
Aspect-Oriented Programing Techniques to support Distribution, Fault
Tolerance, and Load Balancing in the CORBA–LC Component Model∗

Diego Sevilla, José M. García
Computer Engineering

University of Murcia, Spain
30071 Murcia. Tel: +34968367571

{dsevilla, jmgarcia}@ditec.um.es

Antonio Gómez
Information and Communications Engineering

University of Murcia, Spain
skarmeta@dif.um.es

Abstract

The design and implementation of distributed High
Performance Computing (HPC) applications is becoming
harder as the scale and number of distributed resources
and application is growing. Programming abstractions, li-
braries and frameworks are needed to better overcome that
complexity. Moreover, when Quality of Service (QoS) re-
quirements such as load balancing, efficient resource usage
and fault tolerance have to be met, the resulting code is
harder to develop, maintain, and reuse, as the code for pro-
viding the QoS requirements gets normally mixed with the
functionality code. Component Technology, on the other
hand, allows a better modularity and reusability of appli-
cations and even a better support for the development of
distributed applications, as those applications can be par-
titioned in terms of components installed and running (de-
ployed) in the different hosts participating in the system.
Components also have requirements in forms of the afore-
mentioned non-functional aspects. In our approach, the
code for ensuring these aspects can be automatically gen-
erated based on the requirements stated by components and
applications, thus leveraging the component implementer
of having to deal with these non-functional aspects. In
this paper we present the characteristics and the conve-
nience of the generated code for dealing with load balanc-
ing, distribution, and fault-tolerance aspects in the context
of CORBA–LC. CORBA–LC is a lightweight distributed re-
flective component model based on CORBA that imposes a
peer network model in which the whole network acts as a
repository for managing and assigning the whole set of re-
sources: components, CPU cycles, memory, etc.

∗This work has been supported by the Ministry of Education and Sci-
ence of Spain under grants TIN2006-15516-C04-03 and CSD2006-00046.

1. Introduction

Component-based development (CBD)[22], resembling
integrated circuits (IC) connections, promises develop-
ing application connecting independently-developed self-
describing binary components. These components can be
developed, built and shipped independently by third par-
ties, and allow application builders to connect and use them.
This development model is very convenient for distributed
applications, as components can be installed in different
hosts, matching the physically distributed nature of this kind
of applications.

Moreover, as applications become bigger, they must be
modularly designed. Components come to mitigate this
need, as they impose the development of modules that are
interconnected to build complete applications. Compo-
nents, being binary, independent and self-described, allow:

• Modular application development, which leads to
maximum code reuse, as components are not tied to
the application they are integrated in.

• Soft application evolution and incremental enhance-
ment, as enhanced versions of existing components
can substitute previous versions seamlessly, provided
that the new components offer the required functional-
ity. New components can also be added to increase the
set of services and functionality that new components
can use, thus allowing applications to evolve easily.

To bring the benefits of Component-Based Devel-
opment to distributed High Performance Computing
(HPC), we developed CORBA Lightweight Components
(CORBA–LC)[18], a distributed component model based
on CORBA[6]. CORBA–LC offers traditional component
models advantages (modular applications development con-
necting binary interchangeable units), while performing an
automatic deployment of components over the network.

This deployment solves the component dependencies auto-
matically, using the complete network of hosts to decide the
placement of component instances in network nodes, intel-
ligent component migration and load balancing, leading to
maximum network resource utilization.

In order to perform this intelligent deployment, compo-
nents separate the actual component functionality from the
non-functional specification of Quality of Service (QoS)
requirements, such as load balancing, fault tolerance, and
distribution. This information is used by the CORBA–LC
framework to generate the code that deals with those non-
functional aspects of the component. In this way, the pro-
grammer can concentrate only on the component function-
ality, leaving to the framework the responsibility of ensur-
ing that the actual QoS requirements are met.

Moreover, separating component code from the speci-
fication of non-functional requirements allows us to apply
Aspect-Oriented Programming (AOP)[2] techniques to the
CORBA–LC Component Model. In this paper we show
how AOP techniques can be used for automatic code gen-
eration of the aforementioned non-functional aspects code,
and discuss the convenience of this approach of combining
Component-Based Development (CBD) with AOP.

The paper is organized as follows: Section 2 offers an
overview of CORBA–LC. Section 3 shows how graphics ap-
plications can be used to define how to connect a set of com-
ponents and how to specify non-functional aspects require-
ments. Section 4 shows how automatic code can be gen-
erated to seamlessly and transparently offer non-functional
aspects implementation. Finally, Section 5 offers related
work in the fields of component models and aspects, and
Section 6 presents our conclusions.

2. The CORBA–LC Component Model

CORBA Lightweight Components (CORBA–LC) [18, 19]
is a lightweight component model based on CORBA,
sharing many features with the CORBA Component
Model (CCM)[12]. The following are the main conceptual
blocks of CORBA–LC:

• Components. Components are the most important ab-
straction in CORBA–LC. They are both a binary pack-
age that can be installed and managed by the system
and a component type, which defines the character-
istics of component instances (interfaces offered and
needed, events produced and consumed, etc.) These
are connection points with other components, called
ports.

• Containers and Component Framework. Compo-
nent instances are run within a run-time environment
called container. Containers become the instances
view of the world. Instances ask the container for the

Figure 1. Logical Node Structure.

required services and it in turn informs the instance of
its environment (its context). Component/container di-
alog is based on agreed local interfaces, thus conform-
ing a component framework.

• Packaging model. The packaging allows to build self-
contained binary units which can be installed and used
independently. Components are packaged in “.ZIP”
files containing the component itself and its descrip-
tion as IDL (CORBA Interface Definition Language)
and XML files. The packaging allows storing differ-
ent binaries of the same component to match different
Hardware/Operating System/ORB. The package can
be used to send components to install in a desired node,
even at run-time.

• Deployment and network model. The deployment
model describes the rules a set of components must
follow to be installed and run in a set of network-
interconnected machines in order to cooperate to per-
form a task. CORBA–LC deployment model is sup-
ported by a set of main concepts: Nodes, the Reflec-
tion Architecture, the Network Model, the Distributed
Registry and Applications (Assemblies).

– Nodes. The CORBA–LC network model can be
seen as a set of nodes (hosts) that collaborate in
computations. Nodes maintain the logical net-
work connection, encapsulate physical host in-
formation and constitute the external view of the
internal properties of the host they are running
on. (Fig. 1). Nodes offer information about mem-
ory and CPU load, as well as the set of compo-
nents installed.

– The Reflection Architecture. Is composed of

the meta-data given by the different node ser-
vices:
∗ The Component Registry provides informa-

tion about (a) running components, (b) the
set of component instances running in the
node and the properties of each, and (c) how
those instances are connected via ports
(assemblies)[14]. This information is used
when components, applications or visual
builder tools need to obtain information
about components.

∗ the Resource Manager in the node collabo-
rates with the Container implementing ini-
tial placement of instances, migration/load
balancing at run-time.

– Network Model and The Distributed Reg-
istry. The CORBA–LC deployment model is a
network-centered model: The complete network
is considered as a repository for resolving com-
ponent requirements. Each host (node) in the
system maintain a set of installed components in
its Component Repository, which become avail-
able to the whole network. When component in-
stances require other components, the network
can decide either to fetch the component to be
locally installed, instantiated and run or to use it
remotely.

– Applications and Assembly. In CORBA–LC,
applications are a set of rules that a set of com-
ponents and component instances must follow
to perform a given work. Applications are also
called assemblies, as they encapsulate explicit
rules to connect component instances. Applica-
tion deployment is then issued by instantiating
an assembly: creating component instances and
connecting them. Given the distributed nature of
CORBA–LC, the deployment process is intelli-
gent enough to select the nodes to host the com-
ponent instances based on the assembly require-
ments. Users can create assemblies using visual
building tools, as the CORBA–LC Assembly De-
signer Graphical User Interface (Fig. 2).

This is the framework we will use to study the implica-
tions and suitability of introducing Aspect-Oriented tech-
niques to Component-Based development in the domain of
High-Performance Computing.

3. Specifying Non-Functional Aspects for
Components

As stated before, components are not only a way of struc-
turing programs, but a framework in which the programmer

can focus in the functionality, leaving other non-functional
aspects, such as reliability, fault tolerance, distribution, per-
sistence, or load balancing to the framework. The goal of
CORBA–LC is to allow the programmer to write the func-
tionality of the components, then describe how the compo-
nents would work in terms of those non-functional aspects
in a declarative manner, and let the framework to implement
that requirements.

Thus, when a programmer wants to write an application
with CORBA–LC, he or she defines the different compo-
nents that will take part into the application, designing their
interfaces and establishing the set of used and provided in-
terfaces and events of each component. This results in IDL
and XML files describing each component. These files are
used by the CORBA–LC Code Generator (described in §4)
to generate the code that allows that component to deal with
non-functional aspects. The generated code also includes
boilerplate and hooks in which the programmer can write
the actual component implementation, without having to
deal with non-functional aspects.

Once the components are complete and packaged, the
whole application has to be designed, normally using a
Graphical User Interface (GUI) similar to the CORBA–LC
Assembly Designer GUI shown in Figure 2. This means
selecting the components that will take part into the appli-
cation, specifying the connections between used and pro-
vided interfaces of each component, as well as connections
of events emitted and received by each component. It is at
this point in which the programmer has to decide how those
connections will behave in terms of load balancing, network
usage and fault tolerance. An assembly XML file with that
information is created. When the programmer wants to start
the application, feeds this file to the CORBA–LC Assem-
bler, which is in charge of actually finding the components
installed on network nodes, creating the needed component
instances, connecting them, and configuring the connec-
tions as specified in the assembly.

We can use an example assembly of a Master/Worker
application based on components to show how to specify
these non-functional aspects. Figure 2 shows this assembly
in the CORBA–LC Assembly Designer GUI. The upper left
part of the screen shows the available components in the
network, while the lower left part shows the characteristics
of the selected component or connection.

Each rectangle in the right part of the figure (also called
the design area) represents one or more component in-
stances. Figure 3 shows the GUI representation of the
GenericMaster component. The set of used interfaces
are displayed in the left side of the rectangle (as a half
yellow circle), while provided interfaces are shown in the
right side (as a green full circle). GenericMaster uses
both the Master and Worker interfaces, and offer the
JobAcceptor so that clients can send calculations to be

Figure 2. The CORBA–LC Assembly Designer GUI.

performed. These communication ports are synchronous,
and are equivalent to normal CORBA interfaces. Although
this particular component only has these synchronous com-
munication ports, in CORBA–LC, components also support
asynchronous communication endpoints, known as events.
A component can declare that it emits or receives a set of
events.

Figure 3. The GenericMaster CORBA–LC
Component.

Connection among the components ports are also drawn
(in blue). Note that both the provided and used interfaces of
each connection are of the same interface type, described by
its CORBA Interface Repository Identifier. These interfaces
are described in the IDL files that are included within the
component package.

The GenericMaster component is in charge of the
standard Master/Worker protocol. Note that the only re-
quirements of this component in terms of connections is to
have one component that provide the generic Master in-
terface, and a set of components that provide the generic
Worker interface. This is very convenient, as allows us
to plug any pair of components that perform that type of

computation. In this example, the figure shows a pair of
components that calculate a Mandelbrot fractal.

In the lower left panel, Figure 2 shows the set of prop-
erties of the component or connection selected in the de-
sign area. In this example, we selected the Worker
connection of the GenericMaster component instance.
That is, the properties of the connection between the
GenericMaster and the MandelbrotWorker com-
ponents through the Worker interface are shown. Of
the properties shown, the most important property is
“strategy”, which defines the behavioral characteristics
of this connection. In CORBA–LC, this property can hold
different possible values:

• default. This is a normal call. Components are de-
scribed as using and providing a set of CORBA inter-
faces. This call is then equivalent to a standard syn-
chronous CORBA call. The client component calls op-
erations in the interface, which are implemented by the
provider component.

• local. The deployer is instructed to allocate the in-
stances of the caller and called component in the same
host. This is needed for some high-speed connections
(for instance, video or audio streaming, compression,
filtering, etc.)

• fault-tolerant. Specifying this value for the
strategy of a connection instructs the deployment pro-
cess to create a set of component instances (replicas),
in different nodes. Whenever the client component
calls an operation on this interface (that is, makes use

of the connection), several threads are created to issue
concurrent calls to all the alive replicas. Finally, if the
value of the “voting” property is set to “true”, a fi-
nal voting process is issued, signaling of dead/faulting
replicas if necessary.

• load-balancing. Similarly to the previous one,
instead of one component instance, several are created.
When the client component (that was described as “us-
ing” this interface) calls to that interface, the call is
redirected to node with lower CPU load.

• max-use. Again, instead of one component instance
that provides an implementation for the interface, the
whole network is used to create as many component
instances as possible, in different nodes, to maximize
resource usage.

For the last three values, optional “min_instances”
and “max_instances” properties can also be specified.
When the CORBA–LC Assembler builds the application, it
will ensure the number of needed component instances and
connections satisfy the requirements specified in the assem-
bly. Note that in some cases, to meet the number required
instances, this step may also require sending the component
binary to other nodes for installation and instantiation, if
there are not enough nodes with this component available
in the first place.

Finally, load-balancing and max-use strategies
can be tailored adding a level of fault tolerance by spec-
ifying a value of the “ft_group” property. This prop-
erty defines the size of the group of instances that will
be treated as a fault-tolerant domain. That is, instead
of creating n instances between min_instances and
max_instances, a number of n groups (of ft_group
instances each) are created. Instances within the group are
considered as fault-tolerant replicas, and the same tests and
voting is performed as in the fault-tolerant strategy
above, but within each group (Figure 4). When the value of
this property is 1, the property has no special meaning.

It is clear that in this specific example, we can set
the “strategy” property on the Worker used interface
of the GenericMaster component to the “max-use”
value, as suggested for the Master/Worker functionality.
Thus, as many as possible MandelbrotWorker compo-
nents are supplied to the GenericMaster component, all
of them connected through the Worker used port. Option-
ally, we can specify a number in the “ft_group” property
if we want each instance to be replicated.

Finally, AOP connections are also possible. In Figure 2,
the stripped red connection line shows an AOP connec-
tion. These connections allow a component (that provides
the AOPIface interface) to take control each time a call
is made between two components through that connection.

Figure 4. A group of instances running on
hosts that acts as a fault-tolerant group.

The AOP component then can allow the call, abort it, or
even modify the value of parameters.

1 module c o r b a l c
{

3 t y p e d e f sequence <any> AnySeq ;

5 / / AOP I f a c e d e f i n i t i o n .
i n t e r f a c e AOPIface : I f a c e

7 {
boolean p r e (in s t r i n g

i f a c e , in s t r i n g opname ,
9 i n o u t AnySeq

params) ;

11 boolean p o s t (in s t r i n g
i f a c e , in s t r i n g opname ,

i n o u t AnySeq
params) ;

13 } ;
} ;

Figure 5. The AOPIface IDL interface.

Figure 5 shows the AOPIface IDL interface. The pre
and post methods are called before and after each call.
The set of parameters of the call are passed to the method
using an inout parameter. This way, the AOP compo-
nent can change the values of the parameters. Finally, each
method returns a boolean value. A true return value will
allow the call.

In the example, we used the BasicLogger
component between the GenericMaster and the
MandelbrotWorker components. This component
simply writes to standard output a log of all the calls made

through that interface connection (logging the calls made
from the generic master to the worker component). This
kind of AOP connections are very convenient, as:

• The call interception goes unnoticed for both the caller
and the callee.

• New AOP connections can be made at run time, acti-
vated, and deactivated, being able to control every con-
nection among components. In the example, switch on
and off the logging.

• No code has to be written in any component to deal
with logging of calls.

• Other AOP components can be created. For example,
in our research, we created an authenticator compo-
nent, that allows any connection to be authenticated
prior to making any call.

Although CORBA–LC is not restricted to Master/Worker
type of applications, with this example we showed how con-
venient mixing component technology and the specification
of non-functional aspects is for High-Performance Comput-
ing Applications.

In the next section we show how the code generated by
the CORBA–LC Code Generator can deal with all these
specified aspects and AOP connections.

4. Automatic Generation of Aspects Code

The CORBA–LC Code Generator is in charge of
generating all the code to deal with the required non-
functional aspects of components. It uses the information
of both (1) the standard CORBA Interface Repository (IR),
and (2) the Component’s XML file. While the XML de-
scribes the component ports and non-functional require-
ments, the IR describes all the IDL interfaces used in those
ports. As output, the code generator produces the needed
implementation files and boilerplate that can be used by the
programmer to write the functionality proper of the com-
ponent. All this code is compiled, bundled jointly with the
XML and IDL files describing the component, and com-
pressed into a component package, ready to be installed and
instantiated in hosts.

CORBA–LC must have control of all the communica-
tion that happens among the component ports. This way,
the framework can modify how the components communi-
cate assuring the required load balancing, fault-tolerance,
etc. Thus, for each used and provided interface, code that
intercepts that communication must be created by the Code
Generator. This is also referred to as “point-cuts” in Aspect-
Oriented Programming[2] terminology.

For each provided interface of a component, CORBA
implementation objects (servants) are created. Servants are

in charge of receiving the actual CORBA calls, and propa-
gating the call to the final programmer code (called execu-
tor), that implements the functionality of the offered inter-
face. The servant can also perform pre- and post-processing
on the call. For instance, it can retrieve and store the execu-
tor data from a data-base, offering seamless persistence (as
another aspect) to component instances (Fig. 6).

Similarly, for each required (used) interface of a com-
ponent, proxy objects[4] are generated. Proxy objects are
local representatives of the actual used port of the remote
component. They are in charge of delivering the program-
mer code call to other component’s provided interface as a
normal CORBA call. At this point, the proxy code can also
do some pre- and post-processing, as shown in Figure 7.
Concretely, for each method of the used interface, proxy
code is in charge of:

• Calling the possibly attached AOP connections to this
port, passing them all the parameters of the call.

• Maintaining the set of active remote component in-
stances.

• Depending on the selected strategy for this particular
connection:

– Generating a pool of threads that concurrently
call all the remote component instances, retrieve
their results and optionally perform some form of
voting (fault-tolerant strategy.)

– Locating the less loaded node and sending the
call to the component instance running in that
particular node (load-balancing strategy.)

– Providing the component the set of remove com-
ponent instances (max-use strategy.)

The generated code for all the proxy objects and the ser-
vants for a component is included in the component binary,
jointly with the programmer written functionality for that
component. When the CORBA–LC assembler builds the
specified application (for example, that appearing in Fig-
ure 2), it instantiates all the components in their correspond-
ing nodes and configures the generated code to work as
specified in the assembly. From that point on, the generated
code is in charge of interacting with the container to fulfill
the desired load balancing and fault tolerance requirements.

5. Related Work

To date, several distributed component models have been
developed. Although CORBA–LC shares some features
with them, it also has some key differences.

Java Beans[20], Microsoft’s Component Object Model
(COM)[8], .NET[1] offer similar component models, but

Figure 6. Executor call sequence.

Figure 7. Proxy call sequence.

lack in some cases that are either limited to the local (non-
distributed) case or do not support heterogeneous environ-
ments of mixed operating systems and programming lan-
guages as CORBA does.

In the server side, SUN’s EJB[21] and the recent
Object Management Group’s CORBA Component Model
(CCM)[11] offer a server programming framework in which
server components can be installed, instantiated and run.
Both are fairly similar. Both are designed to support en-
terprise applications, offering a container architecture with
support for transactions, persistence, security, etc. They
also offer the notion of components as binary units which
can be installed and executed (following a fixed assembly)
in Components Servers.

Although CORBA–LC shares many features with both
models, it presents a more dynamic model in which the de-
ployment is not fixed and is performed at run-time using
the dynamic system data offered by the Reflection Archi-
tecture. Also, CORBA–LC is a lightweight model in which
the main goal is the optimal network resource utilization

instead of being oriented to enterprise applications. Finally,
CORBA–LC adds AOP connections, not present in the other
two models.

Applying Aspects-Oriented techniques to Component
Models has also been explored in several works. In [15]
the authors apply AOP techniques to the EJB component
model. This work is limited to Java and the usage of
AspectJ[7] to provide a finer grain of control over actual
calls in EJB. A quantitative study showing the benefits of
AOP for component-based applications (in terms of num-
ber of lines of code and number of places to change when a
modification on the application has to be done) can be found
in [13].

For the implementation of fault tolerance in the CORBA
environment, we can use works in the Eternal System[10]
and Group Multicast for CORBA[9]. However, we are more
interested in building an architecture and design model that
allows a seamless integration of those techniques with the
complete component specification, design and interaction,
as shown in the application assembly specification example.

In [16], the authors apply aspect oriented techniques in
the context of the CORBA Component Model and secu-
rity policies using the Qedo framework (an implementation
of the CCM). Real-Time has been treated as an aspect in
a CCM component framework implementaion (CIAO[17])
in[23]. The approach of these works is similar to the one
presented in this paper, but none of them treat distribution,
load balancing and fault tolerance as an aspect.

In the field of High Performance Computing (HPC) and
Grid Computing, Forkert et al. ([3]) present the TENT
framework for wrapping applications as components. How-
ever, this wrapping is only used to better organize applica-
tions, and not to provide an integrated framework in which
offer services to component implementations.

The Common Component Architecture (CCA)[5] is a
component model framework also based on the idea of
reusable, independent components. However, it does not
offer any basic run-time support for distribution, load bal-
ancing or fault tolerance. Thus, implementing those ser-
vices require of ad-hoc programming, which goes against
reusability.

6. Conclusions

Component technology in general, and CORBA–LC in
particular, offers a new and interesting way of approaching
distributed applications. Services otherwise complicated
can be offered by the framework by specifying them in the
characteristics and needs of components and applications.

We showed how convenient the Aspect-Oriented ap-
proach is to seamlessly and transparently offer services such
as fault tolerance, replication and load balancing to com-
ponents, and the importance of being able to specify those
non-functional aspects in a declarative manner, so that the
required code for those aspects can be generated automati-
cally.

References

[1] M. Corporation. Microsoft .NET.
http://www.microsoft.com/net/.

[2] F. Duclos, J. Estublier, and P. Morat. Describing and Us-
ing Non Functional Aspects in Component Based Applica-
tions. In International Conference on Aspect-Oriented Soft-
ware Development, Enschede, The Netherlands, April 2002.

[3] T. Forkert, G. K. Kloss, C. Krause, and A. Schreiber. Tech-
niques for wrapping scientific applications to corba com-
ponents. In High-Level Parallel Programming Models and
Supportive Environments (HIPS’04), pages 100–108, 2004.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA, 1995.

[5] D. Gannon, S. Krishnan, L. Fang, G. Kandaswamy,
Y. Simmhan, and A. Slominski. On building parallel &

grid applications: Component technology and distributed
services. Cluster Computing, 8(4):271–277, 2005.

[6] M. Henning and S. Vinoski. Advanced CORBA Program-
ming with C++. Addison-Wesley Longman, 1999.

[7] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of AspectJ. Lecture Notes
in Computer Science, 2072:327–355, 2001.

[8] Microsoft. Component Object Model (COM), 1995.
http://www.microsoft.com/com.

[9] L. E. Moser, P. M. Melliar-Smith, P. Narasimhan, R. R.
Koch, and K. Berket. Multicast Group Communication for
CORBA. In International Symposium on Distributed Ob-
jects and Applications, pages 98–107, 1999.

[10] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith.
Eternal – A Component-based Framework for Transparent
Fault-Tolerant CORBA. Software Practice and Experience,
32(8):771–788, July 2002.

[11] Object Management Group. CORBA Component Model,
1999. OMG Document ptc/99-10-04.

[12] Object Management Group. CORBA: Common Object
Request Broker Architecture Specification, revision 3.0.2,
2002. OMG Document formal/02-12-06.

[13] O. Papapetrou and G. Papadopoulos. Aspect oriented pro-
gramming for a component based real life application: A
case study. In Symposium on Applied Computing — Soft-
ware Engineering track, 2004.

[14] N. Parlavantzas, G. Coulson, M. Clarke, and G. Blair. To-
wards a Reflective Component-based Middleware Architec-
ture. In ECOOP’2000 Workshop on Reflection and Met-
alevel Architectures, 2000.

[15] R. Pichler, K. Ostermann, and M. Mezini. On aspectualiz-
ing component models. Software, Practice and Experience,
33(10):957–974, 2003.

[16] T. Ritter, U. Lang, and R. Schreiner. Integrating security
policies via container portable interceptors. Distributed Sys-
tems Online, July 2006.

[17] D. C. Schmidt. Component-Integrated ACE ORB (CIAO),
2006. http://www.cs.wustl.edu/~schmidt/
CIAO.html.

[18] D. Sevilla, J. M. García, and A. Gómez. CORBA
Lightweight Components: A Model for Distributed
Component-Based Heterogeneous Computation. In EU-
ROPAR’2001, pages 845–854, Manchester, UK, August
2001. LNCS 2150.

[19] D. Sevilla, J. M. García, and A. Gómez. Design and Imple-
mentation Requirements for CORBA Lightweight Compo-
nents. In Metacomputing Systems and Applications Work-
shop (MSA’01), pages 213–218, Valencia, Spain, September
2001.

[20] SUN Microsystems. Java Beans specification, 1.0.1 edition,
July 1997. http://java.sun.com/beans.

[21] SUN Microsystems. Enterprise Java Beans specification,
3.0 edition, May 2006. http://java.sun.com/products/ejb.

[22] C. Szyperski. Component Software: Beyond Object-
Oriented Programming. ACM Press, 1998.

[23] N. Wang, C. Gill, D. C. Schmidt, and V. Subramonian. Con-
figuring real-time aspects in component middleware. In In-
ternational Symposium on Distributed Objects and Applica-
tions (DOA’04), Agia Napa, Cyprus, October 2004.

