1). Each core checks its LSQ (Load
Store Queu) in case a speculative load has been issued. If this is the case,
the request is answered with a NACK (Negative Acknowledgement) (2). In
parallel, each core accesses its age table and reports it to its pair (2). In the
following cycle, every master core checks its own age with the slave one. In
the case there is a mismatch, it means that a window is open and, therefore,
the request is not accepted (NACKed) to avoid a master-slave inconsistency
(3). If no mismatch is found the request can be satisfied.

(a) Shared-bus (b) Direct-network

Fig. 2 DCC master-slave consistency.

3.2 DCC in a direct-network environment

As the number of cores in a system grows, we observe undesirable effects
affecting the scalability of several elements. One of these elements is the in-
terconnection network. As shown in [9], the area required by a shared-bus or
a crossbar as the number of cores grows, increases to the point of becoming
impractical. Hence, we evaluated [28] the performance impact of moving DCC
towards a point-to-point unordered network, a more scalable alternative for
CMP designs.

In order to accommodate the behaviour of DCC to a direct-network, we
should introduce several changes in both the coherence and consistency sys-
tems. In both cases the problem is the same: without additional support, slave
cores are unaware of coherence actions because of the loss of the shared-bus
and its “broadcast” capabilities. We solve this issue by redirecting coherence
messages (upgrade, read-exclusive and invalidation request) which arrive to

A Fault-Tolerant Architecture for Parallel Applications in Tiled-CMPs 9

master cores to their slave pairs, introducing, unfortunately, a delay in the
communication.

We can see how this problem affects the way in which the consistency
window works in Figure 2(b). Upgrade, read-exclusive or invalidations are sent
to master cores which are the visible cores in the system (1). These requests
can be directly NACKed in case a speculative load is performed in the master
(2). In parallel, the request needs to be sent to the slave core which, so far,
was unaware of the coherence action. The slave core can deny the request
through the master core in case a speculative load is found in its LSQ (3). In
other case, it sends its age to its master pair. Finally, the master core checks
for a window violation and then informs the requestor (4). As we can see, we
introduce an additional hop in the communication for every coherence action.
The impact of these measures over the performance in studied and analyzed
in Section 6.3.

4 CRTR as a building block for reliability

As opposed to DCC in which the redundancy is taken by using master-slave
pairs in different cores (increasing the hardware overhead), another alternative
consists of the use of SMT cores. This way we can reduce both the hardware
overheads and the delay because of the communications between redundant
pairs through the network. Among different alternatives using SMT cores we
focus on Chip-level Redundantly Threaded multiprocessor (CRTR).

CRTR is a fault-tolerant architecture proposed by Gomaa et al. [6], an
extension to SRTR [31] for CMP environments. In CRTR, two redundant
threads are executed on separate SMT processor cores, providing transient
fault detection. These threads are called master (or leading) and slave (or
trailing) threads, since one of them runs ahead the other by a number of
instructions determined by the slack. As in a traditional SMT processor, each
thread owns a PC register, a renaming map table and a register file, while all
the other resources are shared.

In CRTR the master thread is responsible for accessing memory to load
data. After a master load commits, it bypasses it to the slave thread along
with the accessed address through a FIFO structure called Load Value Queue
(LVQ) [22]. This structure is accessed by the slave thread, preventing to ob-
serve different values from those the master did, a phenomenon called input
incoherence. To avoid associative searches in the LVQ, the slave thread exe-
cutes loads in program order so it only has to lookup the head of the queue.
Fortunately, this handicap does not impact on the slave’s performance in com-
parison to the master’s because the possible slowdown is compensated with a
speedup due to two factors:

– The memory latency of a slave load is very low since data is provided by
the LVQ (slave loads behave as cache hits).

10 Daniel Sánchez et al.

– Branch mispredictions are avoided thanks to the Branch Outcome Queue
(BOQ) [22]. Therefore, the slave thread executes less instructions than the
master.

The master uses the BOQ to bypass the outcome of a committed branch.
Then, the slave accesses the BOQ at a branch execution obtaining accurate
predictions (perfect outcomes, in fact). Availability for these hints is assured
thanks to the slack since, by the time the slave needs to predict a branch, the
master has already logged the correct destination of the branch in the BOQ.

To avoid data corruptions, CRTR never updates cache before values are
verified. To accomplish this, when a store instruction is committed by the
master, the value and accessed address are bypassed to the slave through a
structure called Store Value Queue (SVQ) [22]. When a store commits in the
slave, it verifies the SVQ and, if the check succeeds, the L1 cache is updated.
Finally, other structure used in CRTR is the Register Value Queue (RVQ) [31].
The RVQ is used to bypass register values of every committed instruction by
the master, which are needed for checking.

Whenever a fault is detected, the recovery mechanism is triggered. The
slave register file is a safe point since no updates are performed on it until a
successful verification. Therefore, the slave bypasses the content of its regis-
ter file to the master, pipelines of both threads are flushed and execution is
restarted from the detected faulty instruction.

As it was said before, separating the execution of a master thread and its
corresponding slave in different cores adds the ability to tolerate permanent
faults. However, it requires a wide datapath between cores in order to bypass
all the information required for checking. Furthermore, although wire delays
may be hidden by the slack, the cores exchanging data must be close to each
other to avoid stalling.

4.1 Memory consistency in LVQ-based architectures

Although CRTR was originally evaluated with sequential applications [19,6],
the authors argue that it could be used for multithreaded applications, too.
In LVQ-based systems such as CRTR in which loads are performed by the
master thread and stores are performed by the slave thread there is a sig-
nificant reordering in the memory instructions from the external perspective.
In a sequential environment, it does not represent any problem. However, for
shared-memory workloads in a CMP scenario, if no additional measures are
taken, CRTR can lead to a severe performance degradation due to consistency
model constraints.

Our evaluated architecture is a SPARC V9 [8] implementing the Total
Store Order (TSO) consistency model. In this consistency model, stores are
buffered on a store miss but loads are allowed to bypass these buffered stores.
As a measure to improve the performance, stores to the same cache block are
coalesced in the store buffer. Finally, atomic instructions and memory fences
stall retirement until the store buffer is drained.

A Fault-Tolerant Architecture for Parallel Applications in Tiled-CMPs 11

In shared-memory applications such as those that can be found in either
scientific SPLASH-2 [34], web server, or multimedia workloads, the access to
critical sections is granted by acquisition primitives relying on atomic instruc-
tions and memory fences. We have noticed that, in this environment, CRTR
could lead to a performance loss because of the constraints of the consistency
model to assure mutual exclusion.

The key point is that, in CRTR the master thread never updates mem-
ory. Therefore, when a master executes the code to access a critical section,
the acquisition is not made visible until the slave executes and verifies the
correctness of the instructions involved. This means that, for the rest of mas-
ter threads, the ’lock’ will remain free for a while, enabling two (or more) of
these threads to access a critical section as illustrated in Figure 3. To address
this issue that appears in CRTR without modifying the memory consistency
model, we propose, implement and evaluate two different alternatives: atomic
synchronization and atomic speculation.

4.1.1 CRTR with Atomic Synchronization

In order to preserve the underlying consistency model (TSO) and, therefore,
the correct program execution, the most straightforward solution is to syn-
chronize the master and slave threads whenever atomic instructions or mem-
ory fences are executed. This way, only when the slave thread catches up with
the master and the SVQ drains, the instruction is issued to memory. There-
fore, the master thread is not allowed to enter into a critical section without
making the results of the acquisition mechanism visible.

Note that this is a conservative approach which introduces a noticeable
performance degradation because the master stalls the retirement on every
atomic/memory fence instruction. The duration of this stall depends on two
factors: (1) the size of the slack, which determines how far the slave thread is,
and (2) the number of write operations in the SVQ, which must be written in
L1 prior to the atomic operation to preserve consistency.

4.1.2 CRTR with Atomic Speculation

One could argue that the previous alternative is not fair to competition. To
this end, we have evaluated a mechanism, which we called Atomic Speculation
to relax even more the consistency constraints imposed by TSO through the
use of speculation. Memory ordering speculation has been previously studied
in [5,33,2] in order to increase the performance of different consistency models.

What we try to accomplish with Atomic Speculation is to avoid the costly
synchronizations that atomic instructions and memory fences impose over
CRTR. For this, we allow loads and stores to bypass these instructions specula-
tively. In the same fashion as in [5], the list of speculated blocks is maintained
in a hardware structure in the core 1. A hit in the table upon a coherence

1 The same goal could be accomplished by means of signatures as in certain hardware
approaches of Hardware Transactional Memory.

12 Daniel Sánchez et al.

(a) (b)

(c) (d)

Fig. 3 Violation of the atomicity and isolation of a critical section without proper support.
In the figure, two master threads M0 and M1, and one slave thread S0 are presented (the
corresponding slave for M1 has been omitted for simplicity). Part 3(a) shows a snapshot
of the program execution. M0 runs ahead of S0 by an amount of instructions determined
by the slack. A striped portion of a bar means that updates to memory have not been
performed yet. Part 3(b) shows the situation when M0 acquires a lock and enters into the
critical section it protects. None of the modifications are visible yet. Part 3(c) shows that
M1 also acquires the lock. This is because M0 has not updated memory so the lock seems
free for the rest of the nodes in the system. M1 enters the critical section at the same time
that M0. Finally, part 3(d) shows that when S0 validates the execution of M0 and updates
memory values, it is too late since atomicity and isolation of the critical section has been
violated.

message from other core indicates that the current speculation could poten-
tially lead to a consistency violation. In this situation, a conflict manager
decides whether to roll-back the receiver or the requestor because of the miss-
speculation. Eventually, if no violations have been detected, the slave thread
will catch up with the master. Then, the speculation table is flushed and the
speculative mode is finished.

A Fault-Tolerant Architecture for Parallel Applications in Tiled-CMPs 13

In benchmarks with low to medium synchronization time this kind of spec-
ulative mechanism results a good approach. However in other scenarios with
highly contended locks the frequency of rollbacks impacts severely on perfor-
mance. Nonetheless, this mechanism comes at an additional cost such as the
hardware needed to rollback the architecture upon a consistency violation.
Additionally, this solution requires a change in the way atomicity is imple-
mented since these accesses cannot perform the memory update to avoid fault
propagation. Finally, there exists a power consumption overhead due to the
need of checking the speculation table for every coherence request in specula-
tive mode. Note, however, that we have not considered these overheads in the
evaluation section.

5 REPAS architecture

At this point, we present Reliable Execution for Parallel ApplicationS in tiled-
CMPs (REPAS) [29]. We create the reliable architecture of REPAS by adding
CRTR cores to form a tiled-CMP. However, we avoid the idea of separating
master and slave threads in different cores but instead using 2-way SMT cores.
This way, the architecture does not rely in the use of the expensive inter-core
datapaths while still offers fault tolerance to soft errors. An overview of the
core architecture is depicted in Figure 4. As in a traditional SMT processor,
issue queues, register file, functional units and L1-cache are shared among the
master and slave threads. The shaded boxes in Figure 4 represent the extra
hardware introduced by CRTR and REPAS as explained in Section 4.

���
�­

������
�­
� ���­

���­

�����­

­­

���­

�����­

­­

­­

­­

­­

­­

­­

­­

­­­­
!"­

�

�

�

�

�­­

­­

­­

­­

#

�

�

�

�­

$%#­­­

­­

�
��­

­­

�&�����­

����­

­­

�'�­ ("­

!���
�­

!����­

�%#­

­­

�������������­

�&�����­����­

�������������­

�&�����­����­

�­

�­
�­

�­
�­

�­

�­ �­

�­

�­

�­

�­

�­

�­

"!#­

�­ �­

­­

­­

%#­

­­

�­

�­

�­ �­

�­

�­

Fig. 4 REPAS core architecture overview.

5.1 Sphere of Replication in REPAS

In benchmarks with high contention resulting from synchronization, the ap-
proaches described in Section 4.1 for CRTR may increase the performance

14 Daniel Sánchez et al.

degradation of the architecture due to atomic synchronizations or too frequent
rollbacks because of miss-speculations. To avoid frequent master stalls derived
from consistency, we propose an alternative management of stores in REPAS.
Instead of updating memory only after verification, a more suitable approach
is to allow updates in L1 cache without checking. This measure implies that
unverified data could go outside the SoR while the master thread will not be
stalled as a result of synchronizations.

Additionally, with this new behaviour we effectively reduce the pressure
on the SVQ queue. In the original CRTR implementation, a master’s load
must look into the SVQ to obtain the value produced by an earlier store. This
implies an associative search along the structure for every load instruction.
In REPAS, we eliminate these searches since the up-to-date values for every
block are stored in L1 cache where they can be accessed as usual.

However, this change in the SoR with respect to CRTR entails an increase
in the complexity of the recovery mechanism and the management of verified
data. In our approach, in contrast to CRTR, when a fault is detected, the
L1 cache may have unverified blocks. The recovery mechanism involves the
invalidation of all the unverified blocks in L1. In order to maintain L2 updated
with the most up-to-date versions of blocks, when stores are correctly checked
by the slave, the values in the SVQ must be written-back into L2. This way,
the L2 cache remains consistent even if the block in L1 is invalidated as a result
of the mechanism triggered because of a fault. To perform these writebacks we
use a small coalescing buffer to mitigate the increase of the SVQ-to-L2 traffic
in the same fashion as [21]. Despite the increasing SVQ-to-L2 traffic, there is
no noticeable impact on performance.

5.2 The Unverified bit

To avoid error propagation deriving from a wrong result stored in L1 cache
by the master, unverified blocks in cache must be identified. In order to do
this, we introduce an additional bit per L1 cache block called Unverified bit
which is activated on any master write. This way of buffering unverified data
was previously introduced by DCC [11]. When the Unverified bit is set on
a cache block, it cannot be displaced or shared with other nodes, effectively
avoiding the propagation of a faulty block. Eventually, the Unverified bit will
be cleared when the corresponding slave thread verifies the correct execution of
the memory update. This mechanism is controlled at the coherence protocol
level by adding a new state (M Unv) to the base MOESI2 protocol as we
can see in Figure 5. Modified blocks remain in M Unv state until a positive
verification is performed by the slave. Upon this verification, the state of the
block transitions from M Unv to M state where it can be shared or replaced
as usual.

2 In a MOESI protocol, blocks are within one of the following states: Modified, Ownership,
Exclusive, Shared and Invalid.

A Fault-Tolerant Architecture for Parallel Applications in Tiled-CMPs 15

­

���
��

�� ��

�����­

�����­

)���­*­����+
­

���,­

)���­­

Fig. 5 Transition diagram with the states involved with Unverified blocks. M Unv state:
modified by the master and waiting for slave validation (Check). While in this state, the
data sharing (GETS) is not allowed.

However, clearing the Unverified bit is not a trivial task. We might find a
problem when a master thread updates a cache block several times before a
verification takes place. If the first check performed by the slave is successful,
it means that the first memory update was valid. However, this does not imply
that the whole block is completely verified since the rest of the updates have
not been checked yet. We propose two different mechanisms in order to address
this issue.

The first mechanism is based on counters per L1-cache block. Each time
that the master thread updates a block it increments the counter which is
eventually decremented when a verification is performed. When the counter
rises 0, a transition from M Unv to M is performed meaning that the block
has been successfully verified. However, these counters have a deep impact in
hardware overhead. With small 4-bit counters (which only can record up to
15 consecutive updates) the area overhead becomes around 6% with a 64KB
L1 cache and 64-byte blocks.

Thus, we have adopted a more lightweight mechanism based on the obser-
vation of the SVQ: we know if a block needs more slave checks before clearing
the unverified bit by checking if the block appears more than once in the SVQ.
If it does, more verifications need to be performed. Yet, this measure implies
an associative search in the SVQ. Nonetheless, as we said before, we eliminate
much of the pressure produced by master’s loads. In quantitative terms, in the
original CRTR proposal there was an associative search every master’s load,
and now we have an associative search every slave’s store. This results in a sig-
nificant reduction of associative searches within the SVQ, given the fact that
the load/store ratio for the studied benchmarks is almost 3 to 1. Furthermore,
as this operation is performed in parallel to the access to L1 cache, we do not
expect an increase in the L1-cache access latency.

16 Daniel Sánchez et al.

5.3 Fetch and ROB occupancy policies

The most common fetch policy for SMT processors is round-robin in which
each thread fetches instructions in alternative cycles. In REPAS, the fetch
policy needs to interact with the slack mechanism, which significantly differs
from the requirements in a typical SMT processor. As in CRTR [6], we have
adopted a slightly different policy. When the distance between the two threads
is below the threshold imposed by the slack, only the master thread is allowed
to fetch new instructions. Contrarily, when the distance is above the threshold,
the fetch priority is given to the slave. However, in order to use all the available
bandwidth, if the slack is not satisfied but for some reason the master thread
can not fetch more instructions, we allow the slave thread to fetch. In the
remaining stages of the pipeline such as decode, issue, execution and commit,
the used policy is FIFO.

We can experience a noticeable performance degradation if the master
thread fetches enough instructions to completely fill the shared ROB. This
happens since the master thread runs some instructions ahead of the slave.
In this scenario, the master thread cannot fetch more instructions because of
the previously described fetch policy, neither the slave because the ROB (Re-
Order Buffer) is full. So, until the ROB entries are released, the two threads
are stalled and cannot fetch new instructions.

In order to solve this problem, our approach consists of keeping a percent-
age of free entries in the shared ROB for the slave. This way, we avoid both
threads to stall due to ROB contention. Our experimental results show that
20% of total ROB’s free entries is the best case in order to reduce this penalty.

An alternative approach would be to use a private ROB for each thread
(or a static partitioning). However, the requirements of the master and slave
threads are changing constantly due to the slack mechanism, branch mispre-
dictions and long latency memory operations. In this scenario, a static par-
titioning is not able to maximize the use of all the available ROB entries.
Therefore, a fully shared ROB is the best approach to the architecture pre-
sented in REPAS.

5.4 Reliability in the forwarding logic

In our design, the integrity of the information within structures as caches or
additional buffers is protected by means of ECC codes. We assume SECDED
(Single Error Correction, Double Error Detection) with an additional hardware
cost of 12.5% (1 ECC byte per each 8 data bytes). However, a traditional issue
derived from the use of queues to bypass data is the potential problems arising
from errors in the forwarding logic. An error in the LSQ forwarding logic in the
master executing a load instruction, might cause an incorrect bypass to the
corresponding slave’s load. If this happens, the slave thread would consume a
wrong values from the LVQ leading to a SDC (Silent Data Corruption).

A Fault-Tolerant Architecture for Parallel Applications in Tiled-CMPs 17

To address this potential problem, in REPAS we use a double check: the
slave thread compares the load values obtained by means of its own LSQ with
the corresponding values in the LVQ. This way, if either the forwarding logic
of the master or the slave fail, this check will detect a mismatch in the values
signaling a fault. This mechanism results appropriate to assure the correction
of the data forwarding in the LSQ. Nevertheless, there are some environments
in which the coverage could not be considered good enough. In those cases,
another mechanism at micro-architecture level as proposed in [3] could be
applied, achieving almost a 100% AVF (Architectural Vulnerability Factor)
reduction while affecting performance in just 0.3%.

6 Evaluation

6.1 Simulation environment

The methodology used in the evaluation of this paper is based on full sys-
tem simulation. We have implemented all the previously described proposals
by extending the multiprocessor simulator GEMS [15] from the University of
Wisconsin. GEMS is an execution-driven simulator based on Virtutech Simics
[14] which we have used to run several parallel applications.

Our study has been focused on a 16-core in which each core is a dual-
threaded SMT, which has its own private L1 cache, a portion of the shared L2
cache and a connection to the on-chip network. The architecture follows the
Total Store Order (TSO). The coherence protocol is directory-based MOESI.
The main parameters of the architecture are shown in Table 2(a). Among them,
it is worth mentioning the 2D-mesh topology used as well as the 256-instruction
slack fetch as a result of the sensitivity analysis performed in Section 6.2.

For the evaluation, we have used a selection of scientific applications:
Barnes, Cholesky, FFT, Ocean, Radix, Raytrace, Water-NSQ and Water-SP
are from the SPLASH-2 [34] benchmark suite. Tomcatv is a parallel version of
a SPEC benchmark and Unstructured is a computational fluid dynamics ap-
plication. Additionally, we have run several multimedia applications: Facerec,
MPGDec, MPGEnc, Speechrec from ALPBench benchmark suite [13]. Finally,
we have studied two well known web server applications such as Apache and
SpecJBB. For the studies, each application has been executed with 16 soft-
ware threads, each one bound to a different processor core. This means 16
hardware threads for the base case and 32 hardware threads for the rest (16
master threads plus 16 slave threads). An alternative base case would consist
of executing 32 software threads for every application (as we have a 16-core
CMP, being each core a 2-way SMT). However, because of the low scalabil-
ity of some applications, specially the scientific ones, evaluated results are not
homogeneous when you compare a 16-threaded application (fault-tolerant ma-
chine having 16 masters) with a 32-threaded application. Therefore, in order
to isolate the non-scalability issues and perform a fairer comparison, we have
chosen as base case the one which uses the same number of threads (16) as the

18 Daniel Sánchez et al.

Table 2 Characteristics of the evaluated architecture and used benchmarks.

(a) System characteristics

16-Way Tiled CMP System Cache Parameters
Processor Speed 2 GHz Cache line size 64 bytes
Execution Mode Out-of-order L1 cache

Max. Fetch / retire rate 4 instructions / cycle Size 64KB
ROB 128 entries Associativity 4 ways

FUs
6 IALU, 2 IMul

Hit time 1 cycle
4 FPAdd, 2 FPMul

Consistency model Total Store Order (TSO) Shared L2 cache
Memory parameters Size 512KB/tile

Coherence protocol Directory-based MOESI Associativity 4 ways
Write Buffer 64 entries Hit time 15 cycles

Memory access time 300 cycles Fault tolerance parameters
Network parameters LVQ 64 entries

Topology 2D mesh SVQ 64 entries
Link latency (one hop) 4 cycles RVQ 80 entries

Flit size 4 bytes BOQ 64 entries
Link bandwidth 1 flit/cycle Slack Fetch 256 instructions

(b) SPLASH-2 + Scientific Benchmarks

Benchmark Size Benchmark Size
Barnes 8192 bodies, 4 time steps Raytrace 10Mb, teapot.env scene

Cholesky tk16.0 Tomcatv 256 points, 5 iterations
FFT 256K complex doubles Unstructured Mesh.2K, 5 time steps
Ocean 258 x 258 ocean Water-NSQ 512 molecules, 4 time steps
Radix 1M keys, 1024 radix Water-SP 512 molecules, 4 time steps

(c) ALPBench + Web Servers

Benchmark Size Benchmark Size
FaceRec ALPBench training input Speechrec ALPBench training input
MPGDec 525 tens 040.mv2 Apache 100,000 HTTP transactions
MPGEnc Output from MPGDec SpecJBB 8,000 transactions

evaluated fault-tolerant architectures which is, in fact, the common approach
followed in other previous proposals [10,31,6].

The sizes and parameters for the studied applications are reflected in Ta-
ble 2(b) and Table 2(c), respectively. We have performed all the simulations
with different random seeds for each benchmark to account for the variability
of multithreaded execution. This variability is represented by the error bars
in the figures, enclosing the confidence interval of the results.

For comparison purposes we have implemented several previous proposals.
As explained in Section 3 DCC incurs in an additional performance degra-
dation when it is ported from a shared-bus to a direct-network. The use of
shared-buses will be no longer possible in future CMP architectures due to
area, scalability and power constraints issues. Therefore, we compare our pro-
posed REPAS against DCC when a direct network such as a 2D-mesh is used.
Additionally, we compare REPAS against the performance of SMT-dual and
DUAL. SMT-dual models a coarse-grained redundancy approach which rep-
resents a 16-core 2-way SMT architecture executing two copies (A and A’) of
each studied application. Within each core, one thread of A and one thread
of A’ are executed. As mentioned in [22], this helps to illustrate the perfor-

A Fault-Tolerant Architecture for Parallel Applications in Tiled-CMPs 19

mance degradation occurred within a SMT processor when two copies of the
same thread are running within the same core. DUAL represents a 16-core
non-SMT architecture executing two copies of the same program. In the case
of 16-threaded applications it means that each processor executes 2 threads
(1 thread of every application). In DUAL, the OS is the responsible of the
schedule of the different software threads among the different cores.

6.2 Slack size analysis

The slack fetch mechanism maintains a constant delay between master and
slave threads. This delay results in a performance improvement (due to thread-
pairs cooperation) because of factors such as the reduction of the stall time
for L1 cache misses in the slave and the better accuracy in the execution of
slave’s branches thanks to the BOQ. From this perspective, we would choose
to use a slack as big as possible.

However, a larger size of the slack also requires an increase in the size of
structures like the SVQ or the LVQ to avoid stalls. Furthermore, in a shared-
memory environment, a large slack causes that the average life latency of a
store (the time spent between the execution of the store and its validation) is
increased.

u��

u��

u��

�

���

���

���

���

���

��	

���

���

���

�

���

�
�

�
�

�
�
�
��
�
�
� ��
�

�
�
�
�

��
�
��

��
�
��
�
�
�

��
�
�
�
��

�

�
��
�
�
��
��
�

�
�
��
�

�
�

�
�
��
��

!
"
#

�

�
�
�
�

��
�
�
��
�

$

�

%
�
�
�

�

%
�

�

�

�
�
�
�
��
�

!
"
#

&'(!&)*�+,+&���
����� -���������+,+.�
+&������

�
�
�
�
�
��
�
�
�
	

�
�
�

��
�
�
	�
��
�
		
	

������� �����	� ������	u �������	 �������� ��������

Fig. 6 Sensitivity analysis for the optimal size of the slack.

20 Daniel Sánchez et al.

This negatively affects performance because unverified blocks cannot be
shared or replaced from cache. Figure 6 shows a sensitivity analysis for different
sizes of the slack. The slack is measured in number of fetched instructions
between the master and the slave thread. The bars are normalized with respect
to the 32 slack size. As it is shown, the increase of the slacks size to 256
instructions obtains a noticeable performance improvement. However, further
increasing the slack size, results counterproductive. On average, a slack of
256 instructions is 7% better than a slack of 32. Therefore, for subsequent
experiments we will use 256 as our target slack.

6.3 Overhead of the fault-free case

We compare our proposed REPAS architecture against CRTR with the al-
ternative mechanisms, atomic synchronization and atomic speculation, as ex-
plained in Section 4.1. As many other previous proposals [19,11,26], we ini-
tially present the results of our mechanism in a fault-free environment in order
to quantify the execution time overhead for the common case.

Figure 7 plots the results of REPAS normalized with respect to a 16-core
system in which there is not any fault tolerant mechanism. CRTR sync refers
to the atomic synchronization mechanism for CRTR and CRTR spec refers
to the atomic speculation mechanism. As derived from Figure 7, REPAS out-
performs CRTR sync for both groups of benchmarks (scientific and multime-
dia/web) by 13% and 6% respectively, while the execution time overhead rises
a 25%, on average, for all the studied benchmarks.

The main source of degradation in CRTR sync comes from the frequent
synchronizations between master and slave threads because of the execution
of atomic instructions and memory fences. This effect can be better observed
in those benchmarks with more synchronizations such as Ocean, Raytrace
and Unstructured, in which the performance exhibited by CRTR sync is even
worst.

As it was expected, CRTR spec outperforms CRTR sync because of the ef-
fectiveness of the speculative mechanism. However, in benchmarks with highly
contended locks such as Ocean, Raytrace and Unstructured the number of
rollbacks due to miss-speculation have a significant impact on performance
in relation to REPAS. On average, REPAS is a 6% faster than CRT spec for
SPLASH-2 benchmarks, although for Multimedia and Web Server applications
CRTR spec shows a performance similar to REPAS, benefited from the low
synchronization exhibited by these applications.

The performance degradation reported for DCC when evaluated within a
shared-bus is roughly a 5% for several parallel applications [11]. However, as
explained in Section 3, this overhead is increased when a direct-network is used.
As explained, the major source of degradation is related to the mechanism to
assure the master-slave consistency which allows to avoid input incoherences.

As we can see in Figure 7, REPAS is able to outperform DCC by 27% for
scientific applications. However, for multimedia and web servers benchmarks,

A Fault-Tolerant Architecture for Parallel Applications in Tiled-CMPs 21

�

���

���

��	

���

�

���

���

�
�

�
�

�
�
�
��
�
�
� ��
�

�
�
�
�

��
�
��

��
�
��
�
�
�

��
�
�
�
��

�

�
��
�
�
��
��
�

�
�
��
�

�
�

�
�
��
��

!
"
#

�

�
�
�
�

��
�
�
��
�

$

�

%
�
�
�

�

%
�

�

�

�
�
�
�
��
�

!
"
#

&'(!&)*�+,+&���
����� -���������+,+.�
+&������

�
�
�
�
�
��
�
�
�
	

�
�
�

��
�
�
	�
��
�

/0'!&+1�	+�����2 3/4/5��
�+1�	+�����2 3/4/*� ��+1�	+�����2 633+1��+�����2

Fig. 7 Execution time overhead over a non fault-tolerant 16-core architecture.

the performance exhibited by DCC is better than the performance of REPAS
by 4%. The reason of this behaviour is that, while in scientific benchmarks the
cores share a lot of data, multimedia and web servers applications are mul-
tithreaded applications in which the sharing data is reduced to some extent
that the degradation because of the consistency window affects less the per-
formance. In any case, we have to remind that while REPAS uses SMT cores
to provide fault-tolerance, DCC uses twice the number of cores than REPAS.
This reduces the overall throughput of a system implementing DCC in more
than a 100% over a non fault-tolerant base case.

Finally, as we can see in Table 3, REPAS is 20% faster than SMT-dual on
average which, at the same time, is slower than CRTR sync and CRTR spec
by 10% and 17%, respectively. The performance degradation of SMT-dual
is such because of the bad interaction of different threads in the same core.
While in REPAS and CRTR threads collaborate (LVQ, SVQ, BOQ) in SMT-
dual threads compete against each other for the resources of the core affecting
performance. In the same way, DUAL affects performance noticeably. This is
because in DUAL, threads must be re-scheduled by the OS to be executed in
each core (remind that we have 16 cores but 32 threads, 16 threads for every
application). This adds an extra overhead of almost 2X in the computation.
As a final remark we can conclude that SMT approaches could benefit from a
better performance than non-SMT approaches.

22 Daniel Sánchez et al.

Table 3 Average normalized execution time for the studied benchmarks.

REPAS CRTR sync CRTR spec DCC SMT-dual DUAL
(16 cores) (16 cores) (16 cores) (32 cores) (16 cores) (16 cores)

Normalized

Execution Time 1.25 1.35 1.28 1.40 1.45 1.88

6.4 Performance in a faulty environment

We have shown that REPAS introduces an overhead in a fault-free scenario
although outperforming several previous proposals. Nonetheless, REPAS guar-
antees the correct execution of shared memory applications even in the pres-
ence of soft errors. The failures and the necessary recovery introduce an addi-
tional overhead that we study now.

Figure 8 shows the execution time overhead of REPAS under different fault
rates normalized with respect to a non-faulty environment case. Failure rates
are expressed in terms of faulty instructions per million of cycles per core. For
a realistic fault ratio, the performance of REPAS is barely affected so, for this
experiment, we have used fault rates which are extremely higher than expected
in a real scenario in order to show the kindness of the proposed architecture
3.

u��

u���

�

��u�

���

����

���

����

���

����

���

�
�

�
�

�
�
�
��
�
�
� ��
�

�
�
�
�

��
�
��

��
�
��
�
�
�

��
�
�
�
��

�

�
��
�
�
��
��
�

�
�
��
�

�
�

�
�
��
��

!
"
#

�

�
�
�
�

��
�
�
��
�

$

�

%
�
�
�

�

%
�

�

�

�
�
�
�
��
�

!
"
#

&'(!&)*�+,+&���
����� -���������+,+.�
+&������

�
�
�
�
�
��
�
�
�
	

�
�
�

��
�
�
	�
��
�

�u �uu ��u �uu �uuu

Fig. 8 REPAS overhead under different fault rates (in terms of faulty instructions per
million per core).

3 As an example, a ratio of 10 failures per million cycles per core is equivalent to a MTTF
of 3, 125 ∗ 10−6 sec. for the proposed architecture.

A Fault-Tolerant Architecture for Parallel Applications in Tiled-CMPs 23

As we can see, REPAS is able to tolerate rates of 100 faulty instructions per
million cycles per core with an average performance degradation of 1.6% in the
execution time in comparison to REPAS in a non-faulty environment. Only
when the fault ratio is increased to the huge (and unrealistic) amount of 1000
failures per million cycles, the performance shows a noticeable degradation of
8.6%. As expected, the performance degradation rises almost linearly with the
increase of the fault ratio although it still allows the correct execution of all
the studied benchmarks.

The time spent on every recovery varies across the executed benchmark.
This time includes the invalidation of all the unverified blocks and the rollback
(bypass the safe state of the slave thread to the master) of the architecture up
to the point where the fault was detected. On average this time is 80 cycles.
In contrast, other proposals such as DCC spend thousands of cycles to achieve
the same goal (10,000 cycles in a worst-case scenario). This clearly shows the
greater scalability of REPAS in a faulty environment.

6.5 Sharing unverified blocks

As initially implemented, REPAS does not allow the sharing of unverified
blocks. This conservative constraint avoids the propagation of errors among
cores. However, it is not expected that it imposes a high performance degra-
dation, since the verification of blocks is quite fast (in the order of hundred
cycles). On the contrary, DCC [11] is based on a speculative sharing policy.
Given that blocks are only verified at checkpointing creation intervals (i.e.,
10,000 cycles), avoiding speculative sharing in DCC would degrade perfor-
mance in an unacceptable way.

For comparison purposes, we have studied the effect of sharing unverified
blocks in REPAS. The mechanism is straightforward to implement: accept for-
ward requests for blocks in unverified state. However, since we do not support
checkpointing capabilities as DCC, to avoid unrecoverable situations, cores
obtaining speculative data cannot commit. This way, if a fault is detected by
the producer of the block, all the consumer cores can recover by flushing their
pipeline in a similar way as it is done when a branch is mispredicted. An ad-
ditional disadvantage is that the producer of the block must send a message
indicating whether the shared block is faulty or not, increasing the network
traffic. Luckily, the sharing information is gathered from the sharers list as
in a conventional MOESI protocol, so we do not need additional hardware to
keep track of speculative sharings.

Finally, we have not considered to migrate unverified data speculatively,
since an expensive mechanism would be necessary to keep track of the changes
in the ownership, the sharing chains as well as the original value of the data
block (for recovery purposes).

As we can see in Figure 9, the performance improvement for the speculative
mechanism is not noticeable. Just for benchmarks such as Ocean, Raytrace,
Unstructured and MPGEnc, speculation obtains a slight improvement. Table 4

24 Daniel Sánchez et al.

�

��u�

���

����

���

����

���

����

���

����

���

�
�

�
�

�
�
�
��
�
�
� ��
�

�
�
�
�

��
�
��

��
�
��
�
�
�

��
�
�
�
��

�

�
��
�
�
��
��
�

�
�
��
�

�
�

�
�
��
��

!
"
#

�

�
�
�
�

��
�
�
��
�

$

�

%
�
�
�

�

%
�

�

�

�
�
�
�
��
�

!
"
#

&'(!&)*�+,+&���
����� -���������+,+.�
+&������

�
�
�
�
�
��
�
�
�
	

�
�
�

��
�
�
	�
��
�

/0'!&+ /0'!&*& ���������

Fig. 9 Normalized execution time with and without the speculative mechanism.

Table 4 Number of speculative sharings and time needed to verify those blocks.

BENCHMARK Speculations Time to Verification

Barnes 12860 92.5
Cholesky 5758 161.5

FFT 128 94.5
Ocean 13786 94.5
Radix 710 82

Raytrace 37031 92
Tomcatv 250 91

Unstructured 223524 107
Water-NSQ 1585 98
Water-SP 339 89.5
Apache 135 99.5
Facerec 0 -
JBB 877 94.5

MPGDec 0 -
MPGEnc 48997 123.5
Speechrec 0 -

AVG - 101.875

reflects that speculations are highly uncommon. Furthermore, if we consider
the time to verification of speculative blocks it can be seen that, on average, we
could benefit from around 100 cycles, although they cannot be fully amortized
because pipeline is closed at commit. This explains why speculative sharings
do not obtain much benefit in REPAS. Overall, the speculative sharing mech-

A Fault-Tolerant Architecture for Parallel Applications in Tiled-CMPs 25

anism seems inadequate for the studied benchmarks, since it is not worth the
incremented complexity in the recovery mechanism of the architecture.

6.6 L1 cache size stress

An unverified block cannot be evicted from L1 cache since potentially faulty
blocks would go out of the SoR (Sphere of Replication). In an environment
with high pressure over the L1 cache, this can cause a performance degradation
due to the unavailability of replacements to be completed. In this section, we
study how REPAS behaves with different configurations.

�

��u�

���

����

���

����

���

����

�78 �78 �78 �78 �	78 ��78 	�78

m�	�����	����

�
�
�
�
�
��
�
�
�
	

�
�
�

��
�
�
	�
��
�

/0'!& /0'!&*"8

Fig. 10 Normalized execution time for different L1 cache sizes with and without Victim
Buffer.

It could be expected that the stress of cache size would impact negatively
in the performance of REPAS. However, the results show that this forecast is
not fulfilled. Figure 10 represents the execution time of REPAS for different
L1 cache configurations. Each set of bars is normalized with respect to the
case base with the same configuration.

Contrarily to expected, smaller caches do not degrade performance in
REPAS but even improve it in comparison with the base case (1KB, 2KB
and 4KB perform better than the 64KB configuration in comparison with the
base case with the same configuration). The reason for this behaviour is subtle
but it can be easily explained if we attend to the REPAS mechanism. As we
said before, a smaller cache penalize REPAS because of the increased latency
of the L1 replacements. However, a smaller cache also penalizes the architec-
ture due to the increased L1 cache miss ratio. The key point here is that,

26 Daniel Sánchez et al.

meanwhile in the base case the processor is stalled on a cache miss, in REPAS
L1 misses (or master stalls in general) are used by the slave thread to continue
executing program instructions, thus making forward progress.

Finally, an approach to allow the eviction of unverified blocks from L1 to
L2 is to use a small VB (Victim Buffer). With this mechanism, L1 cache re-
placements of these blocks are performed out of the critical path. As we can
see in Figure 10, the VB improves the performance for 1KB, 2KB and 4KB
configurations. For the rest of them, there are not noticeable gains because the
number of unverified blocks to replace from L1 cache is very low. Our experi-
mental analysis states that, on average for all studied benchmarks, the optimal
size for the VB is 14 entries, which we consider acceptable without spending
too much hardware. Beyond that point there are no noticeable performance
gains.

7 Conclusions and future work

Processors are becoming more susceptible to transient faults due to several fac-
tors such as technology scaling, voltage reduction, temperature fluctuations,
process variation or signal cross-talking. Although there are many approaches
exploring reliability for single-threaded applications, shared-memory environ-
ments have not been thoroughly studied.

Proposals like DCC or Reunion use DMR (Dual Modular Redundancy) to
provide fault tolerance in microarchitectures. However, they impose a 2X hard-
ware overhead, an unacceptable result for manufacturers which claim for a 10%
maximum extra area impact. Hence, in this paper we propose REPAS: Reliable
Execution for Parallel ApplicationS in tiled-CMPs, a novel RMT approach to
provide transient fault detection and recovery in parallel and shared-memory
applications.

While other proposals use large amounts of extra hardware, RMT archi-
tectures perform reliable computation by redundant thread execution (master
and slave) in SMT cores. Therefore, the hardware overhead is kept low. How-
ever, the architectural support for shared-memory applications has remained
under-explored so far. In our study, we show that atomic operations induce a
serialization point between master and slave threads, a problem which may be
minimized by means of speculation in the consistency model. Although this so-
lution requires both a change in the way atomicity is implemented and a hard-
ware increase to support the speculation, the degradation in low to medium
contention benchmarks remains moderated. However, in scenarios with high
contention the performance is severely affected. In REPAS we effectively avoid
this overhead due to synchronization or miss-speculations by eager updates of
the L1 cache.

We have implemented our solution in a full-system simulator and presented
the results compared to a system in which no fault-tolerant mechanisms have
been introduced. We show that, in a fault-free scenario, REPAS reduces the
overall execution time down to 25%, outperforming CRTR, a traditional RMT

A Fault-Tolerant Architecture for Parallel Applications in Tiled-CMPs 27

implementation. We have also compared REPAS with DCC, showing some
winnings in certain applications but losings in others. Nonetheless, REPAS
uses half the number of cores than DCC, providing a better throughput. We
have also evaluated the performance of REPAS in a faulty environment, show-
ing an increase of just 2% of execution time with a huge fault ratio of 100 faults
per million of cycles per core. This ratio is much higher than expected in a real
scenario, so negligible slowdown is reported in a realistic faulty environment.

Finally, we have performed a L1 cache size stress in order to study the
behaviour of REPAS due to its inability to evict blocks from cache until ver-
ification. Results show that even with smaller cache sizes, the performance
degradation of REPAS is kept in acceptable margins. Additionally, a Victim
Buffer to hold unverified blocks has been used in REPAS showing slight per-
formance improvement (up to 4%) for configurations which highly stress the
L1 cache.

As part of our future work, we are studying new mechanisms to improve
the collaboration between master and slave threads. One of our main ideas is
to detect the execution of critical path instructions in order to increase the pri-
ority of the affected thread. This way, we could even improve the performance
of REPAS.

Acknowledgements

The authors would like to thank the anonymous reviewers for their detailed
comments and valuable suggestions, which have increased the quality of this
paper. This work has been jointly supported by the Spanish MEC and Eu-
ropean Commission FEDER funds under grants “Consolider Ingenio-2010
CSD2006-00046” and “TIN2009-14475-C04-02”.

References

1. Bartlett, J., Gray, J., Horst, B.: Fault tolerance in tandem computer systems. In: The
Evolution of Fault-Tolerant Systems (1987)

2. Blundell, C., Martin, M.M., Wenisch, T.F.: Invisifence: performance-transparent mem-
ory ordering in conventional multiprocessors. In: Proc. of the 36th annual international
symposium on Computer architecture (ISCA ’09), pp. 233–244. Austin, TX, USA (2009)

3. Carretero, J., Vera, X., Chaparro, P., Abella, J.: On-line failure detection in memory
order buffers. In: Test Conference, 2008. ITC 2008. IEEE International, pp. 1 –10 (2008)

4. Francisco J. Villa, M.E.A., Garćıa., J.M.: Toward energy-efficient high-performance or-
ganizations of the memory hierarchy in chip-multiprocessors architectures. Journal of
Computer Science and Technology 6, 1–7 (2016)

5. Gniady, C., Falsafi, B.: Speculative sequential consistency with little custom storage. In:
Proc. of the 2002 International Conference on Parallel Architectures and Compilation
Techniques (PACT ’02), pp. 179–188 (2002)

6. Gomaa, M., Scarbrough, C., Vijaykumar, T.N., Pomeranz, I.: Transient-fault recovery
for chip multiprocessors. In: Proc. of the 30th annual Int’ Symp. on Computer archi-
tecture (ISCA’03). San Diego, California, USA (2003)

7. González, A., Mahlke, S., Mukherjee, S., Sendag, R., Chiou, D., Yi, J.J.: Reliability:
Fallacy or reality? IEEE Micro 27(6) (2007)

28 Daniel Sánchez et al.

8. International, V.S., Weaver, D.L., Germond, T.: The sparc architecture manual (1992)

9. Kumar, R., Zyuban, V., Tullsen, D.M.: Interconnections in multi-core architectures:
Understanding mechanisms, overheads and scaling. In: Proc. of the 32th Int’l Symp. on
Computer Architecture (ISCA’05). Madison, Wisconsin (2005)

10. Kumar, S., Aggarwal, A.: Speculative instruction validation for performance-reliability
trade-off. In: Proc. of the 2008 IEEE 14th Int’ Symp. on High Performance Computer
Architecture (HPCA’08). Salt Lake City, USA (2008)

11. LaFrieda, C., Ipek, E., Martinez, J.F., Manohar, R.: Utilizing dynamically coupled cores
to form a resilient chip multiprocessor. In: Proc. of the 37th Annual IEEE/IFIP Int’
Conference on Dependable Systems and Networks (DSN’07). Edinburgh, UK (2007).
DOI http://dx.doi.org/10.1109/DSN.2007.100

12. Li, M.L., Ramachandran, P., Sahoo, S., Adve, S., Adve, V., Zhou, Y.: Understanding the
propagation of hard errors to software and implications for resilient system design. In:
Proc. of the 13th Int’ Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS’08). Seattle, WA, USA (2008)

13. Li, M.L., Sasanka, R., Adve, S.V., kuang Chen, Y., Debes, E.: The alpbench benchmark
suite for complex multimedia applications. In: In Proc. of the IEEE Int. Symp. on
Workload Characterization, pp. 34–45 (2005)

14. Magnusson, P.S., Christensson, M., Eskilson, J., Forsgren, D., Hallberg, G., Hogberg,
J., Larsson, F., Moestedt, A., Werner, B., Werner, B.: Simics: A full system simulation
platform. Computer 35(2) (2002). DOI 10.1109/2.982916

15. Martin, M.M.K., Sorin, D.J., Beckmann, B.M., Marty, M.R., Xu, M., Alameldeen, A.R.,
Moore, K.E., Hill, M.D., Wood, D.A.: Multifacet’s general execution-driven multipro-
cessor simulator (gems) toolset. SIGARCH Comput. Archit. News 33(4) (2005)

16. Mart́ınez, J.F., Renau, J., Huang, M.C., Prvulovic, M., Torrellas, J.: Cherry: Check-
pointed early resource recycling in out-of-order microprocessors. In: Proc. of the
Int’ Symp. on Microarchitecture (MICRO’02). Istanbul, Turkey (2002). URL cite-
seer.ist.psu.edu/martinez02cherry.html

17. Mastipuram, R., Wee, E.C.: Soft error’s impact on system reliabil-
ity. Electronics Design, Strategy, News (EDN) pp. 69–74 (2004). URL
http://www.edn.com/article/CA454636.html

18. Mukherjee, S.: Architecture design for soft errors. Morgan Kauffman (2008)

19. Mukherjee, S., Kontz, M., Reinhardt, S.K.: Detailed design and evaluation of redundant
multithreading alternatives. In: Proc. of the 29th annual Int’ Symp. on Computer
architecture (ISCA’02). Anchorage, Alaska, USA (2002)

20. Olukotun, K., Nayfeh, B.A., Hammond, L., Wilson, K., Chang, K.: The case for
a single-chip multiprocessor. In: Proceedings of the 7th International Confer-
ence on Architectural Support for Programming Languages and Operating Sys-
tems, pp. 2–11. ACM (1996). DOI http://doi.acm.org/10.1145/237090.237140. URL
http://doi.acm.org/10.1145/237090.237140

21. Rashid, M., Huang, M.: Supporting highly-decoupled thread-level redundancy for par-
allel programs. In: Proc. of the 14th Int’ Symp. on High Performance Computer Archi-
tecture (HPCA’08). Salt Lake City, USA (2008)

22. Reinhardt, S.K., Mukherjee, S.: Transient fault detection via simultaneous multithread-
ing. In: Proc. of the 27th annual Int’ Symp. on Computer architecture (ISCA’00).
Vancouver, British Columbia, Canada (2000)

23. Ros, A., Acacio, M.E., Garćıa, J.M.: A scalable organization for distributed directories.
Journal of Systems Architecture 56(2-3), 77–87 (2010)

24. Rotenberg, E.: Ar-smt: A microarchitectural approach to fault tolerance in microproces-
sors. In: Proc. of the 29th Annual Int’ Symp. on Fault-Tolerant Computing (FTCS’99).
Madison, Wisconsin, USA (1999)

25. Selse: Selse ii final remarks. In: The 2nd Workshop on System Effects of Logic Soft
Errors (2006)

26. Smolens, J.C., Gold, B.T., Falsafi, B., Hoe, J.C.: Reunion: Complexity-effective
multicore redundancy. In: Proc. of the 39th Annual IEEE/ACM Int’ Symp.
on Microarchitecture (MICRO 39). Orlando, Florida, USA (2006). DOI
http://dx.doi.org/10.1109/MICRO.2006.42

A Fault-Tolerant Architecture for Parallel Applications in Tiled-CMPs 29

27. Smolens, J.C., Gold, B.T., Kim, J., Falsafi, B., Hoe, J.C., Nowatzyk, A.G.: Fingerprint-
ing: Bounding soft-error-detection latency and bandwidth. IEEE Micro 24(6) (2004).
DOI http://doi.ieeecomputersociety.org/10.1109/MM.2004.72

28. Sánchez, D., Aragón, J.L., Garćıa, J.M.: Evaluating dynamic core coupling in a scalable
tiled-cmp architecture. In: Proc. of the 7th Int. Workshop on Duplicating, Deconstruct-
ing, and Debunking (WDDD’08). In conjunction with ISCA’08. Beijing, China (2008)

29. Sánchez, D., Aragón, J.L., Garćıa, J.M.: Repas: Reliable execution for parallel appli-
cations in tiled-cmps. In: Proc. of the 15th Int. European Conference on Parallel and
Distributed Computing (Euro-Par 2009), pp. 321–333. Delft, Netherlands (2009)

30. Taylor, M.B., Kim, J., Miller, J., Wentzlaff, D., Ghodrat, F., Greenwald, B., Hoffman,
H., Johnson, P., Lee, J.W., Lee, W., Ma, A., Saraf, A., Seneski, M., Shnidman, N.,
Strumpen, V., Frank, M., Amarasinghe, S., Agarwal, A.: The raw microprocessor: A
computational fabric for software circuits and general-purpose programs. IEEE Micro
22(2), 25–35 (2002)

31. Vijaykumar, T., Pomeranz, I., Cheng, K.: Transient fault recovery using simultaneous
multithreading. In: Proc. of the 29th Annual Int’ Symp. on Computer Architecture
(ISCA’02). Anchorage, Alaska (2002)

32. Wang, N.J., Patel, S.J.: Restore: Symptom-based soft error detection in microproces-
sors. IEEE Transactions on Dependable and Secure Computing 3(3) (2006). DOI
http://doi.ieeecomputersociety.org/10.1109/TDSC.2006.40

33. Wenisch, T.F., Ailamaki, A., Falsafi, B., Moshovos, A.: Mechanisms for store-wait-free
multiprocessors pp. 266–277 (2007)

34. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The SPLASH-2 programs:
Characterization and methodological considerations. In: Proc. of the 22th Int’ Symp.
on Computer Architecture (ISCA’95). Santa Margherita Ligure, Italy (1995)

35. Ziegler, J., Lanford, W.A.: The effect of sea level cosmic rays on electronic devices.
Journal of Applied Physics 52, 4305–4312 (1981)

36. Zielger, J.F., Puchner, H.: SER-History, Trends and Challenges. Cypress Semiconductor
Corporation (2004)

