Assessing MPI Performance on QsNet!!

Pablo E. Garcia!, Juan Fernéndez!,

Fabrizio Petrini?, and José M. Garcia'

! Departamento de Ingenierfa y Tecnologia de Computadores
Universidad de Murcia, 30071 Murcia, SPAIN
{pablo.garcia, juanf, jmgarcia}@ditec.um.es
2 C(CS-3 Modeling, Algorithms & Informatics
Los Alamos National Laboratory, Los Alamos, NM 87545, USA
fabrizio@lanl.gov

Abstract. To evaluate the communication capabilities of clusters, we
must take into account not only the interconnection network but also
the system software. In this paper, we evaluate the communication ca-
pabilities of a cluster based on dual-Opteron SMP nodes interconnected
with QsNet!!. In particular, we study the raw network performance,
the ability of MPI to overlap computation and communication, and the
appropriateness of the local operating systems to support parallel pro-
cessing. Experimental results show a stable system with a really efficient
communication subsystem which is able to deliver 875 MB/s unidirec-
tional bandwidth, 1.6 psec unidirectional latency, and up to 99.5% CPU
availability while communication is in progress.

1 Introduction

Clusters have become the most successful player in the high-performance com-
puting arena in the last decade. At the time of this writing, many of the fastest
systems in the Top500 list [14] are clusters. These systems are typically assem-
bled from commodity off-the-shelf (COTS) components. In particular, there is a
growing interest in those systems assembled with SMP nodes based on 64-bit pro-
cessors —mainly Itanium2 and Opteron— interconnected with high-performance
networks, such as Infiniband [11], Myrinet [12] or Quadrics [13].

Performance of large-scale clusters is determined by the parallel efficiency
of the entire system as a whole rather than by the peak performance of in-
dividual nodes. In order to achieve a high degree of parallel efficiency, there
must be a proper balance over the entire system: processor, memory subsystem,
interconnect, and system software. If we focus on the communication capabili-
ties, we must pay attention not only to the interconnection network but also to
the communication system software. In this case, while Myrinet, Infiniband and
Quadrics are the preferred choices for the cluster interconnect, MPI [10] is the
de facto standard communication library for message-passing, and Linux is the
most popular choice for operating the cluster nodes.

The traditional approach to evaluate the communication capabilities of a
cluster primarily relies on bandwidth and latency tests. Even though the band-
width and latency figures are significant, they are not enough to characterize

the system behavior when running scientific and engineering applications in a
cluster. There are other aspects that have a great impact in the communication
performance as well. On the one hand, the ability of the MPI layer to over-
lap communication and computation may limit the CPU availability for user
applications. An efficient MPI implementation should leverage modern network
interface cards to offload protocol processing. On the other hand, the commodity
OSes running in every node may interfere with user-level processes. The nodes
of a cluster should be properly tuned in order to minimize the computational
noise introduced by unnecessary daemons, services, and tools. In this paper, we
focus on analyzing all these aspects on a cluster based on dual-Opteron SMP
nodes interconnected with QsNet!! from Quadrics.

The rest of the paper is organized as follows. The next section presents the
main features of QsNet!!. In particular, both the Elan4 network interface card
and the Elite4d switch are described. In Section 3, different performance aspects
of a QsNet!/-based cluster assembled with Opteron nodes are analyzed. Finally,
we conclude with some remarks and an outline of future work.

2 QsNet!!

QsNet from Quadrics have become one of the preferred choices to interconnect
large-scale clusters since its appearance in 1996 [14]. This success is due to the
fact that QsNet provides low-latency and high-bandwidth interprocessor com-
munication through a standard interface for systems based on commodity pro-
cessing nodes. The latest version, QsNet!!, was released in 2004. Some large-scale
systems based on QsNet!!, such as Thunder [14], have already been deployed.

QsNet!! consists of two ASICs: Elan4 and Elite4. Elan4 is the core for the
QsNet!! network interface card (NIC). The Elan4 NICs connect commodity
processing nodes to the QsNet!/ network through a standard interface, PCI-X.
In turn, Elite4 is capable of driving eight bidirectional links at 1.3 GB/sec each
way. The Elite4 switches form a multistage network to interconnect the Elan4
NICs attached to the processing nodes. These are the most salient aspects of
QsNet!!:

— 64-bit architecture. Both the Elan4 and the Elite4 components have an in-
ternal 64-bit architecture and fully support a 64-bit virtual address space.

— PCI-X interface. Elan4 NICs implement a 64-bit, 133 MHz, PCI-X interface.

— DMA engine. User processes can perform read/write from/on remote mem-
ory locations by just issuing Remote DMA (RDMA) commands to the Elan4.

— Event engine. Events are used for synchronization purposes and available to
the Elan4 processors and the main CPU. Events are triggered upon comple-
tion of communication operations (e.g. RDMA transactions).

— Virtual operation. QsNet!! extends the conventional virtual memory mech-
anism so that user processes can transfer data directly between their virtual
address spaces.

— Programmability. In addition to the internal command processor, the Elan4
NICs provide a 64-bit RISC programmable thread processor.

— Support for collectives. QsNet!! provides hardware-supported multicast op-
erations over subnets of nodes to cut down the synchronization time.

— Reliability. QsNet!! implements a packet-level link protocol in hardware
which is able to detect faults, route packets around faulty areas, and even
retransmit lost packets. Moreover, packets are CRC-protected to detect data
corruption.

2.1 Elan4

The Elan4 NICs are in charge of injecting and receiving packets into and from
the network. In addition, every Eland NIC incorporates a programmable thread
processor to offload higher-level protocol processing to the NIC. The Elan4 NIC
functional units are interconnected using several separate 64-bit data buses to
increase concurrency and reduce latency operation. The main Elan4’s functional
units are the command processor, the thread processor, the DMA engine, the
event engine, and the Short Transaction Engine (STEN). The command proces-
sor processes commands from either the main CPU or other Elan4’s functional
units. Under this model, there is a command port mapped directly into the user
process’s address space. Each command port is no more than a command queue
where user processes can directly issue one or more commands to the Elan4 with-
out OS intervention. In this way, the command processor executes commands
from different user processes on their behalf. Also, the command processor con-
trols the thread processor, the DMA engine, the event engine and the STEN.
The thread processor is a 200 MHz, 64-bit RISC programmable thread processor
enriched with special instructions to support lightweight threads. This thread
processor can be programmed in C and is used to aid the implementation of
communication libraries without explicit intervention from the main CPU. The
Short Transaction Engine (STEN) is closely integrated with the command pro-
cessor. This specialized functional unit is optimized to handle short messages.
For further details about Elan4 see [5].

2.2 [Elite4

The Elite4 is an eight-port crossbar, with two virtual channels per link, that can
deliver 1.3 GB/sec each way. QsNet!! connects the Elite4 switches in a quater-
nary fat-tree topology. The Elite4 switches use source routing to implement an
up/down routing algorithm which takes advantage of this topology. The rout-
ing tags can identify either a single output link or a group of links for multicast
transfers. The routing algorithm is adaptive in the up phase and deterministic in
the down phase. The implementation of this routing algorithm is highly efficient
and introduces a delay of approximately 20 ns per switch.

At the link level, packets are divided into smaller 32-bit flits to use wormhole
flow control. Every packet transmission creates a virtual circuit between the
source and the destination node. The virtual circuit is closed after the destination
node acknowledges packet reception.

3 Performance Evaluation

In this section, we present the performance results obtained in our initial evalua-
tion of a cluster based on dual-Opteron SMP nodes interconnected with QsNet!’.
In particular, we have conducted experiments to measure the basic network per-
formance , the ability of QsNet/’s MPI to overlap computation and communi-
cation, and the level of intrusiveness of the local OS in user-level computation.
Table 1 summarizes the experimental setup.

Table 1. Experimental Setup.

Characteristic Description

Processor 2xAMD Opteron 244 1.8 GHz
Chipset AMD-8131 HyperTransport

Nodes 1/0 Bus 64-bit PCI-X (66, 100, and 133 MHz)
BIOS AMIBIOS 08.00.10
Memory 1x1GB DDR400

Interconnect NIC QM500b A02 PCI-X Elan4
Switch QS8A BO1 8-port Elite4
Kernel 2.4.21-178.x86_64 / 2.4.21-4.16qgsnet
(O SuSE Linux 9.0 (x86-64)

Software Libraries gsnet2libs-1.6.9-0 / gsnetmpi-1.24-37

Compiler gce-3.3.1-23
Launcher SLURM 0.3.8-1

3.1 Network performance

To expose the network performance of QsNet!! as seen by parallel applications,
we wrote our microbenchmarks at the MPI level. We perform two different ex-
periments to characterize the network in terms of latency and bandwidth. Unidi-
rectional bandwidth and latency are computed using a simple microbenchmark
where two processes residing in two different nodes exchange messages. In this
case, both processes invoke alternatively MPI_Send and MPI_Receive operations
in a loop for different message sizes. In turn, bidirectional bandwidth and latency
are obtained using a similar experiment where both processes send and receive
messages simultaneously using MPI Isend and MPI Irecv operations. Figure 1(a)
shows the MPI unidirectional and bidirectional bandwidth. The peak unidirec-
tional bandwidth, obtained as half of the measured bidirectional traffic, is 875
MB/s, whereas in the bidirectional case is 857 MB/s. Figure 1(b) shows the
MPI unidirectional and bidirectional latency. The minimum achievable latency
is 1.58usec for unidirectional traffic and 3.41usec for bidirectional traffic. This
remarkable low latencies are made possible by the QsNet!! software infrastruc-
ture which provides zero-copy, user-level network access. Finally note that these
results indicate that Quadrics has improved the internal design of QsNet!! over
the previous version of QsNet which showed a significant gap between unidi-
rectional and bidirectional figures [7]. This improvement is due to the fact that
Elan4 incorporates several separate 64-bit data buses [5].

900

800 r
700 -
600
500 -
400
300

Bandwidth (MB/s)

200 -
100 |

/ Unidirectional Bandwidth —— |

0 .
64128

512 1k 2k 4k 8k 16k 64k 512k 2M4M
Message Size (Bytes)

Latency (usec)

10

o

I

Unidirectional La‘tency‘ —

/

a

4

8 16 32 64 128 256 512 1k 2k 4k
Message Size (Bytes)

(a) Bandwidth (b) Latency

Fig. 1. Network performance.

3.2 Overlapping computation and communication

Network interface cards for modern cluster interconnects, such as Myrinet [1]
or Quadrics [7], provide programmable processors and substantial memory. This
trend opens a wide range of design possibilities for communication protocols
since this added capability allows the host processor to delegate certain tasks to
the NIC [9]. This offloading of protocol processing has two significant benefits.
First, moving communication protocol processing to the NIC increases the avail-
ability of the host processor for use by application programs, that is, to overlap
computation and communication. Second, NIC-based collectives show dramati-
cally reduced latency and increased consistency over host-based versions when
used in large-scale clusters [6].

In this section, we measure the ability of QsNet!!’s MPI to overlap computa-
tion and communication. This capability is influenced not only by the character-
istics of the underlying network, but also by the quality of the MPI implemen-
tation. In order to characterize the overlapping of computation and communica-
tion, we measure the processor availability —how much the processor is available
to application programs— while communication is in progress. To do so, we use a
test, namely post-compute-wait test [4], which combines computation and MPI
communication.

Post-compute-wait test. This test consists of a worker process and a part-
ner support process running on two separate nodes. The worker process posts a
non-blocking send and a receive directed to the partner process, performs some
parametric amount of computation, and waits for the pending send and receive
calls to complete. The support process posts a matching send and receive. The
worker process code is instrumented to time the non-blocking call phase, the
compute phase, and the wait phase. The compute phase is a do-nothing loop
which keeps the host processor busy, without timers or system calls, for a pre-
defined amount of time. This loop performs neither memory accesses nor 1/0

in order to avoid operations which might introduce non-determinism in the ex-
periments. Using this test, we have conducted several experiments in order to
obtain (i) the maximum achievable bandwidth given specific message sizes and
computational granularities and (ii) the CPU availability figure defined as the
ratio between the total compute phase time and the total execution time.

CPU availability and bandwidth. In figure 2(a), we show the maximum
achievable bandwidth when we increased the computational granularity up to 1
ms for four different message sizes. As expected, when the computation time is
shorter than message latency, the sustained bandwidth is very close to the maxi-
mum achievable bandwidth as depicted in figure 1(a). In turn, figure 2(b) shows
the CPU availability for 32 KB messages when we increase the computational
granularity up to 1 ms. Note that, in this case, as soon as the computation time
exceeds the roundtrip message latency, the CPU availability is about 95.9% and
grows up to 99.5%.

Finally, it is worth noting that this test provides an additional check of
whether the MPI library complies with the progress rule of the MPI standard.
This rule determines that the non-blocking send and receive calls must com-
plete independently of a process making MPI library calls. As we have shown,
QsNet’s MPI perfectly complies with this rule.

900 T T T T 1 —F
PR K —— " 30K ——
800 1) 64k - 1
700 - | . 128K x| 08 |
—]
— 4 i
2 600 S |
=3 g osr|
T 500} el |
2 Ll x = |
g “on 8 o4l
& 300 || 2 I
@ 4 . o] |
200 -\ N 7 0.2 H
100 N]
ol e e S 0 | L L L L
0 200 400 600 800 1000 0 200 400 600 800
Computation Time (usec) Computation Time (usec)
(a) Bandwidth (b) CPU availability

Fig. 2. Post-compute-wait test.

3.3 Computational Noise

Performance of many parallel applications is limited by the ability of the en-
tire system to globally synchronize all nodes. However, local operating systems
running on the cluster nodes lack global awareness about parallel applications.
Local OS kernels and system dsemons are randomly scheduled across cluster
nodes. This unpredictable behavior has a significant impact on tightly-coupled

1000

applications in which activities on the compute nodes are highly synchronized.
Moreover, this performance bottleneck get worse as cluster size increases [8].

Several techniques have been proposed in the literature to minimize the im-
pact of system activities on the overall performance of a parallel application.
On the one hand, several authors have proposed different co-scheduling schemes
to synchronize system activities across cluster nodes [2,3]. On the other hand,
performance may be improved by just measuring the computational noise due
to periodic system activities which may harm performance in order to remove
them or ameliorate their impact [8]. The use of the above mentioned coschedul-
ing techniques is not commonly used, since it requires kernel-level modifications.
Therefore, in this section, we follow the second approach. We use a simple mi-
crobenchmark which quantifies computational noise due to system activities.
In this microbenchmark, each node performs 1 million iterations of a synthetic
computation which performs neither memory accesses nor I/O. Each synthetic
computation has been calibrated to take about 1 ms in the absence of noise,
that is, the run time for each iteration should always be the same in a noiseless
machine.

In figures 3(a) and 3(b), we show the results for the first and the second
processor on the master node, respectively®. From these results we can derive
two interesting conclusions. First, the nodes of our cluster are noiseless even in
the worse case which corresponds to the master node. Second, the distribution
for the second processor has the very same shape but it is slightly displaced
to the right on both nodes. This indicates that some kind of system activity is
taking place only in the second processor. In this case, the only candidate is the
kernel which might be descheduling the microbenchmark process in the second
processor more often.

18000 T T T 18000
16000 - R 16000
14000 1 14000
12000 4 12000
2 2
& 10000 & 10000 f
s ®
& 8000 § 8000
6000 4 6000
4000 - 1 4000 -
2000 4 2000
0 . .) . .
0 500 1000 1500 2000 0 500 1000 1500
Computation Time (usec) Computation Time (usec)
(a) Node 0, Processor 0 (b) Node 0, Processor 1

Fig. 3. Computational noise test.

3 Results for slave nodes are similar and we omit them in the sake of brevity.

2000

4 Conclusions and Future Work

In this paper, we have presented our initial analysis of the communication ca-
pabilities for a cluster based on dual-Opteron SMP nodes interconnected with
QsNet!!. Our experimental results show that this platform has an extraordinary
potential for high-performance cluster computing. The communication subsys-
tem provides can rely on an extremely efficient network, a high degree of over-
lapping between computation and communication, and a really low level of com-
putational noise due to system software interference.

Future work include scalability analysis for larger configurations, perfor-
mance analysis for different traffic patterns, and study of different scenarios
to offload protocol processing to the Eland NIC.

References

1. Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E. Kulawik,
Charles L. Seitz, Jakov N. Seizovic, and Wen-King Su. Myrinet: A Gigabit-per-
Second Local Area Network. IEEE Micro, 15(1):29-36, February 1995.

2. Juan Ferndndez, Eitan Frachtenberg, and Fabrizio Petrini. BCS-MPI: A New
Approach in the System Software Design for Large-Scale Parallel Computers. In
Proceedings of IEEE/ACM Conference on SuperComputing, Phoenix, AZ (USA),
November 2003.

3. Terry Jones, William Tuel, and Brian Maskell. Improving the Scalability of Parallel
Jobs by adding Parallel Awareness to the Operating System. In Proceedings of
IEEE/ACM Conference on SuperComputing, Phoenix, AZ (USA), November 2003.

4. William Lawry, Christopher Wilson, and Arthur B. Maccabe. COMB: A Portable

Benchmark Suite for Assessing MPI Overlap. In Proceedings of IEEE International

Conference on Cluster Computing, Chicago, IL (USA), September 2002.

Quadrics Supercomputers World Ltd. Elan4 Reference Manual.

6. Adam Moody, Juan Ferniandez, Fabrizio Petrini, and Dhabaleswar K. Panda. Scal-
able NIC-Based Reduction on Large-Scale Clusters. In Proceedings of IEEE/ACM
Conference on SuperComputing, Phoenix, AZ (USA), November 2003.

7. Fabrizio Petrini, Wu chun Feng, Adolfy Hoisie, Salvador Coll, and Eitan Fracht-
enberg. The Quadrics Network: High-Performance Clustering Technology. IEEE
Micro, 22(1):46-57, January/February 2002.

8. Fabrizio Petrini, Darren J. Kerbyson, and Scott Pakin. The Case of the Missing
Supercomputer Performance: Achieving Optimal Performance on the 8192 Proces-
sors of ASCI Q. In Proceedings of ACM/IEEE Conference on SuperComputing,
Phoenix, AZ (USA), November 2003.

9. Piyush Shivam, Pete Wyckoff, and Dhabaleswar K. Panda. EMP: Zero-copy
OS-bypass NIC-driven Gigabit Ethernet Message Passing. In Proceedings of
IEEE/ACM Conference on SuperComputing, Denver, CO (USA), November 2001.

10. Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra.

MPI: The Complete Reference. MIT Press, 1996.

11. www.infinibandta.org. Infiniband Trade Association.

12. www.myri.com. Myricom, Inc.

13. www.quadrics.com. Quadrics Supercomputers World Ltd.

14. www.top500.org. Top500 Supercomputing Sites.

o

