P-EDR: An Algorithm for Parallel Implementation of Parzen Density Estimation
from Uncertain Observations

P.E. Lopez de Teruel, J.M. Garcia, M. Acacio, O. Canovas
Departamento de Ingenieria y Tecnologia de Computadores

University of Murcia
Facultad de Informatica. Campus de Espinardo, 30080, Murcia (SPAIN)
pedroe@ditec.um.es

Abstract

We have developed a parallel version of a new algo-
rithm for nomparametric density estimation when the
input samples are not directly known, or they have some
noise. The algorithm is an extension of the Parzen method
for exact observations, but management of uncertainty
implies heavy computational loads in terms of both cal-
culus and storage. Therefore, a parallel version of the
algorithm is more adequate to solve this extended prob-
lem in a practical time, specially for samples of medium-
large sizes. Our parallel algorithm has been designed in
an SPMD style and implemented in a message-passing
parallel environment. An efficient treatment of the distri-
bution of the main data structure among processors, to-
gether with a low communication cost scheme results in a
high scalability of the algorithm. Preliminary perfor-
mance evaluations in a cluster of workstations show ex-
cellent speed-up results.

1. Introduction

Parzen method [6] is a well-known statistical technique
used in nonparametric density estimation from observed
samples. The application of this technique is very diverse:
Pattern matching, machine learning, function approxima-
tion, and many other inference tasks, to be applied in
many different fields related to statistics, such as bio-
medicine, engineering, sociology, and so on. The main
idea of the original technique is to situate a small 'win-
dow' density function on each sample of the dataset, in
order to obtain a regularized version of the target density
that presumably generated the samples. The window
function is usually a simple parametrized function, such
as a triangular or normal density, that is known as the
kernel function. In this way, the free parameter that meas-
ures the width of the window controls the trade-off be-
tween overfitting (whose extreme case is that of a density

function composed of impulses situated in the samples),
and smoothing to achieve regularization (that can result
in a blurring of the target density).

Of course, many techniques for nonparametric density
estimation other than the kernel approach exist, such as,
for example, the average shified histogram, the frequency
polygon, the histospline approach, variable partition
histograms, the statistically equivalent blocks method,
nearest neighbour techniques, and many more. Each of
these techniques has its own advantages and drawbacks,
but perhaps Parzen’s is the one that regularizes the target
density in a more formal way. A good overview of some
of these and many other techniques can be found in [4].

All these techniques, including Parzen's method, are
thought to cope only with exact data. But often the da-
tasets that are given as input come in an uncertain form,
with some kind of lack of knowledge on the attributes of
the examples. Much less approximations have been made
to cope with this kind of input in the specific problem of
estimating the density function. Lucy's algorithm [5], for
example, is based on an histogram approach, that has the
serious problem of not being regularizated: there is no
trade-off between the amount of smoothness and data
fitting. Many other approaches to the management of
uncertainty have been proposed, but none of them tries to
solve the problem of the estimation of the density. In-
stead, they directly cope with inference tasks, either in a
more ot less symbolic way (as in Dempster-Shafer theory
[10], or fuzzy rules systems [11]), or in a more probabil-
istic sense, as in Bayesian inference [2].

We are interested, anyway, in the direct calculus of the
probability density function, as in Lucy's method, but
without renouncing to regularization. Perhaps Parzen's
method is one of the best methods for estimating regulari-
zated densities with exact data, so an adaptation to cope
with uncertainty would be a good solution. Recently, we
have developed and tested a new algorithm, directly
adapted from the classical Parzen method [8]. This algo-

rithm, called EDR (Empirical variable Deconvolution by
Regularization), has all the advantages of original Parzen
method (regularization, wide range of applicability,...),
but it has also one important drawback: the amount of
computation and memory needed is quadratic in the num-
ber of samples, as a price to pay for the capability of
managing uncertainty. This can be a very serious incon-
venient when datasets are very large, which is unfortu-
nately the case in practical applications, specially when
the input data are more or less uncertain.

Nevertheless, a good organization of the code and the
data structures involved allow a very efficient parallel
implementation in a distributed-memory environment. In
this paper, we present the parallel version of our EDR
algorithm for a message-passing parallel machine. We
show that our approach can obtain very high speed-up
values, as an efficient treatment of memory is performed,
resulting in a communication scheme that minimizes the
network traffic, in distributed-memory environments, and
that reduces local swapping. This makes the parallel algo-
rithm highly scalable, making it capable of managing
large databases. Preliminary performance tests are made
in a cluster of PCs, that seem to confirm these predictions.

2. Preliminaries

In order to establish a theoretical framework, we will
introduce some notation and review some background
concepts. Parzen’s method consists in approximating the
original, unknown density function p(x) with the follow-
ing estimation (given a sample {x;} of size N of the ran-

dom variable):
1 ZN:k X=X, (1)
N hy, = hy

py(x)=

But we have no access to the true values of the samples x;.
We only have observations that may have experimented a
perturbation in the measurement process, or simply they
contain some kind of uncertainty: subjective judgments of
experts, other kind of external noise, etc. We will call
these indirect measures {s;}, and they will be related to
the true values {x;} by the likelihood functions {/(x)},
which describe statistically our knowledge of the original
sample. The likelihood functions can model the precision
of the measurement instrument, the vagueness of the
description of an expert, and so on. Then, the density g(s)
of the observable magnitude is related to the target den-

sity p(x) by: A
q(s) = Iq(s | x) p(x)dx)

The aim is to estimate p(x), but we only have
l(x)=q(silx), the likelihoods of the observed measures,
and we can estimate g(s) through the whole set of exam-
ples. What we have to do is to deconvolve this observed
density ¢(s) with a kind of inverse operator that annuls the
noise of the observed samples. The expression for this
inverse operator depends on the unknown p(x), but the
idea is to use an iterative procedure in which an initial
estimation of p(x) is roughly calculated, and a refinement
process is performed, in which the initial likelihood func-
tions with a particular location and uncertainty quantity
are 'moved' to new locations with new uncertainty values,
using the Bayes theorem and the a priori current estima-
tion of p(x). Also, during the operation of the algorithm,
the regularization process through the kernel functions
must be accomplished. This justifies the name given to
the algorithm: EDR, that stands for Empirical variable
Deconvolution by Regularization. The iteration is per-
formed until convergence of p(x) to a desired precision.

We focus in a case in which gaussian normal densities
are used to model both the likelihoods and the kernel
function, to obtain a practical algorithm that will serve to
solve most of practical reasonable situations. These nor-

where k(x) is a smoothing kernel density function. This
approximation has the desired properties of smoothness
and convergence to the true p(x), if the window width

hy—0 when N— . The method is a good alternative for
nonparametric statistics problems, but it has two principal
drawbacks: One is that it is designed to work over sam-
ples that are assumed to have no error in the measurement
process, and this is usually not the case in many practical
problems. The other disadvantage is that it works with the
whole sample in the learning and inference stages, thus
requiring more computational power. As it was mentioned
in the introduction, an extension of this method to cope
with inexact measures in the samples, was recently devel-
oped and successfully validated [8]. We will summarize,
in the rest of this section, the main ideas of this new ap-
proach.

First, we will state formally the problem of density es-
timation through uncertain observations. Let p(x) be the
density that we must estimate, through a series of random
examples {x;}, with ie{1..N}, drawn from that density.

mality conditions can be summarized as follows:
a) The smoothing kernel (Parzen windows) is gaussian,
with the following parameters:
k,(x) = N(x,0,h) 3)
b) The likelihood functions (to model uncertainty) are
gaussian, with the following parameters:
[(x)=N(x,s,,¢, @
Observe that /,(x) functions can be used to model un-
certain values in the form x; = s; £ 2¢, including exact
data (¢=0) and missing values (g=«). We will estimate
the target density from uncertain samples, where & meas-
ures the degree of uncertainty in the observation.
¢) The components of the mixture (through iteration of
the algorithm) will be approximated by gaussian densities
(y'; stands for a component without regularization; ; is
the same component after regularization):

wi(x) = N(x,44,,0)))
l//z(x) = N(x’luﬂgz) (6)

o, =0+ (7

This is a reasonable assumption since, as we will see
later, they will be obtained as the result of a weighted sum
of a large number of functions.

3. Operation

In this section we outline the operation of the algo-
rithm. We will center the discussion in a procedural de-
scription, to analyze lately the possibilities for parallelism
and data distribution. Further mathematical details and
justifications can be found in [8] and [9].

The algorithm takes advantage of the conjugate prop-
erty of the gaussian density [2]. It allows us analytic com-
putation of the required products and integrals, avoiding
intensive numerical techniques. Using it, we can write;

N(x, s,)N(x,p4,,0,) =

(®)
N(x’7717j’917J')N(Si"uf’m)
where:
R ©)
" g +o’
P Kl (10)
R (oo

Now we define the following coefficients;

B = N(s,p,0/e +07) (I

and the normalized weights:

ﬂi,] (12)
N
25
Jj=1
in such a way that the components \’ will be given by

N
l//l,(x)zza)i,jN(x’ 77;',]791',/) (13)
=1
Therefore, the parameters of each component y’, ap-
proximated by gaussians, are updated by

N
H; (_za)i,jni,j (14)

j=1

N
ol \/Z @, +02) = 4} (13)

J=l

o,

The parameters of the final components wy=k,*y’
(smoothed) are obtained from (7), once the smoothing
parameter /2 has been selected. The new p(x) is given by:

1 N ' 1 N 1 N
2 : =Sy (x)=— _ (16)
N ;kh(x) l//z ('x) N ;l//z(x) N ;N(x’ﬂz’gz)

Given this update rule for each iteration, we must ap-
ply it successively until a fixed point is reached. Starting

from a first approximation to p(x) with g=s; and =0,
(which is equivalent to ignoring the uncertainty in the
observations) we iteratively update x and o; from the
observations {(s;, &)}, until some kind of convergence is
achieved. A good measure can be the L; norm between
the estimated functions p(x) in two successive iterations.
This value is simply the area between the graphics of both
estimations, and can be calculated as the integral of the
absolute value of the difference between them:

L= [[P - p* P ol a7

When this measure falls below a given tolerance
threshold, we can suppose that the two estimations are
virtually the same, and that convergence has been
reached. So, at the end of each iteration, a numerical inte-
gral of the area between the current and the preceding
estimation must be calculated. A simple integration tech-
nique is valid, i.e. the trapezoids method, as no big dis-
continuities in this area are expected. Recall that the den-
sity is smooth, as it uses smoothing kernels'.

To summarize, we can see that the sequential com-
plexity order of each iteration of the algorithm for the
calculus of the 1 and o; values is quadratic in the number
of samples N, O(k;N?). The value of the constant k; will
be determined by the calculations performed in each it-
eration, explained in fig. 1. We have to compute a NxN
table of values £, 77;and 6, with some elemental floating
point operations (sums, divisions, square roots and expo-
nenciation for the calculus of the normal formula) applied
to the current values of 1, g, s; and &. Then, a grouping
by columns must be performed, for the calculus of the w;
values. With these, and the previously obtained 7, and 6
final values of the new 4 and o; can be obtained.

Observations (fixed)
Parzen windows

$i & TS T S e

(moving)
A Calculus of 7;, 8, and 3,
using egs. (9), (10) and (11)
id M 0 i Grouping by columns
‘ | Calculus of wy, using eq. (12)
Hy Oy

Grouping by columns +

Calculus of 4
and o; using eqs.
(14), (15) and (7)

Figure 1. Calculus of the table values in each
iteration of the EDR algorithm.

The complexity for the convergence test can be ex-
pressed as O(ky'N-1), being / the chosen number of inter-

! The procedure described here is for unidimensional samples. Ex-
tension of this algorithm for multidimensional data is straightforward,
and it is based in the conjugate properties of the factorized gaussian
functions used. The main loop of the sequential algorithm is essentially
the same, but including a multiplication for each dimension.

vals for the numerical integral, and &, a constant indicat-
ing the execution time of the substraction of two values of
a normal distribution (corresponding to p™(x) and
).

Of course, the final complexity order of the algorithm
must be obtained multiplying the obtained complexity for
each iteration by K, the number of iterations needed to
achieve convergence. This value depends on many factors
(precision of the convergence test, distribution of the
input data, etc.), so it can not be determined beforehand.

4. Parallel Algorithm

It can be extracted, from the previous section, that the
most important effort is done when values of means and
deviations (44, o;) at each iteration are recalculated. In
order to do it, the table of NxN elements with intermedi-
ate values shown in fig. 1 must be filled in. As the com-
putational complexity and the size of the main data
structure are quadratic with respect to this number, appli-
cation of this technique in a single processor may intro-
duce time and storage problems”. This justifies the at-
tempt of a parallel approach. Hence, it is necessary to
study how these intermediate values are related, to find
out data dependencies.

At each iteration, computation of the values (1, &) is
performed using only the intermediate data stored in col-
umn j of the table. Thus, these means and deviations can
be calculated without communications if a distribution by
columns of this table is done. Each process will be as-
signed a set of columns of the table, and it will obtain the
values of means and deviations for such columns. How-
ever, some communication will be needed, as every proc-
ess must know the values worked out by the rest of proc-
esses in the previous iteration to compute the new ones,
and also to make the convergence test. Therefore, when a
process obtains its local values, it will transmit them to
the rest. A first synchronization point emerges.

Furthermore, the convergence test can also take ad-
vantage of parallelism. This test is based on the calculus
of the L, norm, the value that measures the difference
between two successive estimations of p(x). It is obtained
splitting a sufficiently wide interval (that captures the
whole set of examples, with some margin at the extremes)
into / small subintervals, and subsequently performing a
numerical integration by the trapezoids method. Thus,
these subintervals can be distributed between all proc-

% In fact, this is not completely true for the EDR algorithm described
in this paper, as column calculus summarized in fig. 1 can be over-

esses, so each of them would calculate a local value of the
L; norm. Nevertheless, calculation of the L; norm requires
means and deviations to have been obtained, so it will be
initiated when every process has calculated its corre-
sponding subset of these values, and has sent them to the
rest of processes. Once each process has computed the
numerical value of the integral in the subintervals that it
has associated, the global L; norm is obtained as the sum
of the local values calculated by every process. A new
communication appears, and, therefore, a second syn-
chronization point.

Fig. 2 shows in pseudo-code the message-passing pro-
gram. We have adopted the SPMD style. For simplicity,
we suppose that N is an exact multiple of P, but exten-
sions to manage the general case will simply distribute
remaining columns among processes. Fig. 3 summarizes
graphically the data flow in the P-EDR algorithm (Parallel
Empirical Deconvolution by Regularization).

Algorithm: Message-Passing P-EDR.
Input: s andg valuesj=1..N.
Output: 4 andg; valuesj=1..N.
Initialization :
Procesd reads the input data —values gnd ¢)—, and broadcasis
them to processeés.P.
Repeat (Main Lom):
Table Calculation:
- Each procesk, with ke[1..F], computes the valueg, 6, and
B, using egs. (8), (9) and (10), fgrl.N, and i=(k-
1)-(N/P)+1..k-(N/PYColumn distributioi
- Each procesk, with ke[1..F], computes the values,, using
eg. (12), again foj=1..N, andi=(k-1)-(N/P)+1..k:(N/P)(Ag-
gregation by columns on each cell of the column
Parzen Windows Lpdate:
- Each procesk, with ke[1..F], computes the valueg and o,
using egs. (14), (15) and (7), for(k-1)-(N/P)+1..k-(N/P)(Ac-
cumulation by columns
Broadcast of Values

updated valueg andg; for i=(k-1)-(N/P)+1..k-(N/P)to all the
rest of processek.P (Broadcas}.

Convergence Test

numerical integration of/P intervals, L,, from value a+(k-
1)-(b-a)/Pto a+k-(b-a)/R beinga andb the limits of the inte
gral (where the density function becomes zero; that is, the
tribution tails). The computation is made according to |t
trapezoids method, using eq. (17) and wipétg p*** are com-
puted with eq. (16) with the former and the current valueg, g
ando, (Distribution of integral by interva)s
- Procesd® gathers the partidl, results, and sums them to ca
culate thel, value (ntegral aggregatioh
Until L, < Precision Threshold.

Figure 2. Pseudo-code of the P-EDR algorithm.

=

The P-EDR algorithm is expected to decrease execu-
tion time regarding the sequential version, as: a) The

- Each procesg, with ke[1..F], broadcasts its corresponding

- Each procesg, with ke[1..F], computes its corresponding

dis-
he

number of columns that each process has been assigned is
much smaller than in the sequential program. And b) The
number of subintervals per process employed in the cal-
culation of theL, norm is less than in the sequential ver-
sion.

lapped, and the resulting sequential algorithm would be much less
memory intensive. But global maintenance of the whole table structure
is needed for some variations on the aggregation procedure, resulting in
interesting EDR variations, and, besides, all values contained in that
table have an interesting statistical interpretation, that can be useful in
further postprocessing (see [8] and [9] for details).

Original array

Distributionof columns

©wwmaeoon g

Calculationof p and

Transmissionof u and ¢

Calculation of partial L, norms

L, aggregationand
convergence test

Figure 3. Data flow in P-EDR implementation.

However, parallel algorithm implies some extra com-
munications between processes that, obviously, do not
exist in the sequential version. More precisely, it is neces-
sary to interchange the values of means, deviations and
local values of the L; norm. This fact will be decisive, as
good results will only be achieved if the cost of these
communications is lower than the benefit obtained with
the above reduction in computation time.

In order to predict the gain of the parallel implementa-
tion, we will analyze the complexity of the parallel ver-
sion. P-EDR algorithm involves a reduction on the num-
ber of columns, in the calculus of the table, and of subin-
tervals, in the calculus of the L; norm for the convergence
test. This reduction states the execution order for each
process (suppressing communications, that will be taken
into account later) as stated in the next table (/P is the
number of intervals for each process, being I the total
number of intervals for the calculus of the L; norm);

Task Complexity
Main iteration ¢,, 6, 8.,, @, 4 andg) O(krN°/P)
Calculus of local, norm O(ky"N-1/P)

Again, these orders are calculated for each iteration, so
they must be multiplied by K, the number of iterations.
Observe that the execution order of all the computational
tasks involved appears divided by P. Therefore, good
speed-up values can be expected, if the communications
do not introduce important delays.

We study now the influence of the communications in
the parallel version. In first place, the process 0 has to
broadcast the initial data to the rest of processes. This is
made just once, so this value is constant and it is inde-
pendent of the number of iterations of the algorithm. In

the other place, each process will transmit the following

data at each iteration:

e M means and deviations estimated. This informa-
tion is sent to the rest of processes.

e Local L, norm value. At the end of each iteration,
partial L, norm values must be added to determine
when convergence is reached.

Two observations can be made from this analysis:

1. The quantity of bytes transmitted in each iteration is
reasonably small (& values of means and deviations,
and P values for the convergence test).

2. As the number of processes participating in compu-
tation increases, execution order decreases quickly
whereas transmitted bytes hardly increase.

With these results we can be optimistic with respect to
the parallel implementation of this algorithm. It is ex-
pected to obtain an important speed-up when executing
parallel version with a certain number of processors. Es-
pecially, scalability of the algorithm for distributed-
memory environments seems very good, as increment of
communications size is unappreciable when the number
of processors grows up. So, the traffic in the communica-
tion network is expected not to suppose an important
bottleneck, even in a network of PCs connected by a LAN
with a lower bandwidth [1], [7].

5. Preliminary Performance Results

We made a particular implementation of the parallel
program, and carried out some tests, in order to obtain
some preliminary results to confirm our predictions. The
parallel machine was a cluster of Intel Pentium 200 MHz
processor, 32 MB main memory, 256 KB cache memory
and Fast Ethernet 3Com 905-network adapter with O.S.
Linux 2.0.32. The programming was made in C language
with the standard MPI library [3] (MPICH v.1.0.13 im-
plementation). P-EDR was tested using samples of 400,
800, 1000 and 1500 unidimensional items, and adequate
values of / and accuracy factor for convergence. The next
table summarizes the results obtained with each sample
size and using distinct number of processors (one process
per processor). Fig. 4 shows also graphically these results.

Procesess 400 items 800 items .1000 .1500
items items
Time Speed-up Time Speed-up Time Time
1 13.50s. 1 36.27 s. 1 - -
2 13.50 s. 1 33.11s. 1.09 43.00s. --
3 6.96s. 194 17.41s. 2.08 21.87s. 58.40 s.
4 5.73s. 236 12.86s. 2.82 15.87s. 41.36 s.
5 5.00s. 2.70 10.31s. 3.52 12.89s. 31.77 s.
6 5.00s. 2.70 942s. 3.85 10.80s. 26.24 s.
7 4.797s. 2.81 9.20s. 3.94 9.63 5. 22.68 s.

We can observe that sequential version of EDR algo-
rithm was not executed with samples of 1000 or 1500
items. In these cases more than 32 Mbytes of RAM were

needed to solve the problem, thus involving a big amount
of swapping (see footnote 1 for some considerations on
this). This fact illustrates one of the main advantages of
clusters of workstations: the exploitation of distributed-
memory resources (RAM). Though it is not possible to
obtain the speed-up for these cases, we can appreciate that
time employed to solve the problem with 7 processors is
less than half the time needed to do it with 3 processors,
indicating a very good scalability in the implementation.

70 q
A \x —0—Size 400
B —n \ —O— Size 800

\x \X\x —&—Size 1000
> M
\°\<>\<>—<>—<>

X— Size 1500
1 2 3 4 5 6 7

Number of processors

60

o
S

B
S

w
S

[S)
S

Execution time (seconds)

=)

o

Figure 4. Experimental results.

6. Conclusions and Future Work

We have presented a parallel version of the EDR algo-
rithm, a recent and innovative algorithm for non-
parametric density estimation in presence of uncertainty
in the data. The technique has many advantages, both in
practical and theoretical senses —modeling of uncertainty,
regularization feature, and the fact that it is a natural ex-
tension of the well known Parzen method—. But its main
drawback is that it is computationally intensive in both
memory and processing necessities. We exploit the sym-
metry property of the calculus and the data structures
involved in the parallel version, P-EDR, to obtain a mes-
sage-passing algorithm with very good speed-up and
scalability properties.

We made a particular implementation of the algorithm
in a distributed-memory parallel machine, a cluster of
workstations communicated with a fast network, using the
well-known standard MPI. This particular implementation
confirms the expected good results in speed-up and scal-
ability. Also, the tests performed seem to justify the use of
low-cost parallel environments in this and many other
kind of tasks in which the amount of data uses to be very
big and, therefore, are very computationally expensive.

In summary, the most important contributions of this
paper are the following: a) The design, analysis and im-
plementation of the EDR parallel algorithm. This parallel
algorithm will allow formal statistic treatment of uncer-
tainty in big databases, solving the problem in practical
execution times b) Our parallel developed algorithm (in
SPMD style) has a low communication cost and good

scalability, so it seems adequate to execute in a low-cost
parallel environment c) Finally, we have implemented our
algorithm in a network of PCs, obtaining very promising
results in terms of both performance and speed-up.

As a future work, we will take advantage of the MPI
portability, in order to implement and test the algorithm in
other parallel computers, such as MPPs, like IBM SP2 or
Cray T3D. A study with a more exhaustive performance
evaluation, extensions to manage multidimensional data,
and other variations, will also be fulfilled. Finally, our
group is also working on parallel implementations for
other statistical tasks with big computational cost, spe-
cially on those cases in which low communication algo-
rithms can be developed, and, subsequently, efficient
implementations in low cost parallel machines.

Acknowledgments

This work has been partially supported by the Spanish
CICYT under grants TIC97-0897-C04-02 and TIC98-
0559. The authors would also like to thank Alberto Ruiz
for his very helpful comments and suggestions.

References

[1] Anderson, T.E., Culler, D.E. and Patterson, D'ACase for
NOW'". IEEE Micro, Vol. 15, No 1, pp. 54-64, 1995.

[2] Berger, JStatistical Decision Theory and Bayesian Analysis.
Springer-Verlag, 1985.

[3] Gropp, W., Lusk, E., and Skjellum, AJsing MPI: Portable
Parallel Programming with the Message Passing Interface".
MIT Press, 1994.

[4] 1zenman, A.J.“Recent Developments in Nonparametric
Density Estimation!” Journal of American Statistical Asso-
ciation. Vol. 86, No. 413, pp. 205-224, 1991.

[5] Lucy, L.B. “An Iterative Technique for the Rectification of
the Observed Distributions” The Astronomical Journal.
Vol. 79, No. 6, pp. 745-754, 1974.

[6] Parzen, E*On Estimation of a Probability Density Function
and Mode” Annals of Mathematical Statisticgol. 33, pp.
1065-1076, 1962.

[7] Piernas, J., Flores, A. and Garcia, J'Wnalyzing the Per-
formance of MPI in a Cluster of Workstations Based on Fast
Ethernet". 4" European PVM/MPI Users’ Group Meeting,
LNCS, Vol. 1332, pp. 17-24. Springer-Verlag, 1997.

[8] Ruiz, A., Lopez de Teruel, P.E. and Garrido, M:Rernel
Density Estimation from Heterogeneous Indirect Observa-
tions". Proc. of the Learning’98, Madrid, pp. 86-96, 1998.

[9] Ruiz, A., Lopez de Teruel, P.E. and Garrido, M'Brob-
abilistic Inference from Arbitrary Uncertainty usingix-
turesof Factorized Generalized Gaussiandburnal of Arti-
ficial Intelligence Research, Vol 9, pp. 167-217, 1998.

[10] Shafer, GA Mathematical Theory of EvidencBrinceton
University Press, 1976.

[11] Zadeh, L.A."Fuzzy Sets as a Basis for a Theory of Possi-
bility". Fuzzy Sets and Systejvsl. 1, pp. 3-28, 1978.

