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Abstract

Topology changes, such as switches being turned on/off,
hot expansion, hot replacement or link re-mapping, are very
likely to occur in NOWSs and clusters. Moreover, topology
changes are much more frequent than faults. However, their
impact on real-time communications has not been consid-
ered a major problem up to now, mostly because they are not
feasible in traditional environments, such as massive paral-
lel processors (MPPs), which have fixed topologies. They
are supported and handled by some current and future in-
terconnects, such as Myrinet or Infiniband. Unfortunately,
they do not include support for real-time communications
in the presence of topology changes.

In this paper, we propose and evaluate a new protocol
that provides topology change- and fault-tolerant real-time
communication services on NOWs and clusters. This proto-
col overcomes the main drawback of our previously pro-
posed protocol, called Dynamically Re-established Real-
Time Channels (DRRTC), which is physically limited by the
number of virtual channels per port. The new protocol al-
lows different real-time channels to share the same virtual
channel. In this way, the new protocol allows to establish
a greater number of real-time channels than the previous
one. Moreover, its only limitation is the bandwidth devoted
to real-time traffic. However, this introduces two new prob-
lems that are successfully managed by the new protocol:
the existence of cyclic dependencies among different real-
time channels and the increased complexity of deadline re-
quirements. We present and analyze the performance eval-
uation results when a single switch or a single link is de-
activated/activated for different topologies and workloads.
The new protocol overwhelms the DRRTC protocol while
guaranteeing deadline requirements and channel recovery.
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1. Introduction

In the past few years, networks of workstations (NOWS)
and clusters, based on off-the-shelf commodity components
like workstations, PCs, and high-speed local-area networks
(LANSs), have emerged as a serious alternative to massive
parallel processors (MPPs) and are the most cost-effective
platform for high-performance servers [20]. In fact, they are
becoming the main infrastructure for science and engineer-
ing distributed processing. Moreover, they are acquiring a
prevalent role in providing support for many other applica-
tions such as web servers or distributed databases. However,
distributed real-time processing on NOWSs and clusters is
still a pending issue. This is because of the lack of schemes
that are able to provide dependable real-time services on
NOWs.

Distributed real-time applications impose strict condi-
tions on traffic such as bounded delivery time (deadline)
or guaranteed bandwidth [3]. In order to provide real-
time communication, real-time channels [16] establish uni-
directional connections among source and destination hosts.
Once a real-time channel has been established, that is, re-
source reservation has finished, maximum delivery time and
bandwidth are guaranteed.

Topology changes, such as switches being turned on/off
or link re-mapping, are very likely to occur in NOWSs and
clusters. Moreover, topology changes are much more fre-
quent than faults. However, their impact on real-time com-
munications has not been considered a major problem up
to now, mostly because they are not feasible in traditional
environments, such as massive parallel processors (MPPs),
which have fixed topologies. Topology changes may tear
down existing real-time channels and degrade network abil-
ity to establish new real-time channels because the routing
tables are not up-to-date. Therefore, not all the available
resources can be fully exploited. To make the best use of
resources, every time a topology change or fault occurs,



routing tables must be updated to reflect the new configura-
tion. Finally, topology changes are supported and handled
by some current and future interconnects, such as Myrinet
[5] or Infiniband [15]. Unfortunately, they do not include
support for real-time communications in the presence of
topology changes.

We proposed a previous protocol, called DRRTC [11,
12], that provides topology change- and fault-tolerant real-
time communication services on NOWSs while still pro-
viding best-effort ones. The protocol was based on real-
time channels [16] with single backup [14] channels and
dynamic reconfiguration [1, 6]. Real-time channels pro-
vided real-time communications, single backup channels
provided single-fault tolerance, and dynamic reconfigura-
tion provided topology change tolerance and tolerance to
additional faults. The main drawback of the DRRTC pro-
tocol is the small number of real-time channels that can be
supported. Each real-time channel reserves a virtual chan-
nel per output port in every switch it goes through and the
number of virtual channels per physical port is limited [12].
In our experiments, we reached up to four real-time chan-
nels per host under certain conditions [12]. The motivation
of this work is to improve the previous protocol by elim-
inating the physical constraint imposed by the number of
available virtual channels. To eliminate that physical con-
straint, the new protocol allows several real-time channels
to share a given virtual channel. This introduces two new
problems that are successfully managed by the new proto-
col: the existence of cyclic dependencies among different
real-time channels and the increased complexity of deadline
requirements.

We present and analyze the performance evaluation re-
sults when a single switch or a single link is deacti-
vated/activated for different topologies and workloads. The
results show that the new protocol allows up to ten times
the original number of supported real-time channels while
guaranteeing deadline requirements and channel recovery.
Furthermore, with the new protocol, topology change toler-
ance is only limited by the available bandwidth to establish
real-time channels, as well as by the topology connectivity,
because the physical constraint imposed by the number of
virtual channels is eliminated.

The rest of this paper is organized as follows. The next
section describes related work. Sect. 3 outlines the new pro-
tocol. In Sect. 4, the design trade-offs for the new proto-
col are analyzed. The experimental testbed is depicted in
Sect. 5. In Sect. 6, the performance evaluation results are
shown. Finally, we present our conclusions and feasible
ways of future work.

2 Redated work

Faults have been traditionally considered a major prob-
lem in distributed real-time processing since they may inter-
rupt real-time communications. Thus, several researchers
have proposed efficient solutions based on the reservation of
additional resources. The Backup Channel Protocol (BCP),
developed by Shin et al. [14] and based on real-time chan-
nels [16], performs recovery from faults by means of the
reservation of additional resources (backup channels). In
this approach, the maximum number of admissible faults
depends on the maximum number of alternative paths pro-
vided by the routing function to establish the backup chan-
nels. Moreover, topology change tolerance is not provided.

Static reconfiguration techniques (Autonet [22] and
Myrinet with GM [18]) stop user traffic to update routing
tables. Although reconfigurations are not frequent, they can
considerably degrade performance [22] and real-time con-
straints can not be met because of traffic disruption.

Dynamic reconfiguration, recently proposed by Duato et
al. [1, 6], assimilates topology changes by updating rout-
ing tables without stopping traffic. In this way, the nega-
tive effects of static reconfiguration are avoided [6]. The
protocol guarantees that the global routing algorithm re-
mains deadlock-free at any time. Note that dynamic re-
configuration by itself provides neither quality of service
nor real-time services, but it provides support for an addi-
tional mechanism designed to meet real-time requirements.
Pinkston et al. [19] developed a simple but effective strat-
egy for dynamic reconfiguration in networks with virtual
channels. Lysne et al. [17] aim at reducing the scope of
reconfiguration by identifying a usually small part of the
network, the skyline, as the only part where a full reconfig-
uration is necessary. Avresky et al. [4] recently presented
a new dynamic reconfiguration protocol, called NetRec, for
high-speed LANSs using wormhole routing.

The possibility of providing support for QoS in router
architectures has been explored by a few researchers. A hy-
brid approach using two different types of switching mech-
anisms has been presented in [10, 21]. The Media Worm
Router [25] explores the feasibility of providing QoS in
wormhole switched routers. It aims at using multiple con-
nections within each virtual channel to achieve soft guaran-
tees.

3 Protocol

This section summarizes our previous protocol and de-
scribes the operation of the new protocol in an informal way.
For further details about the protocol see [11, 12].



3.1 DRRTC protocol

In order to support real-time communications, we set up
a primary channel and a single secondary channel* for each
real-time channel. Once a real-time channel has been estab-
lished, real-time messages flow through the primary chan-
nel from source host to destination host until the real-time
channel is closed or the primary channel is broken down.
When either a hot topology change or a fault breaks down a
primary channel, real-time messages are redirected through
its secondary channel. At the same time, the dynamic re-
configuration algorithm described in [1, 6] is triggered. The
dynamic reconfiguration process updates routing tables in
such a way that secondary channels could be re-established
for the affected real-time channels as long as the network
topology still provides an alternative physical path. The
dynamic reconfiguration process does not affect the per-
formance of real-time messages flowing through real-time
channels because real-time traffic is allowed during recon-
figuration, and real-time messages have the highest prior-
ity (see Subsection 4.1). After reconfiguration, a new sec-
ondary channel is allocated for each affected real-time chan-
nel regardless of whether the old secondary channel has be-
come the new primary channel or the old secondary channel
was broken down. The procedure for interrupted secondary
channels is the same as for primary ones. However, in this
case, real-time traffic is not affected. On the other hand,
if several topology changes or faults concurrently occur, the
dynamic reconfiguration protocol combines them into a sin-
gle process [6], and thus, the protocol remains valid.

3.2 Real-time channel establishment

A real-time channel is a unidirectional connection be-
tween a pair of hosts Hy and Hz. A real-time channel con-
sists of a primary channel and a single secondary one. Each
of them is a set {H, Ha, B, D, T} where H; is the source
host, Hs is the destination host, B is the required bandwidth,
D is the maximum admissible latency or deadline for real-
time messages, and T is the type of channel, that is, primary
or secondary. Enough resources are assigned to each chan-
nel in each switch along its path to meet its bandwidth and
deadline requirements before real-time messages are trans-
mitted. Real-time messages flow through the primary chan-
nel from H; to Hy until the real-time channel is closed or
the primary channel is broken down. In the meantime, the
secondary channel remains idle and does not consume link
bandwidth along its path from H; to H,. Before transmit-
ting real-time messages, H; must reserve the necessary re-
sources for both the primary and the secondary channels.
A best-effort message, called RTC_REQUEST, is sent from

1The terms secondary and backup are used interchangeably throughout
this paper.

H; to Hs to set up the primary channel. In each switch,
the request message is processed to check for the availabil-
ity of resources and to reserve them as we will see later. If
there are not enough resources, a best-effort message, called
RTC_RESPONSE(False), is returned to H;. When a request
message arrives at Hs, the primary channel is accepted if,
and only if, the maximum latency for real-time messages
along the channel path is shorter than channel deadline (see
Subsection 4.3).

Then, Hs sends a best-effort message, called
RTC_RESPONSE(True), back to H;. The path fol-
lowed by the response messages may not be the same used
by the request to establish the channel. If H receives a false
response message or channel timeout expires, resources are
released by means of a RTC_MSG(Release) message that
flows through the channel. Channel timeout allows H; to
release resources when no response message is received.
After a few cycles, H; will try to establish the primary
channel again until it is established or a maximum number
of attempts is reached. If H; receives a true response mes-
sage, the secondary channel will be established likewise. A
request is sent from Hy to Hy to set up the secondary chan-
nel. In each switch, the request message is processed to
check for the availability of resources, to reserve them, and
also to verify that the primary channel does not go through
that switch. This is because the primary and the secondary
channels must not share resources in order to maximize
fault tolerance.? Once both the primary and the secondary
channels have been successfully established, the real-time
channel establishment process has finished. Otherwise,
resources for both the primary and the secondary channels
are released, and the real-time channel is rejected. Note
that several channels could be concurrently established.

Finally, we are going to analyze the processing of re-
quests in detail. First, for each possible output port provided
by the routing function for a request message, we check
for the availability of resources, that is, enough bandwidth.
Output ports without enough resources are no longer con-
sidered. If the request corresponds to the secondary chan-
nel, it must also be verified that the primary channel does
not go through the switch. To do this, each switch has a
channel table (see Table 1) that keeps track of all channels
that go through it. If there are not enough resources or the
primary channel goes through the switch, a false response
message is returned to H,. Once an appropriate output port
has been found, the channel is added to the channel table,
resources are reserved, and the request is forwarded to the
next switch. Note that selection of channel routes is dis-
tributed among all switches, that is, global information is
not necessary to establish channels.

2|nitially, two NICs per host are assumed so that the primary and the
secondary channels have to share neither switches nor links.



Table 1. Real-time channel table

| Field | Meaning |
CHANNEL | Channel identifier in the source host
HSSOURCE | Source host identifier
TYPE Primary or Secondary
Linkln Input port
LinkOut Output port

3.3 Real-time channel operation

After a real-time channel has been successfully es-
tablished, H; begins to inject real-time messages, called
RTC_MSG messages, through the primary channel. Real-
time messages flow from H; to Hs through the primary
channel until the real-time channel is closed or the primary
channel is broken down. In the former case, resources are
released by means of two release messages (for the primary
and secondary channels, respectively). In the latter case,
real-time messages are redirected through the secondary
channel and a new secondary channel will be allocated if
possible. Note that if the secondary channel is broken down,
real-time traffic is not affected.

3.4 Real-time channel recovery

Once a real-time channel has been set up and is transmit-
ting real-time messages, we have to deal with the problem
of channel recovery while still satisfying real-time require-
ments. Let us assume that a single link fails or is turned off.
Next, the two adjacent switches detect the fault and deter-
mine the broken channels looking up their real-time chan-
nel tables. For each channel whose output port matches the
broken link, a best-effort message, called RTC_REPORT, is
sent to its corresponding source host. The switch remains
in the releasing state until the corresponding release mes-
sage is received. If report timeout expires, a report message
is sent again. For each channel whose input port matches
the broken link, a release message is sent to the destination
host through the channel. Every time a report arrives at a
source host for the primary or the secondary channels, a re-
lease message releases resources from that source host up
to the previous switch. In the former case, real-time traf-
fic is redirected through the secondary channel, that is, the
secondary channel becomes the new primary channel. In
the latter case, real-time messages continue flowing through
the primary channel. In any case, after reconfiguration, the
secondary channel will be re-established if possible.

At the same time that the adjacent switches detect the
fault, the dynamic reconfiguration protocol described in [1,
6] is triggered. This process performs sequences of partial

routing table updates to avoid stopping traffic, and trying to
update routing tables in such a way that a secondary channel
could be re-established for each affected real-time channel.
After reconfiguration, a new secondary channel is allocated,
if possible, for each affected real-time channel regardless
of whether the old secondary channel has become the new
primary channel or the old secondary channel was broken
down.

4 Increasing thereal-time capabilities

This section describes the main modifications we have
introduced in our protocol in order to increase the number
of supported real-time channels. A different architecture
is needed to allow real-time channels to share a single vir-
tual channel. Moreover, this has two relevant disadvantages.
First, the existence of cyclic dependencies among real-time
channels that could lead to a deadlocked configuration. Sec-
ond, the increased complexity of deadline requirements. We
present an elegant solution to solve both problems without
reducing the real-time capabilities.

4.1 Switch architecture

Although a detailed hardware design is out of the scope
of this paper, switch architecture is depicted (see Fig. 1(b))
to help readers to understand the new protocol that we pro-
pose. For comparison purposes, we also show the switch ar-
chitecture used by the DRRTC protocol (see Fig. 1(a)). As
shown in Fig. 1, both protocols use an input-buffered switch
with virtual channels. Virtual cut-through is used because
it may replace wormhole in the near future in NOWs [9].
Physical link bandwidth is 1.28 Gbps, and links are 8-bit
wide.

In the DRRTC protocol, each output port has sixteen
virtual channels so that thirteen RTC virtual channels can
be reserved for real-time channels (see Fig. 1(a)). Each
real-time channel flowing through an output port reserves
a virtual channel. Thus, the maximum number of real-time
channels that can be established through an output port is
thirteen.

On the other hand, in the new protocol, each output
port has four virtual channels so that a single virtual chan-
nel is shared among all real-time channels flowing through
each output port (Fig. 1(b)). Consequently, we eliminate
the constraint due to the limited number of virtual chan-
nels in order to increase the number of supported real-time
channels. The use of virtual channels other than the RTC
ones (see Subsection 4.2) is the same in both cases. Min
and UD (Up*/Down* routing) virtual channels are used for
fully adaptive minimal routing by best-effort traffic, and
C/RTC is used by protocol control messages and all con-
trol messages generated during reconfigurations. To build a



deadlock-free routing function on Min and UD we use the
methodology described in [23].

Primary and Secondary store the amount of bandwidth
reserved by primary and secondary channels, respectively.
RVC stores the reserved virtual channels. Note that RVC is
not needed by the new protocol since a single virtual chan-
nel is used for all real-time channels. The Control Unit pro-
cesses requests and all control messages generated by re-
configuration.

The Control Port allows switches to inject control mes-
sages. The Channel Table keeps track of all channels that
go through the switch (see Table 1). In the DRRTC proto-
col, the input and output virtual channels for each real-time
channel must be recorded in the table. The Virtual Chan-
nel Arbiter implements the link scheduling algorithm used
to forward messages. The scheduling algorithm is based
on the one of Infiniband [15]. Three levels of priority are
defined: real-time traffic, control traffic and best-effort traf-
fic. Whenever an output port becomes free, it checks for
the existence of real-time messages requesting that port. It
proceeds in a round-robin fashion on all the input ports. All
packets at a priority level are sent before any packet at a
lower priority level. To ensure forward progress on the best-
effort virtual channels, the maximum reservable bandwidth
for real-time traffic is bounded. The scheduling algorithm
becomes simpler when using a shared virtual channel for
real-time traffic since only virtual channel per port must be
considered. Finally, we use a full crossbar in the modified
DRRTC protocol because of the reduction in the number of
virtual channels required.

4.2 Recovering from cyclic dependencies among
real-time channels

The DRRTC protocol allocates a virtual channel for each
real-time channel along its path from source to destination
host. Meanwhile, the new protocol allows all the real-time
channels to share the same virtual channel. Therefore, the
secondary channels in the new protocol do not consume re-
sources. Moreover, this simplifies the resource reservation
process because a dedicated virtual channel is no longer
needed. However, this simplification is not as simple as
it could seem to be at first glance. Sharing a single vir-
tual channel among all real-time channels flowing through
each output port may introduce cyclic dependencies [7, 8]
between RTC virtual channels and even lead to deadlock.
This is because request messages are routed using adaptive
routing so that the probability of finding a path with enough
resources is maximized. As a consequence, RTC virtual
channels may form a cycle in the channel dependency graph
[7, 8]. In that case, the cycle cannot be broken using an es-
cape channel [7, 8] because real-time messages must follow
a fixed route from source host to destination host. Likewise,

Table 2. Detected deadlocks as a function of
the threshold used to trigger the counter for
no topology changes and for deactivating the
root node.

Detected Deadlocks

Counter (cycles) No Change Change
512 (2 packets) 10216 12718
768 (3 packets) 214 239

1024 (4 packets) 0 3

1280 (5 packets) 0 0

1536 (6 packets) 0 0

1792 (7 packets) 0 0

2048 (8 packets) 0 0

cycles could arise after reconfiguration between old real-
time channels and new real-time channels. However, since
the percentage of real-time traffic over the whole link band-
width is very small (see Sect. 5), the occurrence of dead-
locks is virtually eliminated [24]. Furthermore, the situation
remains the same during reconfiguration, that is, deadlocks
are very infrequent [13].

In spite of unlikeliness of deadlocks, the protocol has
been modified to recover from deadlocked configurations.
Each RTC virtual channel has an associated counter. This
counter is set to zero every time a real-time packet goes
through the crossbar. In this way, the counter represents the
number of cycles that a real-time message is waiting to be
forwarded. If the counter reaches a certain threshold, the
packet is considered as to be deadlocked. Threshold value
must be chosen according to the different number of real-
time packets that may be forwarded before the blocked one
to avoid detecting false deadlocks (see Table 2). In our ex-
periments, a value of 1280 cycles would be enough. To
recover from a deadlock, the real-time message is discarded
and the corresponding real-time channel is torn down. The
switch sends a RTC_DEADLOCK message to the source
host and a release message to the destination host. When
the RTC_DEADLOCK message arrives at the source host,
a release message releases the reserved resources from that
source host up to the sender switch. From this point, the
protocol behaves in the same way as in the case of a topol-
ogy change.

4.3 Evaluation of deadline requirements

A real-time channel is accepted if, and only if, the max-
imum latency for real-time messages is shorter than the
channel deadline. To compute the maximum delay, we must
consider the maximum delay in each switch times the num-
ber of switches crossed by the channel [2].
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Figure 1. 1(a) a virtual channel per real-time channel (DRRTC protocol) 1(b) a single virtual channel

for all real-time channels (new protocol)

A real-time packet from a certain channel shares each
virtual channel along its path with packets from different
real-time channels. Thus, considering a FIFO behavior, all
the packets that arrive before it must leave before it. Fur-
thermore, all possible real-time packets from all the input
ports must be accounted for. Therefore, the maximum num-
ber of real-time packets P to consider before a real-time
packet crosses is:

P= % X VCsPort x Ports

where Bg;.. is the buffer size, Ps;.. is the packet size of
real-time packets, VCsPort is the number of RTC virtual
channels per port and Ports is the number of external ports
per switch. In this case, VCsPort is one and Ports is
seven. Ports includes neither the Control Port nor the input
port because the RTC virtual channel for real-time traffic
has the highest priority, and the real-time channels are not
allowed to go backwards. Hence, the maximum delay D is:

D = P x Pg;,. x Switches + C
or
D = Bg;,. x Ports x Switches + C

where C is the chosen counter threshold and Switches
is the number of switches crossed by the channel. We
are assuming that a real-time packet might be delayed by
one deadlocked packet at most. This assumption is even
pessimistic due to the unlikeliness of deadlocks [13, 24].
Finally, note that deadline requirements for any real-time

channel are independent from each other, that is, the es-
tablishment of a new real-time channel will not affect the
performance of the previously established ones.

5 Experimental testbed

The cluster is composed of a set of switches con-
nected by point-to-point links and hosts attached to switches
through two network interface cards (NICs). In this way, we
eliminate single points of failure. Network topologies were
randomly generated and are completely irregular. However,
some restrictions were applied for the sake of simplicity.
First, all switches have eight ports, four ports connected
to other switches and four ports connected to hosts. Sec-
ond, two switches are not connected by more than one link.
Finally, the assignment of hosts to switches was made so
that the intersection of the sets of hosts connected to two
switches is one host at most. This is because we want to
avoid bottlenecks when re-establishing channels after re-
configuration.

Simulation was used instead of analytical modeling. Our
simulator models the network at the packet level. Simu-
lation results were generated from three irregular topolo-
gies (T1, T2, and T3) consisting of 64 switches and 128
hosts each one (2 NICs per host). Workload is composed of
CBR real-time channels of 1 Mbps, whose deadline is equal
to inter-arrival time (IAT), and best-effort messages. Best-
effort message distribution is uniform and hosts inject mes-
sages into the network at 100 Mbps each. The maximum



amount of reservable bandwidth for real-time channels on
each link is 10% of the total bandwidth, that is, 128 Mbps.
Packet length of real-time messages is 256 bytes and packet
length of best-effort messages is also 256 bytes. All hosts
try to establish the same number of real-time channels. For
different experiments, the number of real-time channels per
host varies between two and four (2RTC, 3RTC and 4RTC)
for the DRRTC protocol (dedicated virtual channels), and
between twenty and forty (20RTC, 30RTC and 40RTC) for
the new protocol (shared virtual channel). Therefore, the to-
tal number of real-time channels in the network is 256/2560,
384/3840 or 512/5120 according to the number of real-time
channels per host. Destinations of channels are randomly
chosen among all hosts in the network. Real-time channels
are initially established during an interval of time propor-
tional to the number of channels per host. Finally, a 2048
cycles counter was used to avoid false deadlock detection.

6 Performance evaluation

In this section, the performance of the new protocol is
evaluated and compared with that of the DRRTC protocol
[12]. In particular, we analyze what happens when a single
switch or a single link is turned on/off.

6.1 Switch deactivation and activation

In Fig. 2(a) and Fig. 2(b), we show the evolution of
real-time channels for different configurations when a sin-
gle switch is turned off for the DRRTC protocol and for
the new one. Each column represents the total number of
channels that hosts are trying to establish, that is, 256/2560,
384/3840 and 512/5120 for 2RTC/20RTC, 3RTC/30RTC
and 4RTC/40RTC, respectively. NE corresponds to initially
non-established channels and the rest corresponds to suc-
cessfully established channels. As shown in Fig. 2(a) and
Fig. 2(b), for all topologies, as the number of channels per
host increases, the number of initially non-established chan-
nels increases too. In the new protocol, whereas 100% of
channels are established for 20RTC per host, less than 1%
of channels are non-established for 30RTC per host, and the
percentage of non-established channels varies from 19.4%
t0 22.1% for 40RTC per host. The percentages are very sim-
ilar in the DRRTC protocol. Note, however, that ten times
more channels can be established with the new protocol.

For each topology, we successively simulate the deacti-
vation of eight switches, one by one, that is, each switch
is deactivated while the rest remain activated. Switches are
randomly chosen among all switches in the network. In the
figures, mean values are represented. NA corresponds to the
average number of non-affected real-time channels, and the
rest corresponds to the average number of interrupted real-
time channels. RE is the average number of re-established

real-time channels after reconfiguration, and NRE is the av-
erage number of non re-established real-time channels be-
cause a new secondary channel could not be allocated after
reconfiguration. The average number of real-time channels
affected by switch deactivation is very similar for all con-
figurations However, the average numbers of re-established
channels differ considerably from each other according to
the number of real-time channels that hosts are trying to es-
tablish. As shown in Fig. 2(a) and Fig. 2(b), for all topolo-
gies, as the number of real-time channels per host increases,
the average number of re-established channels decreases.
All interrupted channels are re-established for 2RTC and
20RTC. The average numbers of re-established channels are
very similar for 3RTC and 30RTC per host, and are supe-
rior to 85% in all cases. For 4RTC per host, results are
worse than for 40RTC per host In the former case the av-
erage value varies from 61% (T1) to 66% (T2) and, in the
latter case, it varies from 74% (T2) to 75% (T1). Finally,
note that switch activation does not affect any already estab-
lished real-time channel. Consequently, no further analysis
is needed.

We have analyzed the behavior of both the DRRTC pro-
tocol and the new protocol. Now, we explain why results get
worse when increasing the number of real-time channels per
host in both cases. In Fig. 3(a) and Fig. 3(b), we show the
number of the reserved virtual channels for all switch-to-
switch links before reconfiguration for 2RTC and 4RTC per
host, respectively. For each switch, four bars represent the
reserved virtual channels of its four ports connected to other
switches. As we can observe, for 2RTC per host, only a
few ports have no free virtual channels (only 47% of virtual
channels are reserved). However, for 4RTC per host, most
ports have consumed all its virtual channels (87% of virtual
channels are reserved). Hence, the average number of estab-
lished channels decreases as the channels per host increase
because free virtual channels are used up in most ports. In
Fig. 3(c) and Fig. 3(d), we show the reserved bandwidth for
all switch-to-switch links before reconfiguration for 20RTC
and 40RTC per host, respectively. For each switch, four
bars represent the total amount of reserved bandwidth. As
we can see, for 20RTC per host, most ports have not used
all the available bandwidth yet. However, for 40RTC per
host, most ports have consumed all its available bandwidth.
Therefore, the average number of established channels de-
creases as the channels per host increase because reservable
bandwidth is exhausted in most ports. Note that, with the
new protocol, the limit is imposed by the maximum amount
of reservable bandwidth, (that is arbitrarily set to 10% of the
total link bandwidth) but not by any physical constraint. 3

3In both cases, the reasoning after reconfiguration is the same as the
previous ones. These figures have been omitted for the sake of brevity.
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Figure 2. Evolution of real-time channels for different configurations when a single switch/link is
turned off for the DRRTC protocol and for the new protocol. Configurations correspond to topologies
T1, T2 and T3 when hosts try to establish 2RTC/20RTC, 3RTC/30RTC and 4RTC/40RTC per host,

respectively

6.2 Link deactivation and activation

In Fig. 2(c) and Fig. 2(d), we show the evolution of the
real-time channels for different configurations when a sin-
gle link is turned off. For each topology, we simulate the
deactivation of the four switch-to-switch links, one by one,
of the same switches used to generate the results in Fig. 2(a)
and Fig. 2(b). The average number of channels affected by
link deactivation is approximately the same for all config-
urations in both cases (it varies from 4% for T1/3RTC to
6% for T3/20RTC). As expected, it is lower than the one for
switch deactivation. Apart from that, results keep the same
proportions as in the case for switch deactivation. Finally,
note that link activation does not affect any already estab-
lished real-time channel. So, no further analysis is needed.

7 Conclusions and futurework

In this paper, a new protocol, that provides topology
change- and fault-tolerant real-time communication ser-
vices on NOWSs and clusters, has been proposed and eval-
uated. This protocol overcomes the main drawback of
a previously proposed protocol, called Dynamically Re-
established Real-Time Channels (DRRTC), which is physi-
cally limited by the number of virtual channels per port. To
eliminate that physical constraint, the new protocol allows
several real-time channels to share a given virtual channel
so that it allows up to ten times the original number of sup-
ported real-time channels. This introduces two new prob-
lems that are successfully managed by the new protocol: the
existence of cyclic dependencies among different real-time
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Figure 3. Resource usage before reconfiguration for the DRRTC protocol and for the new protocol

channels and the increased complexity of deadline require-
ments. The occurrence of deadlocked configuration would
be detected by using a hardware counter. The affected chan-
nel would be torn down and set up again as in the case of
a topology change. However, this is not a major problem
because the probability of deadlocks is negligible.

We have evaluated its behavior and compared with that
of the DRRTC protocol when a single switch or a single
link is turned on/off for different topologies and workloads.
All interrupted real-time channels are re-established after
a topology change when twenty real-time connections per
host are established. As the workload increases, channel
recovery guarantees decrease because the reservable band-
width is exhausted in most ports. In this way, the factor of
improvement would be even larger if we allowed a larger
fraction of link bandwidth to be devoted to real-time chan-
nels. Moreover, with the new protocol, topology change

tolerance is only limited by the available bandwidth to es-
tablish real-time channels, as well as by the topology con-
nectivity, because the physical constraint imposed by the
number of virtual channels is eliminated.

Using the ideas presented in this paper, future work in-
volves: a quantitative characterization of the DRRTC proto-
col under multiple topology changes and an analysis of the
optimal assignment of hosts to switches within a bounded
distance.
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