
Design and Implementation Requirements for CORBA Lightweight Components�

Diego Sevilla, José M. Garcı́a
Dept. of Computer Engineering

University of Murcia, Spain
�dsevilla,jmgarcia�@ditec.um.es

Antonio Gómez
Dept. of Information and Comm. Engineering

University of Murcia, Spain
skarmeta@dif.um.es

Abstract

This paper describes the guidelines we followed and the
requirements we stated while designing and implementing
the CORBA Lightweight Components (CORBA–��) Com-
ponent Model. CORBA–�� is a lightweight distributed re-
flective component model based on CORBA. Instead of us-
ing a traditional client/server model, it imposes a peer net-
work model in which the whole network act as a reposi-
tory for managing and assigning the whole set of resources:
components, CPU cycles, memory, etc. Thus, application
deployment is automatically and adaptively performed at
run-time. Requirements for component description, packag-
ing, deployment, reflection, logical network cohesion, dis-
tributed resource queries and fault-tolerant protocols are
identified. Finally, we show the validity of the identified
requirements in dealing with CSCW and Grid Computing
applications and show how current component models fail
on addressing some of these requirements.

1. Introduction

Component-based development [32, 33], resembling
integrated circuits (IC) connections, promises develop-
ing application connecting independently-developed self-
describing binary components. These components can be
developed, built and shipped independently by third parties,
and allow application builders to connect and use them.

As application become bigger, they must be modularly
designed. Components come to mitigate this need, as they
impose the development of modules that are interconnected
to build the complete application. Components, being bi-
nary, independent and self-described, allow:

� Modular application development, which leads to
maximum code reuse, as components are not tied to
the application they are integrated in.

�This work is partially supported by the Spanish SENECA Foundation
under Grant PB/13/FS/99.

� Soft application evolution and incremental enhance-
ment, as enhanced versions of existing components
can substitute previous versions seamlessly, provided
that the new components offer the required functional-
ity. New components can also add new functionality
to be used by new components, thus allowing applica-
tions to evolve easily.

When component technology is applied in a distributed
environment, programmers can develop components that in-
teract transparently with other components residing in re-
mote machines. However this makes applications and com-
ponents management harder.

CORBA Lightweight Components (CORBA–��) [29], is
a new distributed component model based on CORBA [11,
19]. While traditional component models force program-
mers to decide the hosts in which their components are go-
ing to be run (deployment) using a “static” description of
the application (assembly), CORBA–�� performs the de-
ployment and component dependency management auto-
matically. Thus, it offers the traditional component models
advantages (modular applications development connecting
binary interchangeable units) allowing automatic placement
of components in network nodes, intelligent component mi-
gration and load balancing, leading to maximum network
resource utilization. CORBA–�� introduces a more peer
network-centered model in which all node resources, com-
puting power and components can be used at run-time to
automatically satisfy applications dependencies.

While CORBA–�� is described elsewhere [29], this pa-
per focuses on the requirements the design and implemen-
tation of the CORBA–�� component model must address to
cope with the demands of CSCW and Grid computing ap-
plications. The paper is organized as follows: Section 2 de-
scribes the general design and implementation guidelines
of CORBA–��. Section 3 outlines the needs of both CSCW
and Grid applications and how CORBA–�� addresses them.
Section 4 includes some related work on general purpose
component models and how CORBA–�� relates to it. Fi-
nally, Section 5 presents our conclusions, the status of cur-
rent implementation and the expected future work.

1

2. Design and implementation guidelines for
CORBA–��

While designing the CORBA–�� Component
Model [29], we identified some design and implementation
guidelines and requirements. These requirements state
what we demand from component-based development in a
distributed environment, and include some key features we
miss in current component models. We were interested in
Computer Supported Cooperative Work (CSCW) and Grid
computing, so we designed CORBA–�� for dealing with
these. Requirements identified include:

1. Simplicity and performance. The model should be
simple enough to accommodate component-based de-
velopment and to allow being implemented efficiently.
In other words, it must be lightweight.

2. Heterogeneity. It must support heterogeneous re-
source integration at any level: language, hardware,
operating system and network. CORBA [19, 11] re-
veals here to be a perfect election.

3. Peer or Network-Centered Model. We are interested
in integrating the whole computation power available,
including distributed network-connected machines, so
all the nodes connected must collaborate as peers de-
pending on their available resources. The traditional
client and server distinction is not applicable, as nodes
may change their role as needed. Thus, the network
(with help of nodes composing it) becomes the logical
entity in charge of maintaining and administering the
available resources (components, CPU cycles, etc.) of
the whole network.

4. Scalable and fault-tolerant. In order to accommodate
a potentially large number of hosts in a distributed en-
vironment, the need for distributed scalable and fault-
tolerant protocols arise. These protocols essential to
support the network behavior.

5. Seamlessly integrate new components. It must be
possible to add new components into the system (with-
out the need of compiling) and make them instantly
available to be used by any application in any host.

6. Automatic component dependency management. In
a distributed system with hundreds or thousands of
components, managing component interdependencies
is not an easy task. New components installed in a
host may require other components or new version of
existing components not present in that host. Instead
of forcing all required components to be installed in a
host, the network as a whole must be used as a repos-
itory for resolving component requirements, fetching

them from the host they are installed or using them re-
motely.

7. Use the same component model for all application
tiers. Particularly, for CSCW applications, it would
be desirable to include the GUI and presentation logic
tiers components within the same design process of the
rest of the application tiers.

8. Integration of tiny devices. The resource utilization
logic must be intelligent enough to accommodate tiny
devices such as PDAs as well as high-end servers.

2.1. Components

Components are the key abstraction in CORBA–��. Al-
though there is some controversy on what is a compo-
nent [33], in part because the term “component” being
overutilized, we define them in the CORBA–�� model as
binary independent units, with explicitly defined dependen-
cies and offerings, which can be used to compose appli-
cations. This natural definition of components allows us
to state the requirements we impose to the whole idea of
Component-based Development [32] from a practical point
of view.

Components must allow application development by as-
sembling independent components. Components could be
developed, described and packaged by independent parties
and must interact seamlessly with other components.

These two properties (component independence and ex-
plicit dependencies) allow components to be substituted by
others with the same (or even superior) offerings but with
enhanced implementation or Quality of Service (QoS) guar-
antees. Substitutability also enables soft application migra-
tion, as they can be enhanced incrementally.

For this to happen, components must describe their in-
teraction with the rest of components, in form of what they
demand from the system and what they offer to it. Com-
ponents also inherit from the traditional Object-oriented
paradigm the fact that they are also a description of the
run-time behavior and requirements of their instances. The
instances then become running representations of the code
stored in a component. Component descriptions then must
satisfy at least two dimensions: the binary package or static
dimension and the component type or dynamic dimension.

2.1.1. Binary package

Static properties include those referring to the binary
package in which the component is shipped. This infor-
mation is necessary to handle, store and manipulate this
component in binary form. Concretely, components must
include information which allows them:

� To be installed in a given host

2

� To be extracted from, and brought to, a given host

� To be dynamically loaded and unloaded as a Dynamic
Link Library (DLL) either on client’s behalf or attend-
ing to memory, CPU or bandwidth load.

� To be instantiated.

Thus, static properties description must include, at
least [13]:

� Hardware, Operating System and Object Request Bro-
ker dependencies.

� Other components needed.

� Static description of offerings and needs, including:

– Mobility: if the component can be extracted
from a given host or it must be used remotely
from this location.

– Replication: if component instances can be
replicated, either because they are stateless or
they know how interact with the framework to
maintain replica consistency.

– Aggregation [17]: if this component knows how
to split itself in different instances to process a
set of data (data-parallel components) and how
to gather partial results into a complete solution.

– Pay-per-use information: describes the licens-
ing model for this component.

– Security information: The installer must be sure
of who really made this component by verifying
the component’s cryptographic signature, for ex-
ample, from the component’s writer Web site.

This information is described using XML files for con-
venience, and stored in the package jointly with the com-
ponent binary, as described in �2.3. The Document Type
Definitions (DTDs) describing those files are based upon
the WWW Consortium’s Open Software Descriptor [35]
DTD1.

2.1.2. Component Type

Component instances are run-time incarnations of the
behavior stored in a component. Thus, components are
also a description of run-time properties and requirements
of their instances. This description can be considered as the
dynamic dimension. These properties and requirements can
be internal or external, and allow components instances to
be interconnected together to perform the required applica-
tions behavior.

1As the CORBA Component Model [18] (CCM) does.

Internal properties are those that instances expose to the
framework in which they are immerse. Components must
be executed in a controlled way, so they have to follow an
agreed protocol to specify which are their run-time environ-
ment requirements and what they offer to the environment:
they have to follow the framework rules. This framework is
described in the following subsections.

External properties are those services that component in-
stances expose to their clients (including other components
or applications). Those external communication points are
collectively called ports. Ports, as happens in both the
CCM [18] and CCA [1] models, allow components to be
connected together to accomplish the required task.

CORBA–�� does not limit the different port kinds that a
component can expose. However, there are two basic kinds
of ports: interfaces and events.

A component can indicate that its instances implement
(provide) or use some interfaces2 for their internal work.
Interfaces represent agreed synchronous communication
points between components.

Events can be used as asynchronous communication
means for components. They can also specify that they pro-
duce or consume some kind of event in a publish/subscribe
fashion. For each event kind produced by a component, the
framework opens a push event channel. Components can
subscribe to this channel to express its interest in the event
kind produced by the component.

Finally, factory interfaces [7] are needed in CORBA–��
to manage the set of instances of a component. Clients can
search for a factory of the required component and ask it for
the creation of a component instance.

Similar to static properties, components use a set of IDL
and XML files to establish the minimal set of ports they
need from and offer to other components. Those files are
included within the component binary package (�2.3).

Concretely, component internal properties description
must include:

� Factory properties: A description of the life cycle of
the instances of the component, which allows to au-
tomatically generate the factory code for this type of
component.

� Required framework services.

� QoS information: such as minimum and maximum
CPU and memory utilization and minimum communi-
cation bandwidth needed, etc.

Similarly, component external properties description
must include, at least:

� IDL types and interfaces: definition of types and in-
terfaces related to the component.

2We use “interface” here in the same sense that it is used in CORBA.

3

� Ports descriptions: components must state the mini-
mal set of ports (interfaces, events, etc.) offered and
required.

� Factory interface: CORBA interface which imple-
ments the factory pattern [7] for this component, used
for the creation of running instances.

Note that components only state their minimal require-
ments. This is because CORBA–�� does not restrict the
set of external properties of a component to be fixed and
allows it to change at run-time, offering new services and
requesting new ones. This is supported by the reflection
architecture described in �2.4.2.

In CORBA–��, we have chosen to use IDL files for
specifying component’s types and interfaces and XML
files (instead of a modified IDL+CIDL combination, as
proposed by the CCM) with a custom DTD to specify
component-related external properties. This allows us to
use CORBA 2 standard, mature IDL compilers and tools
while obtaining the benefits of components. Moreover, it
allows the seamless integration with current CORBA 2 soft-
ware and a soft migration to component technology.

2.2. Containers and Component Frameworks

Component instances are run within a run-time environ-
ment called a container. Containers become the instances
view of the world. Instances ask the container for the re-
quired services and it in turn informs the instance of its envi-
ronment (its context). As in CCM and EJB, in CORBA–��
the component/container dialog is based on agreed local in-
terfaces, thus conforming a component framework. Con-
tainers leverage the component implementation of dealing
with the non-functional aspects of the component [4], such
as instance activation/de-activation, resource discovery and
allocation, component migration and replication, load bal-
ancing [24] and fault tolerance among others. For exam-
ple, when it is determined3 that some component instance
should be run in another host of the network, the container
can ask the component instance (via local agreed interfaces)
to resume its execution returning its internal state. Then, the
component can be migrated into another host (in its binary
form), instantiated, and then given the previous instance
state to continue its execution.

Containers also act as component instance representa-
tives into the network. As stated above, components require
other components to perform their work. This requirement
is sent to the container and may require searching the com-
plete network of cooperating nodes for the best suited com-
ponent. The container collaborates with its local node in

3This determination can be taken by the container in collaboration with
the network.

order to find the required component following the deploy-
ment and reflection architecture described in �2.4.

2.3. Packaging

The packaging allows to build self-contained binary
units which can be installed and used independently. Com-
ponents are packaged in “.ZIP” files containing the compo-
nent itself and its description as IDL and XML files. This is
similar to the CCM Packaging Model [18]. This informa-
tion can be used by each node in the system to know how to
install and instantiate the component.

The requirements we impose to the component packag-
ing include:

� It must include both the binary information and the
meta-information for this component, including the
DLLs (or shared objects, in the case of Unixes) and
the IDL and XML files described above.

� It must admit compression to overcome the efficient
transmission of the component through possibly long
and slow communication lines.

� Must be modular enough to allow (1) storing binaries
for different architectures/operating systems/ORBs,
(2) describing those binaries, and (3) extracting only
a set of binaries from the whole component (jointly
with the component metadata) to be installed in de-
vices with a tiny memory, such as PDAs. For instance,
the same component could be implemented using a
Windows DLL, a Java .class file, and a TCL script
source code.

2.4. Deployment Model

The deployment model describes the rules a set of com-
ponents must follow to be installed and run in a set of
network-interconnected machines in order to cooperate to
perform the required applications behavior. CORBA–��
deployment model is supported by a set of main concepts:
nodes, the reflection architecture, the network model, the
distributed registry and applications.

2.4.1. Nodes

The CORBA–�� network model can be effectively rep-
resented as a set of nodes that collaborate in computations.
Nodes are the entities maintaining the logical network be-
havior. Each host participating must have running a server
implementing the Node service. Nodes maintain the logical
network connection, encapsulate physical host information
and constitute the external view of the internal properties of
the host they are running on. Concretely, they offer (Fig. 1):

4

Component
Registry

Component
Acceptor

Network
Cohesion

Resource
Manager

Container

Component
Instance

Component
Instance ...

Component
Repository

Component
Binary

Component
Binary

...

...hardware

External
View Node

populates

reflects

reflects reflects

reflects

reflects/interacts

Figure 1. Logical Internal Node Structure.

� A way of obtaining both node static characteristics
(such as CPU and Operating System Type, ORB) and
dynamic system information (such as CPU and mem-
ory load, available resources, etc.) This is supported
through the Resource Manager interface.

� A way of obtaining the external view of the local ser-
vices: the Component Registry interface reflects the
internal Component Repository and helps in perform-
ing distributed component queries.

� Hooks for accepting new components at run-time for
local installation in the local Component Repository,
instantiation and running [15]. This is performed using
the Component Acceptor interface.

� Operations for making this node available to the net-
work and to interact with the rest of nodes of the whole
system. The Network Cohesion interface supports this
protocol for logical network cohesion.

2.4.2. Reflection Architecture

The Reflection Architecture is composed of the meta-
data given by the different node services. This meta-data
reflects the node internal properties, both static and dy-
namic, and is used at various stages in CORBA–��. The
Distributed Registry (�2.4.3) uses this information of each
node to maintain an updated view of the resources of the
whole network. Concretely, (Fig. 1):

� The Component Registry provides information about
(a) the set of installed components, (b) the set of com-
ponent instances running in the node and the properties
of each, and (c) how those instances are connected via
ports (assemblies) [25]. This information is used:

– when components or applications raise the need
for either any instance or a named instance of a
component,

– by visual builder tools to offer to the user the
palette of available components, instances and
connections among them.

� The Resource Manager in the node collaborates with
the Container in deciding initial placement of com-
ponent instances and instance migration, replication
and load balancing at run-time. The Resource Man-
ager also reflects the hardware static characteristics
and hardware resources dynamic usage and availabil-
ity. This information is also used to determine if a
component, depending on its hardware requirements,
can be physically installed in the node.

With the help of the reflection architecture, new com-
ponents (or new versions of existing components) can be
aggregated to the system at any time, and become instantly
and automatically available to be used by other components.

In contrast to CCM, the set of external properties of a
component is not fixed and may change at run-time. Thus,
component instances can adapt to the changing environment
requesting new services or offering new ones. CORBA–��
offers operations which allow modifying the set of ports a
component exposes [27].

2.4.3. Network Model and The Distributed Registry

The CORBA–�� deployment model is a network-
centered model: The complete network is considered as a
repository for resolving component requirements. All hosts
(nodes) in the system maintain a set of installed components
in its Component Repository. All of those are available
to be used by any other component. When component in-
stances start running, they may ask their container for some
required components. These components are searched in
the whole network. The network issues the corresponding
distributed queries to each node’s Component Registry in
order to find the component which match better with the
stated QoS requirements. Once the “set” of best suited com-
ponents have been found, the network must select one of
them to be instantiated attending to characteristics such as
location, cost, migration, etc. Once selected, the network
can decide either to instantiate the component in its origi-
nal node or to fetch the component to be locally installed,
instantiated and run. For example, a component decoding
a MPEG video stream would work much faster if it is in-
stalled locally.

This network behavior is implemented by the Dis-
tributed Registry. It stores information covering the re-
sources available in the network as a whole, and is responsi-
ble of managing these. Whenever the network must decide
where to run components or if some component instances
must migrate, it uses the Distributed Registry infrastructure
to perform these decisions.

5

Component Registries, Resource Managers and the Net-
work Cohesion interface of each node support the Dis-
tributed Registry behavior. Component Registries collab-
orate to resolve distributed component queries and reflect
the internal Component Repository of each node. Popu-
lating the node’s Component Repository makes the Dis-
tributed Registry aware of the change. This simplifies the
application management greatly [13]. Similarly, Resource
Managers supply node’s resource utilization to help the Dis-
tributed Registry decisions.

The Distributed Registry activities include:

� Logical Network Management: encompasses the pro-
tocol used

1. to maintain the “logical” connection between
them: which nodes are available, message rout-
ing, ping/reply handshaking, etc., and

2. to maintain updated information about the avail-
able resources in the network. This information
includes the meta-data given by the Reflection
Architecture in each node.

� Support for Distributed Queries: As the Distributed
Registry stores information regarding the whole net-
work, it is also in charge of resolving distributed com-
ponent queries.

� Network Resource Monitoring and component in-
stance migration and replication to achieve load bal-
ancing and fault tolerance. Resource Managers help
the Distributed Registry The Resource Manager in-
terface also supports the Meta-Resource Managers
(MRMs) operations. Meta-Resource Managers, in-
stead of managing one machine resources, maintain
an updated view of a set of node’s Resource Man-
agers. This allows a hierarchical treatment of network
resources, simplifying the network management.

Obtaining the network management required by the Dis-
tributed Registry behavior in distributed environments is
never an easy task. To be realistic in a truly distributed, scal-
able system, the protocol must support spurious node fail-
ures and node disconnections (and re-connections) grace-
fully. Also, the network must integrate seamlessly the
whole set of nodes present in a given system. As the num-
ber of nodes can become arbitrarily large, the need for ef-
ficient protocols arise. The logical network extension can
also become potentially large, raising the need for hierar-
chical protocols [13]. Concretely, the guidelines we have
identified for the network management protocol include:

� Hierarchical protocol: The protocol must allow logi-
cal grouping and incremental resource lookup. If cur-
rent requirements cannot be met with current level re-
sources, the protocol must request higher hierarchy

level requests. This reduces network load and exploits
locality. The protocol must also carry group forma-
tion deciding the nodes that are going to implement
the Meta-Resource Manager interface [2]. Each MRM
manages a group of nodes or a group of other MRMs,
maintaining this hierarchical structure and behavior.

� “Soft” network consistency: Instead of maintaining
a “strong” network consistency in which MRMs have
perfect knowledge of the set of hosts they manage,
MRMs have an approximate view of the present re-
sources. For instance, the nodes can send to the MRM
periodical updates of their resource availability which
also serve as a “keep-alive” mechanism. The MRM
can suppose a node of the group has been down af-
ter some time-out, and must support either node dis-
connections and re-connections gracefully. This soft
consistency protocol leads to lower bandwidth utiliza-
tion and better scalability. Also, predictive and adap-
tive techniques can be used to predict the resource
availability, thus reducing even more the bandwidth re-
quirements.

� Peer-replicated protocol: To enhance fault-tolerance,
the protocol must allow replicated peer MRMs per
group. The number of these replicas must be decided
by the protocol depending on FT requirements. Again,
the protocol must adapt by creating new replicas as
needed and catching replica failures.

As stated in �5, we are testing implementations of these
protocols using techniques such as multicast, event and no-
tification channels [23], asynchronous messaging [20] and
object group service [5].

2.4.4. Applications

In CORBA–��, applications are just special compo-
nents. They are special because (1) they encapsulate the
explicit rules to connect together certain components and
their instances (how many instances and the name of each,
of which components, how are them interconnected), and
(2) they are created by users with the help of visual building
tools.

With the given definition, applications can be considered
as bootstrap components: when applications start running,
they expose their explicit dependencies, requiring instances
of other components and connecting them following the
user stated pattern for that particular application. This is
similar to what in CCM is called an assembly. Conversely,
in CORBA–�� the matching between component required
instances and network-running instances is performed at
run-time: the exact node in which every instance is going
to be run is decided when the application requests it, and

6

this decision may change to reflect changes in the load of
either the nodes or the network.

Thus, the deployment of the application, instead of being
fixed at deployment-design time, is intelligently performed
at run-time. This flexibility allows the implementation of
intelligent run-time scheduling, migration and load balanc-
ing schemes. The difference between fixed and run-time
deployment is similar to the difference between static and
dynamic linking of Operating Systems libraries, but aug-
mented to the distributed, heterogeneous case.

3. Application domains

The CORBA–�� model represents a very convenient in-
frastructure for developing applications in a wide range of
domains. It can be seen as a general purpose infrastructure.
However, we are specially interested in dealing with CSCW
and Grid Computing.

3.1. Computer Supported Cooperative Work
(CSCW)

Collaborative work applications allow a group of users to
share and manipulate a set of data (usually multi-media) in
a synchronous or asynchronous way regardless of user loca-
tion [34]. We are interested in the development and deploy-
ment of synchronous CSCW applications, including video-
conferencing, shared whiteboard and workspaces, workflow
and co-authoring systems. CORBA–�� represents an opti-
mal environment for various reasons:

� It offers a peer distributed model, which matches the
inherently peer distributed nature of these applications.

� GUI components can be considered within the modu-
lar design of the application, thus allowing the replace-
ment of the presentation layer to suit additional user or
application needs.

� It allows bandwidth-limited multimedia components
(such as video stream decoding) to be migrated and
installed locally to minimize network load.

� It allows tiny devices such as Personal Digital Assis-
tants (PDAs) to be used as normal nodes with limited
capabilities: they can use all components remotely.

Figure 2 depicts the relationships between a CSCW ap-
plication and other components, including GUI compo-
nents. The latter can be either local or remote, and use
the local Display component providing painting functions.
Each GUI component is in charge of a portion of the win-
dow, and applications can change how the data is shown
by replacing the GUI components with others at run-time.
Note that all components required by the application can be
remote, thus allowing the use of thin clients such as PDAs.

draws

graphics

GUI part 1

GUI part 2

graphics

Display

uses

uses

manages

GUI part 2Application

Node Network

Other Application
External Dependencies

graphics

Application Window

manages

Ports:
Provided
Used

Figure 2. CSCW application model.

3.2. Grid Computing

Our view of Grid Computation targets scalable and intel-
ligent resource and CPU usage within a distributed system,
using techniques such as IDLE computation [8] and volun-
teer computing [26]. These techniques fit seamlessly within
the CORBA–�� model to suit Grid Computation needs.

Other component-based alternatives such as the Com-
mon Component Architecture (CCA) [1] and Ligature [12]
have appeared in the High-Performance Computing (HPC)
community. These models address the needs of scientific
computing, introducing components kinds which reflect the
special characteristics of the field (for example, components
whose instances must be split and distributed into the net-
work to perform a highly-parallel task). While we find
this approach very interesting, those models usually become
only a minimum wrapper [14] for reusing legacy scientific
code and do not offer a complete component model.

FOCALE [3] offers a component model for grid compu-
tation. It uses CORBA and Java (although it supports legacy
applications). It provides a system view at different levels:
federation, server, factories, instances and connections.

Notable developments in the Metacomputing and Grid
Computing fields include Globus [6] and Legion [10]. They
are systems which offer services for applications to access
to the computational grid. However, they are huge systems,
difficult to manage and configure, somewhat failing in its
primary intentions. Moreover, they do not address very
well the interoperability and code reuse through component
technology.

Recent interest has been shown by the OMG regarding
parallel applications [21] and aggregated computing [17].
However, the OMG has neither agreed nor released any
specification on these topics.

7

4. Related Work

To date, several component models have been developed.
Although CORBA–�� shares some features with them, it
also has some key differences.

Java Beans [30] is a framework for implementing Java-
based desktop applications. It is limited to both Java and
the client side of the application. In contrast to Java Beans,
CORBA–�� is not limited to Java and allows components to
be distributed among different hosts, still allowing seamless
integration of local GUI components.

Microsoft’s Component Object Model (COM) [16] of-
fers a component model in which all desktop applications
are integrated. In our opinion, its main disadvantages are
that, from a practical point of view, (1) it does not integrate
very well the distributed case (DCOM) and (2) its support
is rather limited to the Windows Operating System. More-
over, COM components do not expose their requirements
(other required components) [25, 13]. CORBA–�� inherits
from CORBA its Operating System, programming language
and location transparency, thus effectively adapting to het-
erogeneous environments. Moreover, it is designed from
the beginning to automatically exploit the computing power
and components installed in all hosts participating using its
Reflection Architecture.

In the server side, SUN’s EJB [31] and the new Ob-
ject Management Group’s CORBA Component Model
(CCM) [18, 28] offer a server programming framework in
which server components can be installed, instantiated and
run. Those models are fairly similar. In fact, CCM “ba-
sic” level makes both models totally compatible. EJB is a
Java-only system, while CCM continues the CORBA het-
erogeneous philosophy. Both models are designed towards
supporting enterprise applications, thus offering a container
architecture with convenient support for transactions, per-
sistence, security, etc. [27] They also offer the notion of
components as binary units which can be installed and exe-
cuted (following a fixed assembly) in Components Servers
(or Application Servers in the case of EJB).

Although CORBA–�� shares many features with both
models, it presents a more dynamic model in which the de-
ployment is not fixed and is performed at run-time using
the dynamic system data offered by the Reflection Architec-
ture. It also allows adding new components and modifying
component instances properties and connections at run-time
and reflecting those changes to visual building tools. Also,
CORBA–�� is a lightweight model in which the main goal
is the optimal network resource utilization instead of being
oriented to enterprise applications: it does not incur in the
overhead of offering services such as transactions and per-
sistence. This overhead and complexity is one of the main
reasons why complete mature CCM implementations are
not expected in 2–3 years. In fact, the CCM specification

still has open issues such as the Component Implementation
Definition Language (CIDL) mapping, is not finished (as
of April, 2001), and only one preliminary implementation
exists: OpenCCM [9].

In general, component models have been designed to
be either client-side or server-side. This forces program-
mers to follow different models for programming the differ-
ent layers of applications. CORBA–�� offers a more peer
approach in which applications can utilize all the comput-
ing power available, including the more and more powerful
user workstations and high-end servers. Application com-
ponents can be developed using a single component model
and spread into the network. They will be intelligently mi-
grated into the required hosts. Thus, a homogeneous com-
ponent model can be used to develop all the tiers (GUI, ap-
plication logic) of distributed multi-tiered applications.

In [13], a dynamic configuration management system is
described. This work provides us with valuable ideas for
our research. However, it is centered in the process of au-
tomatic component configuration and does not offer a com-
plete component model.

5. Conclusions, Status and Future Work

In this article we have described the requirements iden-
tified in the design and preliminary implementation of the
CORBA–�� Component Model. Also, we have stated the
validity of the design to target the CSCW and Grid Comput-
ing domains. Current CORBA–�� implementation allows
building components with the stated external characteris-
tics and packaging. However, the implementation is still
incomplete, so we have some future work to do:

� Explore strategies to maintain the described Reflec-
tion Architecture and the network-awareness of both
nodes and the Distributed Registry [13], also intro-
ducing fault-tolerance [22], migration, replication and
load-balancing techniques [24].

� Implement visual building tools allowing users to build
applications based on all available network compo-
nents.

� Further identify CSCW and Grid-based application
needs [17, 12] enhancing CORBA–�� to better support
them. We think our research can help OMG efforts in
this direction, as no specification currently exists.

� Study the integration of this model with current and
future CCM implementations [9].

Finally, we plan to continue enhancing CORBA–�� as
a general computing platform, to offer programmers both
the advantages of the Component-Based Development and
Distributed Computing.

8

References

[1] R. Bramley, K. Chiu, S. Diwan, D. Gannon, M. Govindaraju,
N. Mukhi, B. Temko, and M. Yechuri. A Component Based
Services Architecture for Building Distributed Applications.
In Proceedings of the High Performance Distributed Com-
puting Conference, 2000.

[2] F. Cristian and F. Schmuck. Agreeing on Processor Group
Membership in Asynchronous Distributed Systems. Techni-
cal Report CSE95-428, Department of Computer Science &
Engineering, University of California, San Diego, Califor-
nia, 1995.

[3] G. S. di Apollonia, C. Gransart, and J.-M. Geib. FOCALE:
Towards a Grid View of Large-Scale Computation Compo-
nents. In Grid’2000 Workshop, 7th Int. Conf. on High Per-
formance Computing, Bangalore, India, Dec. 2000.

[4] J. Fabry. Distribution as a set of Cooperating Aspects. In
ECOOP’2000 Workshop on Distributed Objects Program-
ming Paradigms, June 2000.

[5] P. Felber. The CORBA Object Group Service. A Service Ap-
proach to Object Groups in CORBA. PhD thesis, École Poly-
technique Fédérale de Lausanne, Lausanne, EPFL, 1998.

[6] I. Foster and C. Kesselman, editors. The Grid: Blueprint for
a New Computing Infrastructure. Morgan Kaufmann Pub-
lishing, 1999.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA, 1995.

[8] D. Gelernter and D. Kaminsky. Supercomputing out of Re-
cycled Garbage: Preliminary Experience with Piranha. In
Sixth ACM International Conference on Supercomputing,
pages 417–427, July 1992.

[9] GOAL group, Laboratoire d’Informatique Fon-
damentalle de Lille. OpenCCM, v0.2, 2001.
http://corbaweb.lifl.fr/OpenCCM/, visited April, 2001.

[10] A. S. Grimshaw and W. A. Wulf. The Legion Vision of a
Worldwide Virtual Computer. Communications of the ACM,
40(1), January 1997.

[11] M. Henning and S. Vinoski. Advanced CORBA Program-
ming with C++. Addison-Wesley Longman, 1999.

[12] K. Keahey, P. Beckman, and J. Ahrens. Ligature: Compo-
nent Architecture for High-Performance Applications. The
International Journal of High Performance Computing Ap-
plications, 14(4):347–356, Winter 2000.

[13] F. Kon, T. Yamane, C. Hess, R. Campbell, and M. Mickunas.
Dynamic Resource Management and Automatic Configu-
ration of Distributed Component Systems. In Proceedings
of the 6th USENIX Conference on Object-Oriented Tech-
nologies and Systems (COOTS’2001), San Antonio, Texas,
February 2001.

[14] M. Li, O. F. Rana, M. S. Shields, and D. W. Salker. A
Wrapper Generator for Wrapping High Performance Legacy
Codes as Java/CORBA Components. In Supercomput-
ing’2000 Conference, Dallas, TX, November 2000.

[15] R. Marvie, P. Merle, and J.-M. Geib. A Dynamic Platform
for CORBA Component Based Applications. In First Intl.
Conf. on Software Engineering Applied to Networking and
Parallel/Distributed Computing (SNPD’00), Reims, France,
May 2000.

[16] Microsoft. Component Object Model (COM), 1995.
http://www.microsoft.com/com.

[17] Object Management Group. Aggregated Computing in
CORBA RFI, 1999. OMG Document orbos/99-01-04.

[18] Object Management Group. CORBA Component Model,
1999. OMG Document ptc/99-10-04.

[19] Object Management Group. CORBA: Common Object
Request Broker Architecture Specification, revision 2.4.1,
2000. OMG Document formal/00-11-03.

[20] Object Management Group. CORBA Messaging, 2000.
OMG Document ptc/00-02-05.

[21] Object Management Group. Data Parallel Application sup-
port for CORBA RFP, 2000. OMG Document orbos/00-03-
17.

[22] Object Management Group. Fault Tolerant CORBA Specifi-
cation, 1.0 edition, 2000. OMG Document ptc/2000-04-04.

[23] Object Management Group. Notification Service, 1.0 edi-
tion, 2000. OMG Document formal/2000-06-20.

[24] O. Othman, C. O’Ryan, and D. Schmidt. The Design and
Performance of an Adaptative CORBA Load Balancing Ser-
vice. Distributed Systems Engineering Journal, 2001.

[25] N. Parlavantzas, G. Coulson, M. Clarke, and G. Blair. To-
wards a Reflective Component-based Middleware Architec-
ture. In ECOOP’2000 Workshop on Reflection and Met-
alevel Architectures, 2000.

[26] L. F. G. Sarmenta. Bayanihan: Web-Based Volunteer Com-
puting Using Java. In 2nd International Conference on
World-Wide Computing and its Applications (WWCA‘98),
March 1998.

[27] D. Sevilla. CORBA & Components. Technical Report TR-
12/2000, University of Extremadura, Spain, 2000.

[28] D. Sevilla. The CORBA & CORBA
Component Model (CCM) Page, 2001.
http://www.ditec.um.es/˜dsevilla/ccm/, visited April,
2001.

[29] D. Sevilla, J. M. Garcı́a, and A. Gómez. CORBA
Lightweight Components: A Model for Distributed
Component-based Heterogeneous Computation. Technical
Report UM-DITEC-2001-04, Dept. of Computer Engineer-
ing, University of Murcia, Spain, February 2001.

[30] SUN Microsystems. Java Beans specification, 1.0.1 edition,
July 1997. http://java.sun.com/beans.

[31] SUN Microsystems. Enterprise Java Beans
specification, 1.1 edition, December 1999.
http://java.sun.com/products/ejb/index.html.

[32] C. Szyperski. Component Software: Beyond Object-
Oriented Programming. ACM Press, 1998.

[33] C. Szyperski. Beyond Objects. Soft-
ware Development Online, 2001.
http://www.sdmagazine.com/feature/uml/beyondobjects/.

[34] G. H. ter Hofte. Working Apart Toguether. Foundation for
Component Groupware. PhD thesis, Telematica Institut, The
Netherlands, 1998.

[35] WWW Consortium. The Open Software Description For-
mat (OSD), August 1997. http://www.w3.org/TR/NOTE-
OSD.html.

9

