
Evaluating 3-D Stencil codes on Intel Xeon
Phi: Limitations and Trade-offs

Mario Hernández1 Juan M. Cebrián2 José M. Cecilia3 José M. Garcı́a4

Abstract—Accelerators like Intel Xeon Phi aim to fulfill the com-
putational requirements of modern applications. A particular in-
terest to us are those applications that are based on Stencil Com-
putations. Stencils are finite-difference algorithms used in many
scientific and engineering applications for solving large-scale and
high-dimension partial differential equations. Programmability on
massively parallel architectures of such kernels is still a challenge
for inexperienced developers.

This paper evaluates three stencil-based kernels that are widely
applied to simulate heat and acoustic diffusion as well as isotropic
seismic wave equation. We focus on key issues that should be con-
sidered in order to achieve optimal performance on the Xeon Phi
architecture. Among them, we highlight trade-offs between scala-
bility and affinity, blocking and effect of grid shape. Our experi-
mental results yield small performance gains using scatter affinity,
showing that the blocking size strongly affects the kernel perfor-
mance. In addition it reveales that grid shape has minimal impact
in performance as long as the best block size is selected.

Keywords— 3-D stencil codes, Xeon Phi evaluation, scalability,
affinity, blocking size, shape.

I. INTRODUCTION

In the last decade, there has been a technological
shift for both hardware and software towards massively
parallel architectures (accelerators). Intel Many Inte-
grated Core (MIC) [1] [2] and Graphics Processing Units
(GPUs) [3] clearly show the potential of these architec-
tures, especially in terms of performance and energy effi-
ciency. The most powerful supercomputers in the world
are currently based on accelerators [4]. Concurrently,
there has been a quick evolution on programming mod-
els for co-processors and GPUs. However, porting ap-
plications to these systems is still not a straight-forward
task. In order to maximize performance and energy ef-
ficiency of their systems, software developers need to
use the latest breakthroughs in both high performance
computing and the specific field of interest (e.g., im-
age processing, modeling of acoustic or heat diffusion,
etc). This vertical approach enables remarkable advances
in computer-driven scientific simulations (the so-called
hardware-software co-design).

As stated in [5], many applications are developed us-
ing an algorithmic method that captures a pattern of com-
putation and communication (so-called Dwarf ). These
patterns are repeated in different applications and thus,
hardware-software solutions can be extrapolated to many
scientific areas. Applications can be either: (1) compu-
tationally bounded, if they perform many operations over
the loaded data, or (2) memory bounded, if they perform
a few simple computations over the loaded data. The

1Department of Computer Engineering, University of Murcia, 30100,
Murcia. Academic Unit of Engineering, Autonomous University of
Guerrero, Chilpancingo, México, e-mail: mario.hernandez4@um.es

2Department of Computer Engineering, University of Murcia, 30100,
Murcia, e-mail: jcebrian@ditec.um.es

3Computer Science Department, Universidad Católica San Antonio
de Murcia, Spain, e-mail: jmcecilia@ucam.edu

4Department of Computer Engineering, University of Murcia, 30100,
Murcia, e-mail: jmgarcia@ditec.um.es

latter is a serious performance limiting factor, since the
computation of a single output value may require loading
almost as many values from memory as operations are
performed.

Stencil codes comprise a family of iterative kernels
that operate over an N-dimensional data structure that
changes over time, given a fixed computational pattern
(stencil). The design of efficient stencil codes has proven
to be a challenging task, and has been widely studied by
both academia and industry.

In this paper, we evaluate the Xeon Phi architecture
using three 3-D stencil kernels computing double preci-
sion floating point values (8 bytes). Our kernels are se-
lected from different fields of research: 1) 3-D heat dif-
fusion stencil (11-point), 2) 3-D acoustic diffusion sten-
cil (7-point) and 3) 3-D isotropic seismic wave stencil
(25-point). We describe the vectorization and paralleliza-
tion process from a simple sequential version. Then we
show how to achieve the maximum performance by tun-
ing some specific inherent parameters relative to both the
kernel and the hardware architecture. The main lessons
learned are the following:

• Scalability: As our 3-D stencil kernels are mostly
memory-bound, we first evaluate the kernel’s scala-
bility by varying the number of threads in the execu-
tion. Our empirical results reveal that the minimum
number of threads per node that maximizes perfor-
mance is 122 (i.e. two-threads per core). However,
the memory hierarchy is unable to feed the amount
of data required by those threads.

• Affinity: We test three different affinity modes avail-
able for OpenMP on Xeon Phi. Our evaluation
shows that the compact mode is the worst in terms of
performance, while the scatter mode gives the same
or better results that the balanced mode.

• Blocking size: The Intel Xeon Phi architecture re-
quires a proper usage of caches to achieve good per-
formance when running stencil applications. We
have implemented a blocking technique carefully
tuned experimentally to achieve the best perfor-
mance (i.e., adjusting blocking size). After an anal-
ysis of different block sizes, we empirically found
that the blocking technique works best on the Y and
Z dimensions, but not on X. Specifically, a block
size of by=2 and bz=40 offers good results for the
Acoustic and Heat kernels, whereas a block size of
by=2 and bz=8 is the best option Seismic.

• Input data layout shape: Finally, we have evaluated
the influence of the input data shape on the perfor-
mance of these kernels. We analyze four different
shapes: the cuboid one and three rectangular cubes.
We have noticed that, after adjusting the block sizes
to the best ones for each of these shapes, the impact

568 JP 2015



on performance is around 20% for the seismic and
heat codes, and 10% for the acoustic code.

The paper is structured as follows. The next section
gives some fundamentals and related work about stencil
computations and the MIC architecture. The main param-
eters considered for 3-D stencil codes in our evaluation
are introduced in Section III. Section IV shows our eval-
uation results. Finally, we summarize our conclusions
and future work in Section V.

II. BACKGROUND AND RELATED WORK

This section provides a brief background on 3-D Sten-
cil computations, the Intel Xeon Phi architecture, and re-
lated work regarding several stencil optimization for the
Xeon Phi.

A. 3-D Stencil Computations

Stencil codes [6], [7], [8], [9] are a type of iterative
kernels which update data elements according to some
fixed predetermined set or pattern. The stencil can be
used to compute the value of various elements in an array
at a given time-step based on its neighbors values com-
puted from previous time-steps (including the element it-
self). Stencils are the base of finite-difference algorithms
used for solving large-scale and high-dimension partial
differential equations (PDEs). PDEs provide numeri-
cal approximations to computational expensive problems,
being widely used in many scientific and engineering
fields [10], [11], [12], [13]. This allows scientists to accu-
rately model phenomena such as scalar-wave propagation
modeling [14], heat conduction, acoustic diffusion, etc.

Algorithm 1 shows the pseudo-code of a generic 3-D
stencil solver kernel for spatial loops. It is implemented
as a triple nested loop traversing the complete data struc-
ture while updating each grid point. The computation of
every output element usually requires: a) the weighted
contribution of some near neighbors in each direction
defined by the physics of the problem, b) the previous
value of that element in a time t-1 (for second order in-
time stencils) and, c) a single corresponding point from
other input arrays. The code normally uses two copies of
the spatial grid (at time steps t and t+1) swapping their
roles as source and destination on alternate time steps, as
shown in the Algorithm 1.

Algorithm 1 The 3-D stencil solver kernel. width, height,
depth are the dimensions of the data set including border
(halo) points.
1: for time = 0; time < TimeMax; time++ do
2: for z = 1;z < depth−BorderSize;z++ do
3: for y = 1;y < height−BorderSize;y++ do
4: for x = 1;x < width−BorderSize;x++ do
5: stencil solver kernel();
6: end for
7: end for
8: end for
9: tmp = Input Grid; Input Grid = Out put Grid;Out put Grid = tmp;
10: end for

An important feature of these algorithms is that 3-D
stencil kernels usually suffer from a high cache miss rate
and poor data locality. The reason is that, for input sizes
that exceed the cache capacity, by the time we reuse
an entry from the dataset it has already been replaced

from the cache. Moreover, the non-linear memory access
pattern of 3D based implementations creates additional
memory stalls. As a result, standard implementations of
the 3D stencil solvers typically reach a small fraction of
the hardware’s peak performance [15].

B. Intel Xeon Phi Architecture

The Intel Xeon Phi (Knights Corner) coprocessor is the
first commercial product of the Intel MIC family. The de-
sign is purely throughput oriented, featuring a high num-
ber of simple cores (60+) with support for 512-bit wide
vector processing units (VPU). The VPU can be used
to process 16 single-precision or 8 double-precision el-
ements per instruction. To keep power dissipation per
unit area under control, these cores execute instructions
in-order and run at a low frequency (<1.2Ghz). The ar-
chitecture is backed by large caches and high memory
bandwidth. Xeon Phi is based on the x86 ISA, allowing
a certain degree of compatibility with conventional x86
processors (but not binary).

The architecture is tailored to run four independent
threads per core, where each in-order core can execute
up to two instructions per cycle. Unlike latency ori-
ented architectures, the MIC architecture assumes that
applications running on the system will be highly parallel
and scalable. In order to hide the cache/memory latency
caused by the in-order nature of the cores, the scheduling
policy swaps threads on each cycle. When an application
runs a single thread per core, the scheduler switches to a
special null thread before going back to the application
thread. Suffice it to say, Intel recommends at least two
threads per core, although the optimal may range from
2 to 4. Running a single thread per core will reduce the
peak capacity of the system by half.

C. Related Work

Multi-core systems [16] provide good opportunities for
parallelizing stencil applications. Authors in [17] present
a thorough methodology to evaluate and predict stencil
code performance on complex HPC architectures. The
authors in [18] introduce a methodology that directs pro-
grammer efforts toward the regions of code most likely
to benefit from porting to the Xeon Phi as well as provid-
ing speedup estimates. Other researchers [19] investigate
the porting and optimization of the test problem basic N-
body simulation for the Intel Xeon Phi coprocessor [20],
which is also the foundation of a number of applications
in computational astrophysics and biophysics.

Many proposals have been focused on improving cache
reuse. Tiling is a program transformation that can be
applied to capture data reuse when data does not fit in
cache. In [21], [22] the authors focus on exploiting data
locality by applying tiling techniques. On the other hand,
works like [23], [24], [25], [26] considered locality and
parallelism issues. Kamil et al. [23] examine several op-
timizations targeted to improve cache reuse across sten-
cil sweeps. Their work includes both an implicit cache
oblivious approach and a cache-aware algorithm blocked
to match the cache structure. This enables multiple it-
erations of the stencil to be performed on each cache-
resident portion of the grid. Authors in [24] developed

XXVI EDICIÓN DE LAS JORNADAS DE PARALELISMO, JP 2015 569



an approach for automatic parallelization of stencil codes
that explicitly addresses the issue of load-balanced execu-
tion of tiles. Finally, recent contributions on Intel Xeon
Phi coprocessor revealed its high compute capabilities for
many HPC applications [27] [2].

III. PARAMETERS EVALUATED

One of the key design features of the Intel Xeon Phi
architecture is the use of wide SIMD registers and vector
functional units to achieve the best performance out of
this architecture. This is usually automatically done by
the compiler, with some help of the programmer.

There are several issues that need to be addressed to
allow for the automatic vectorization of the code: (1) To
allocate all rows of the 3-D arrays consecutively in mem-
ory (i.e., row major order); (2) To perform data align-
ment with an alignment factor of 64 bytes; (3) To ap-
ply the ”padding” technique by adding some elements (if
needed) to ensure that the first element of each row is
on the desired address boundary (64 bytes in Xeon Phi);
(4) To put the #pragma ivdep before the inner loop in
the codes to notify the compiler that it can assume that
the array pointers point to the disjoint location. Without
all these hints, the compiler may not be able to correctly
identify the inner loop as vectorizable and could fail in
vectorizing the code.

Our base codes consider all these points related to vec-
torization. In this Section, we show other key important
issues that should be considered to achieve optimal per-
formance on the Intel Xeon Phi architecture. The trade-
offs between different parameters for the stencil codes
and the Xeon Phi are disclosed to help the designer make
an informed decision.

A. Scalability and Affinity

3-D stencil kernels operate over an input data repre-
sented as a three-dimensional array of elements (double
precision floating point in our experiments). The par-
allelization process consists of dividing these kernels in
different ”threads” or ”tasks” to run in parallel on the tar-
get architecture. Our implementations have been devel-
oped using the C language with the OpenMP extensions.
OpenMP development is based on #pragma statements
that are captured by the compiler, validated and translated
to the appropriate function calls to the OpenMP library
and runtime system.

Fig. 1
KMP AFFINITY-TYPE DISTRIBUTIONS.

In this work, we have evaluated some parallelization
strategies for the three for loop statements (see Algorithm
1 in Section II-A). Our best results are obtained when
the two-most outer loops are parallelized using the OMP

pragma construct #pragma omp parallel for collapse (2).
The use of the collapse (2) clause is useful to merge loop
iterations, increasing the total work units that will be par-
titioned across the available threads. The inner loop re-
mains sequentially to ease the vectorization process by
the compiler.

For scalability experiments, we set the number of
threads to the desired number by using the environ-
ment variable OMP NUM THREADS, or using the function
omp set num thread in the source code.

We can test the effect of the thread affinity by chang-
ing the environment variable KMP AFFINITY to compact,
balanced, or scatter. This variable controls how threads
are assigned to cores. When using compact, threads are
placed as close as possible, filling up the physical cores
one after another, whereas with scatter all threads are dis-
tributed across the entire system with non-unit stride re-
garding the logical core IDs. Balanced is an intermedi-
ate option, when the run-time tries to select the best place
where to put a thread in a ”balanced” way. Figure 1 shows
an example of 8 threads and 4 cores.

B. Blocking.

Stencil codes with an input size that does not fit on
the higher cache levels of the processor will experience a
significant performance degradation due to cache capac-
ity misses. Code transformations that improve data local-
ity can be useful to hide the complexities of the memory
hierarchy, improving overall performance of 3-D stencil
codes.

Algorithm 2 Blocking technique applied to the 3-D sten-
cil solver.
1: for bz = 1;bz < depth−BorderSize;bz+= depth T block do
2: for by = 1;by < height−BorderSize;by+= height T block do
3: for bx = 1;bx < width−BorderSize;bx+= width T block do
4: for z = bz;z < MIN(bz + depth T block,depth −

BorderSize);z++ do
5: for y = by;y < MIN(by + height T block,height −

BorderSize);y++ do
6: for x = 1;x < MIN(width T block,width−BorderSize−

bx);x++ do
7: stencil solver kernel();
8: end for
9: end for
10: end for
11: end for
12: end for
13: end for

Blocking is a transformation which groups loop itera-
tions into subsets of size N (or tiles). The size of the tiles
needs to be adjusted to fit in the cache in order to obtain
maximum performance gains by exploiting data locality.
In this way, cache misses can be minimized by bringing
data blocks into cache once for all necessary accesses.

In our 3-D stencil codes the goal is to exploit data lo-
cality, focusing on increasing the reuse of the elements of
the plane (X-Y) as the code works along the column of the
Z-axis. The first step is to create tiles of reduced sizes bz,
by and bx. Next, three additional loops are created over
the three existing loops to traverse the dataset in tiles of
the selected sizes. A blocking version of a generic 3-D
stencil is shown in algorithm 2.

570 JP 2015



C. Input Matrix Shape.

Technical computing applications often need to dis-
cretize the dataset into grids as part of the numerical rep-
resentation of the problem. The grid size can sometimes
drastically affect the performance of these algorithms on
vector-based machine architectures, such as Intel Xeon
Phi, as it dictates the memory access patterns.

Depending of the Z length and the memory access
stride, the compiler will be able to do a lot of vectoriz-
ing in the inner loop, allowing maximum memory access
bandwidth in Xeon Phis cache-based system.

Often a developer or user has flexibility in picking the
block shapes for simulation if they are aware of the ad-
vantage of one shape over the other.

We have evaluated four different shapes for the in-
put matrix size: one cuboid shape and three rectangular
cuboid shapes (width x height x depth). Every one of
these rectangular shapes has one dimension larger than
the other two dimensions (that are equal in size).

IV. EVALUATION

This section shows our experimental environment and
evaluation results on Intel Xeon Phi for the three stencil
kernels previously introduced.

A. Target Platforms

The experiments were conducted on a system contains
two Intel Xeon E5-2650 CPUs that hold an Intel Xeon
Phi coprocessor 7120P connected to the host via a PCIe
connection. The Xeon Phi 7120P has 61 cores working at
1.238 GHz, 32KB of the L1 data and instruction caches
and 512 KB of L2 cache. Each coprocessor core contains
a wide 512-bit single instruction multiple data (SIMD)
vector processing unit (VPU), which implements fused
multiply-add operations. The architecture provides a the-
oretical peak computation of 1210 gigaflop per second
(GFlop/s) for double precision floating point values (64
bits).

Another important feature of Intel Xeon Phi coproces-
sors is its high memory bandwidth. The Xeon Phi 7120P
has 16 memory channels, each 32-bits wide. At up to 5.0
GT/s transfer speed, it provides a theoretical bandwidth
of 352 GB/s. We have used the Intel’s icc compiler (ver-
sion 14.0.2), Linux CentOS 6.5 with kernel 2.6.32 and
Intel MPSS 3.4.3.

B. Target Kernels

We have evaluated three stencil solvers from different
scientific fields. These solves cover a wide research area
and have distinct computational features. The most com-
mon stencil code is represented by the 3-D acoustic diffu-
sion stencil, which uses a stencil of 7-point spatial neigh-
bors and second order in time. It uses three different ma-
trices of the same size for the kernel calculation. Our
next kernel is the 3-D isotropic seismic wave stencil of
25-point spatial neighbors and also second order in time.
Finally, we have evaluated the simplest solver, i.e., the 3-
D heat diffusion stencil of 11-point spatial neighbors and
first order in time, which only uses two matrices for the
stencil calculations.

These choices impact the arithmetic intensity (AI)
(number of floating-point operations (flops) per byte of
memory transferred) [15] of our different stencil kernels.
A given AI can be easily linked to performance expecta-
tions when using the Roofline model methodology. This
technique helps when measuring the performance level of
a given implementation with respect to its achievable per-
formance on a particular hardware system. For any given
computer, the hardware specifications define a peak ca-
pacity for computing flops and transferring data to and
from memory (memory bandwidth).

For the Xeon Phi architecture using double precision
data, the theoretical AI is around 5.5 Flop/Byte. This
means that, for this architecture, we can characterize a
given compute kernel as compute bounded if its AI is
greater that 5.5 Flop/Byte, or memory bounded in the
opposite case. The acoustic diffusion stencil has a low
arithmetic intensity (slightly more than 0.5). The seismic
stencil has greater arithmetic intensity than the previous
one, although as it uses a different spatial matrix for stor-
ing physical characteristics (four matrices in total), and
its arithmetic intensity is only slightly greater than 1. Fi-
nally, the arithmetic intensity of the Heat kernel is close
to 1.5. As we realized, all of them are memory-bounded
kernels.

C. Evaluation Scalability and Affinity

Figure 2 shows our affinity and scalability experimen-
tal results with the blocking vectorized double-precision
code for the 3-D heat stencil, 3-D acoustic stencil and 3-D
seismic stencil. More specifically, Figure 2(a) shows re-
sults when running 244 threads and Figure 2(b) when run-
ning 122 threads using the balanced, compact and scatter
affinity policies.

Increasing the number of threads to 3 and 4 did
not have a huge impact on performance, meaning
that either we already saturated the double-precision
execution units or the memory bandwidth of the
core. Nevertheless, we found the best perfor-
mance was achieved using KMP AFFINITY=scatter and
OMP NUM THREADS=183 (three threads from each
core). Moreover, the choice of ”KMP AFFINITY” had
minimal performance effects when all 244 threads were
utilized.

We conclude that the KMP AFFINITY to scatter is the
best suited to distribute the threads across the Xeon Phi
cores, maximizing the usage of the cache storage space.

D. Achieving the Best Block Size

In this Section we show the experimental results when
looking for the best block size in ours evaluated kernels.
Figure 3 shows the blocking size evaluation for the vec-
torized double-precision code for all three kernels using
244 threads and scatter affinity. The analysis of different
block sizes shows that the blocking technique works best
on the Y and Z dimensions, but not on the X axis. More
specifically, Figure 3(a) shows that the best blocking size
achieves significant (up to 20%) performance benefits for
the 3-D acoustic diffusion stencil kernel. Figure 3(b)
shows similar results, with a performance increase of up
to 30% for the 3-D isotropic seismic wave stencil kernel.

XXVI EDICIÓN DE LAS JORNADAS DE PARALELISMO, JP 2015 571



0

20

40

60

80

100

120

7
0
0
x3
1
5
x3
1
5

3
1
5
x7
0
0
x3
1
5

3
1
5
x3
1
5
x7
0
0

7
0
0
x3
1
5
x3
1
5

3
1
5
x7
0
0
x3
1
5

3
1
5
x3
1
5
x7
0
0

7
0
0
x3
1
5
x3
1
5

3
1
5
x7
0
0
x3
1
5

3
1
5
x3
1
5
x7
0
0

Acoustic Seismic Heat

G
fl

o
p

s 

Balanced

Compact

Scatter

(a) KMP affinity-type distributions with 244 threads

0

20

40

60

80

100

120

7
0
0
x3
1
5
x3
1
5

3
1
5
x7
0
0
x3
1
5

3
1
5
x3
1
5
x7
0
0

7
0
0
x3
1
5
x3
1
5

3
1
5
x7
0
0
x3
1
5

3
1
5
x3
1
5
x7
0
0

7
0
0
x3
1
5
x3
1
5

3
1
5
x7
0
0
x3
1
5

3
1
5
x3
1
5
x7
0
0

Acoustic Seismic Heat

G
fl

o
p

s 

Balanced

Compact

Scatter

(b) KMP affinity-type distributions with 122 threads

Fig. 2
AFFINITY RESULTS IN OURS KERNELS.

Finally, the 3-D heat diffusion stencil kernel (Figure 3(c))
achieves performance benefits of up to 10% when using
blocking mechanisms. Specifically, a block size of by=2
and bz=40 offers good results for the Acoustic and Heat
kernel, whereas a block size of by=2 and bz=8 is the best
option for the Seismic code.

E. Matrix Shape Evaluation

In this section we present the experimental results
based on the double-precision code for our three kernels
running with 244 threads, scatter affinity, the best block-
ing for each kernel while varying the shape of the dataset
matrix.

Our evaluation includes a cuboid shape dataset block
(e.g. 420x420x420) and several non-cuboid shape dataset
blocks (700x315x315, 315x700x315 and 315x315x700).
Figure 4 shows that, with the best blocking configuration,
changing the shape of the dataset has an impact on perfor-
mance, around 20% for the seismic and heat codes, and
10% for the acoustic one.

V. CONCLUSIONS AND FUTURE WORK

Real world applications based on Stencil computa-
tions have a real impact on the society, enabling scien-
tists and indirect stakeholders such as end users or ser-
vice providers benefit from improvements in their codes.
These improvements not only provide faster results, but

also enhance accuracy by allowing more detailed simula-
tions of different phenomena.

Our paper evaluates three stencil-based kernels that
are widely applied to different scientific fields. We have
evaluated some key issues that have a positive impact to
achieve optimal performance on the Xeon Phi. Among
them, we highlight trade-offs between scalability and
affinity, blocking and the effect of input matrix shape.

Our experimental results yield small performance
gains using scatter affinity. We have also found a vari-
ability of up to 30% of performance in those codes de-

20

30

40

50

60

70

80

90

100

Y=
6
,Z
=4
0

Y=
6
,Z
=3
2

Y=
6
,Z
=2
2

Y=
6
,Z
=2
4

Y=
6
,Z
=3
6

Y=
6
,Z
=1
6

Y=
2
,Z
=4

Y=
8
,Z
=2
0

Y=
8
,Z
=1
8

Y=
6
,Z
=1
0

Y=
4
,Z
=1
8

Y=
4
,Z
=2
4

Y=
8
,Z
=3
6

Y=
6
,Z
=6

Y=
4
,Z
=3
2

Y=
8
,Z
=1
0

Y=
4
,Z
=2
8

Y=
8
,Z
=8

Y=
4
,Z
=1
0

Y=
8
,Z
=6

Y=
2
,Z
=2

Y=
1
0
,Z
=
2
4

Y=
2
,Z
=8

Y=
1
0
,Z
=
2
6

Y=
1
0
,Z
=
1
4

Y=
1
0
,Z
=
1
6

Y=
1
0
,Z
=
3
0

G
fl

o
p

s 

(a) Acoustic

20

30

40

50

60

70

80

90

100

Y=
2

, Z
=8

Y=
2

, Z
=1

2

Y=
2

, Z
=1

8

Y=
2

, Z
=2

2

Y=
2

, Z
=2

4

Y=
2

, Z
=3

4

Y=
2

, Z
=3

6

Y=
4

, Z
=2

Y=
6

, Z
=4

Y=
1

0
, Z

=2

Y=
1

4
, Z

=2

Y=
1

8
, Z

=2

Y=
2

0
, Z

=2

Y=
4

, Z
=2

8

Y=
4

, Z
=1

6

Y=
4

, Z
=3

8

Y=
4

, Z
=4

0

Y=
1

0
, Z

=4

Y=
8

, Z
=6

Y=
6

, Z
=1

0

Y=
2

0
, Z

=4

Y=
6

, Z
=1

4

Y=
6

, Z
=3

8

Y=
6

, Z
=1

8

Y=
6

, Z
=2

4

Y=
6

, Z
=4

0

Y=
1

4
, Z

=6

G
fl

o
p

s 

(b) Seismic

20

30

40

50

60

70

80

90

100

110

Y=
6

, Z
=4

0

Y=
8

, Z
=4

0

Y=
6

, Z
=2

8

Y=
2

, Z
=6

Y=
8

, Z
=3

2

Y=
8

, Z
=2

0

Y=
6

, Z
=2

4

Y=
6

, Z
=3

0

Y=
4

, Z
=2

6

Y=
6

, Z
=6

Y=
4

, Z
=3

4

Y=
8

, Z
=1

6

Y=
4

, Z
=2

4

Y=
6

, Z
=1

0

Y=
4

, Z
=2

2

Y=
8

, Z
=2

8

Y=
4

, Z
=2

8

Y=
4

, Z
=1

4

Y=
1

0
, Z

=2
4

Y=
4

, Z
=1

2

Y=
4

, Z
=8

Y=
1

0
, Z

=3
2

Y=
1

0
, Z

=2
6

Y=
1

0
, Z

=4
0

Y=
1

0
, Z

=2
2

Y=
2

, Z
=2

Y=
4

, Z
=2

G
fl

o
p

s 

(c) Heat

Fig. 3
BLOCKING (Y AXIS, Z AXIS).

572 JP 2015



0

20

40

60

80

100

120

4
2
0
x4
2
0
x4
2
0

7
0
0
x3
1
5
x3
1
5

3
1
5
x7
0
0
x3
1
5

3
1
5
x3
1
5
x7
0
0

4
2
0
x4
2
0
x4
2
0

7
0
0
x3
1
5
x3
1
5

3
1
5
x7
0
0
x3
1
5

3
1
5
x3
1
5
x7
0
0

4
2
0
x4
2
0
x4
2
0

7
0
0
x3
1
5
x3
1
5

3
1
5
x7
0
0
x3
1
5

3
1
5
x3
1
5
x7
0
0

Acoustic Seismic Heat

G
fl

o
p

s 

Fig. 4
SHAPE DATASET BLOCK.

pending of the block size, working the blocking better on
the Y and Z dimensions, but not on the X axis. Finally,
we have showed that grid shape has little impact on per-
formance as long as the best block size is selected.

As for future work, we are interesting to extend our
evaluation to larger datasets. To properly handle big
sizes, we plan to split input data among different Xeon
Phi cards, analyzing the communication effects on the
performance.

ACKNOWLEDGEMENTS

This work is jointly supported by the Fundación
Séneca (Agencia Regional de Ciencia y Tecnologı́a,
Región de Murcia) under grant 15290/PI/2010, and the
Spanish MINECO and Spanish MEC, as well as Eu-
ropean Commission FEDER funds under grant number
TIN2012-31345. This work has been also funded by the
Nils Coordinated Mobility under grant 012-ABEL-CM-
2014A, in part financed by the European Regional Devel-
opment Fund (ERDF). Mario Hernández was supported
by a research grant from the PROMEP under the Teacher
Improvement Program (UAGro-197) México.

REFERENCES

[1] Jim Jeffers and James Reinders, Intel Xeon Phi coprocessor high-
performance programming, Elsevier Waltham (Mass.), Amster-
dam, Boston (Mass.), 2013.

[2] Rezaur Rahman, Intel Xeon Phi Coprocessor Architecture and
Tools: The Guide for Application Developers, Apress, Berkely,
CA, USA, 1st edition, 2013.

[3] M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick,
S. Morton, E. Phillips, Yao Zhang, and V. Volkov, “Parallel Com-
puting Experiences with CUDA,” IEEE, Micro, vol. 28, no. 4, pp.
13–27, July 2008.

[4] “Top 500 supercomputer site,” [last access 15 May 2015], http:
//www.top500.org/.

[5] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro,
Joseph James Gebis, Parry Husbands, Kurt Keutzer, David A.
Patterson, William Lester Plishker, John Shalf, Samuel Webb
Williams, and Katherine A. Yelick, “The landscape of paral-
lel computing research: A view from berkeley,” Tech. Rep.
UCB/EECS-2006-183, EECS Department, University of Califor-
nia, Berkeley, Dec 2006.

[6] Yuan Tang, Rezaul Alam Chowdhury, Bradley C Kuszmaul, Chi-
Keung Luk, and Charles E Leiserson, “The pochoir stencil com-
piler,” in Proceedings of the twenty-third annual ACM symposium
on Parallelism in algorithms and architectures. ACM, 2011, pp.
117–128.

[7] Matthias Christen, Olaf Schenk, and Helmar Burkhart, “Patus:
A code generation and autotuning framework for parallel iterative

stencil computations on modern microarchitectures,” in Parallel
& Distributed Processing Symposium (IPDPS), 2011 IEEE Inter-
national. IEEE, 2011, pp. 676–687.

[8] Lukasz Szustak, Krzysztof Rojek, Roman Wyrzykowski, and
Pawel Gepner, “Toward efficient distribution of mpdata stencil
computation on intel mic architecture,” Proce. HiStencils, vol.
14, pp. 51–56, 2014.

[9] Shoaib Kamil, Cy Chan, Leonid Oliker, John Shalf, and Samuel
Williams, “An auto-tuning framework for parallel multicore sten-
cil computations,” in Parallel & Distributed Processing (IPDPS),
2010 IEEE International Symposium on. IEEE, 2010, pp. 1–12.

[10] Ulrich Trottenberg, Cornelius W Oosterlee, and Anton Schuller,
Multigrid, Academic press, 2000.

[11] Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams,
Jonathan Carter, Leonid Oliker, David Patterson, John Shalf, and
Katherine Yelick, “Stencil Computation Optimization and Auto-
tuning on State-of-the-art Multicore Architectures,” in Proc. of
the 2008 ACM/IEEE Conference on Supercomputing. 2008, SC
’08, p. 4, IEEE Press.

[12] Matteo Frigo and Volker Strumpen, “Cache oblivious stencil com-
putations,” in Proceedings of the 19th Annual International Con-
ference on Supercomputing, New York, NY, USA, 2005, ICS ’05,
pp. 361–366, ACM.

[13] V.T. Zhukov, M.M. Krasnov, N.D. Novikova, and O.B. Feodor-
itova, “Multigrid effectiveness on modern computing architec-
tures,” Programming and Computer Software, vol. 41, no. 1, pp.
14–22, 2015.

[14] Dimitri Komatitsch, Gordon Erlebacher, Dominik Göddeke, and
David Michéa, “High-order finite-element seismic wave propa-
gation modeling with MPI on a large GPU cluster,” Journal of
computational physics, vol. 229, no. 20, pp. 7692–7714, 2010.

[15] James Reinders and James Jeffers, High Performance Par-
allelism Pearls, Multicore and Many-core Programming Ap-
proaches, chapter Characterization and Auto-tuning of 3DFD, pp.
377–396, Number 23. Morgan Kaufmann, 1st edition, june 2014.

[16] Sreeram Potluri, Akshay Venkatesh, Devendar Bureddy, Krishna
Kandalla, and Dhabaleswar K Panda, “Efficient intra-node com-
munication on intel-mic clusters,” in Cluster, Cloud and Grid
Computing (CCGrid), 2013 13th IEEE/ACM International Sym-
posium on. IEEE, 2013, pp. 128–135.

[17] Raúl de la Cruz and Mauricio Araya-Polo, “Modeling stencil
computations on modern hpc architectures,” 2014.

[18] J. Peraza, A. Tiwari, M. Laurenzano, L. Carrington, W.A. Ward,
and R. Campbell, “Understanding the performance of stencil
computations on Intel’s Xeon Phi,” in Cluster Computing (CLUS-
TER), 2013 IEEE Intern. Conference on, Sept 2013, pp. 1–5.

[19] Jianbin Fang, Henk Sips, LiLun Zhang, Chuanfu Xu, Yonggang
Che, and Ana Lucia Varbanescu, “Test-driving intel xeon phi,” in
Proceedings of the 5th ACM/SPEC International Conference on
Performance Engineering, New York, NY, USA, 2014, ICPE ’14,
pp. 137–148, ACM.

[20] Andrey Vladimirov and Vadim Karpusenko, “Test-driving intel
xeon phi coprocessors with a basic n-body simulation,” Coflax
International, 2013.

[21] G. Rivera and Chau-Wen Tseng, “Tiling optimizations for 3d sci-
entific computations,” in Supercomputing, ACM/IEEE 2000 Con-
ference, Nov 2000, pp. 32–32.

[22] Yonghong Song, Rong Xu, Cheng Wang, and Zhiyuan Li, “Data
locality enhancement by memory reduction,” in Proceedings
of the 15th international conference on Supercomputing. ACM,
2001, pp. 50–64.

[23] Shoaib Kamil, Kaushik Datta, Samuel Williams, Leonid Oliker,
John Shalf, and Katherine Yelick, “Implicit and explicit opti-
mizations for stencil computations,” in Proceedings of the 2006
Workshop on Memory System Performance and Correctness, New
York, NY, USA, 2006, MSPC ’06, pp. 51–60, ACM.

[24] Sriram Krishnamoorthy, Muthu Baskaran, Uday Bondhugula,
J. Ramanujam, Atanas Rountev, and P Sadayappan, “Effective au-
tomatic parallelization of stencil computations,” in Proceedings of
the 2007 ACM SIGPLAN Conference on Programming Language
Design and Implementation, New York, NY, USA, 2007, PLDI
’07, pp. 235–244, ACM.

[25] Zhiyuan Li and Yonghong Song, “Automatic tiling of iterative
stencil loops,” ACM Transactions on Programming Languages
and Systems (TOPLAS), vol. 26, no. 6, pp. 975–1028, 2004.

[26] Yun Zou and Sanjay Rajopadhye, “Cache efficient parallelizations
for uniform dependence computations,” , no. TR/CS-14-101, May
2014.

[27] Jianbin Fang, Ana Lucia Varbanescu, Henk Sips, Lilun Zhang,
Yonggang Che, and Chuanfu Xu, “An empirical study of Intel
Xeon Phi,” arXiv preprint arXiv:1310.5842, 2013.

XXVI EDICIÓN DE LAS JORNADAS DE PARALELISMO, JP 2015 573


