
A Performance Evaluation of P-EDR in Different
Parallel Environments*

M. Acacio, J.M. García and P.E. López-de-Teruel
Dpto. de Ingeniería y Tecnología de Computadores

University of Murcia
Campus de Espinardo, s/n 30080 Murcia (Spain)

{meacacio, jmgarcia, pedroe}@ditec.um.es

* This work has been partially supported by the Spanish CICYT under grant TIC97-0897-C04-03

Abstract This paper presents an exhaustive per-
formance analysis of the P-EDR algorithm in some
parallel machines available nowadays. EDR algo-
rithm is a recent result of our Research Group. It
constitutes an extension of the well-known Parzen
method, which can be applied when dealing with
uncertainty. Management of uncertainty implies
heavy computational loads in terms of both calculus
and storage, so a parallel version of the algorithm is
more adequate to solve this problem in a practical
time, especially for samples of large sizes. P-EDR
represents our parallel implementation of EDR. Our
tests go from an expensive and powerful MPP (as an
IBM SP2 constitutes) to a cost-effective solution, as
clusters of PCs represent. In these tests we have run
the P-EDR algorithm in two distinct clusters of PCs
each one with a different type of interconnection
network: a low-cost 100 Mbit/s Fast Ethernet and a
1.28 Gbit/s Myrinet. Results obtained confirm par-
allel computing on networks of PCs as an attractive
alternative to MPPs for cost/performance reasons.

Keywords: Parzen Method with Uncertainty, Parallel
Algorithm Evaluation, Cluster of PCs and MPPs,
MPI, Distributed Memory.

1 Introduction
As the power of computers grows, the com-
plexity of the problems that can be solved also
increases. The application of high-performance
computing for numerical intensive problems
brings new issues that do not appear in standard
computing. New algorithms and codes are re-
quired in order to exploit effectively the use of
these novel computer architectures. Computa-

tional capability is now available to develop and
study mathematical models for many different
fields that are expensive, difficult, impractical
or even impossible to consider by means of
other methodologies. This is the case of many
statistical problems. Up to now, some of these
problems have been only studied theoretically,
because available computers were not powerful
enough to cope with them in practice. One of
these problems is density estimation, all about
when it is treated in several mathematical
frameworks. This is the problem in which we
are interested, but with a novel approach, the
treatment of uncertainty, which though makes it
computationally intensive, it is also true that the
available computer power nowadays can make
it affordable.

Parzen method is a well-known statistical
technique used in non-parametric density esti-
mation from observed samples. The application
of this technique is very diverse: Pattern
matching, machine learning, function approxi-
mation, and many other inference tasks. It can
be applied in many different fields related to
statistics, such as biomedicine, engineering,
sociology, and so on. Nevertheless, one of the
limitations of Parzen method is that it works
only with exact data.

The EDR (Empirical variable Deconvolu-
tion by Regularization) [12] constitutes an ad-
aptation of the Parzen method which can be
applied when dealing with uncertainty (inaccu-
rate samples). Treating uncertainty entails more
demanding requirements, in terms of memory

and amount of computation. This constitutes a
very serious problem when datasets are large,
which is unfortunately the case in practical ap-
plications.

Parallel computing has made possible to
overcome this drawback. In [8], we presented
P-EDR, a parallel version of our EDR algorithm
for a message-passing parallel machine. We
gave a detailed description of an efficient im-
plementation of this algorithm. This implemen-
tation performed an efficient treatment of mem-
ory, in order to minimize communications be-
tween processes. We expected that our ap-
proach could obtain good scalability and there-
fore high speed-up values. Preliminary per-
formance tests confirming these predictions
were also presented.

This paper presents an exhaustive evalua-
tion of the former P-EDR implementation in
some of the parallel environments available
nowadays, from an expensive and powerful
MPP to a cost-effective solution, as a network
of PCs represents.

MPPs and clusters of PCs have been tested
in order to compare the performance differences
between these environments. IBM SP2 repre-
sents MPPs category. And, two distinct clusters
of PCs with two different types of networks
were used: a 100 Mbit/s Fast Ethernet cluster of
PCs and a 1.28 Gbit/s Myrinet of PCs [4].

Our results show how the performance gap
between MPPs and NOWs is becoming nar-
rower. Other investigations [1, 6, 11] also show
how since the arrival of fast interconnection
networks (as 1.28 Gbit/s Myrinet), cluster of
PCs seem competitive with commercial MPPs,
although at a fraction of the cost.

We have structured the paper as follows:
First, we briefly introduce how P-EDR has been
implemented. Next, we describe the parallel
workbench environments employed in our tests.
The results of these tests are then exposed and a
comparison between MPPs and cluster of PCs is
made. Finally, we present the conclusions of
our work and some future ways.

2 The P-EDR implementation
In this section, we describe how the P-EDR
algorithm has been implemented. A more ex-
haustive explanation can be found in [8].

As we mentioned before, EDR is a new it-
erative algorithm for non-parametric density
estimation and P-EDR (that stands for Parallel

Empirical Deconvolution by Regularization)
constitutes its parallel implementation.

Our parallel algorithm has been designed in
the SPMD [7] style. It is well known that mes-
sage passing with SPMD constitutes the pro-
gramming paradigm for distributed memory
machines. It has been implemented in a mes-
sage-passing parallel environment using the
MPI library and C programming language. MPI
[5] constitutes the current standard for writing
parallel programs that are based on the mes-
sage-passing model.

Distributed resources are optimally ex-
ploited, making the system capable of estimat-
ing densities from large databases of uncertain
samples. An efficient treatment of the distribu-
tion of this structure among processors, together
with a low communication cost scheme is in-
tended in order to obtain a high scalability par-
allel algorithm.

Initially, P-EDR uses a database of N ele-
ments, which represents the original means and
deviations (the N input samples with uncer-
tainty). Then, the algorithm generates, after the
necessary iterations, N means and deviations
(referred as µ and σ). From these values, the
new density estimation function (p(x)) can be
calculated.

At each iteration the new values of means
and deviations are recalculated. In order to ob-
tain these values, a table of NxN elements must
be filled in. This table stores the temporal val-
ues participating on the calculation of such
means and deviations. This algorithm structure
is ideal to take advantage of parallelism. We
parallelized the algorithm in the following man-
ner. Means and deviations can be calculated
without the need of communications when a
distribution by columns of this table between
the processes is done. Each process is assigned
a set of columns of the table, and it has to obtain
the values of means and deviations for such
columns. However, some communications are
needed due to the fact that every process must
know the values of means and deviations
worked out by the rest of processes from the
previous iteration to compute the new ones, and
also to make the convergence test. Therefore,
when a process obtains its local values, it must
transmit them to the rest of processes. Here,
there is a first synchronization point of the algo-
rithm.

Furthermore, the convergence test can also
take advantage of parallelism. This test is based
on the calculus of the L1 norm, the value that

measures the difference between two successive
estimations of p(x). It is obtained splitting a
sufficiently wide interval (that captures the
whole set of examples, with some margin at the
extremes) into I small subintervals, and subse-
quently performing a numerical integration by
the trapezoid method. Thus, these subintervals
can be distributed between all the processes, so
each of them calculates a local value of the L1
norm. Nevertheless, calculation of the L1 norm
requires means and deviations to have been
obtained, because these values are obviously
used in the estimate of this rule. Moreover, the
parallel calculus of the L1 norm must be initi-
ated when every process has obtained the values
of means and deviations corresponding to the
columns of the table it has assigned and it has
sent them to the rest of processes. Once each
process has computed the numerical value of
the integral in the subintervals that it has associ-
ated, the global L1 norm is obtained as the sum
of the local values calculated by every process.
Therefore, also here, there is a second point of
synchronization.

Figure 1 summarizes the data-flow in the P-
EDR implementation.

Original array

Distribution of columns

µi1

σi1

µi2

σi2

µip

σip

P
r
o
c
e
s
s

P
r
o
c
e
s
s

P
r
o
c
e
s
s Calculation of µ and σ

Transmission of µ and σ

L1 1 L1 2 L1 p

Calculation of partial L1 norms

L1 aggregation and
convergence test

...

...

...

...

...

Figure 1. Data-flow in the P-EDR implementation

3 Our workbench environments
This paper carries out an exhaustive evaluation
of the P-EDR algorithm. We have tested the
parallel version of the algorithm for a great
variety of database sizes, from small sizes (with
less than 32 MB of main memory to execute the
algorithm) to large databases (with a minimum
of 128 MB of main memory needed). Besides,
these tests have been done using a variable
number of processors (from 1 to a maximum of
8), but always running one process in each
processor.

Our tests have been done on distributed
memory environments. Distributed memory is
based on the fact that every processor access
only its own memory, so programming is more
complex, as data needed by a given processor
may be located at the address space of a differ-
ent one, and must be ordered and transferred
through messages. Thus, it must be emphasize
data locality in order to minimize communica-
tion among processes to achieve a good per-
formance. However, it has two important ad-
vantages over shared memory systems: First,
scalability, meaning that the system can be en-
larger up to a higher number of processors than
shared memory systems; and second, greater
performance/cost ratio.

In spite of the great speed-up reached, high
performance machines (MPPs) are very expen-
sive. Most multiprocessor designs include cus-
tom-made components, which not only increase
the costs, but also diminish its availability in the
market. Supercomputers are beyond the eco-
nomic of many scientific laboratories and uni-
versities that could need the calculation power
they offer.

Recently, there has been a trend to use a
Network of Workstation (NOWs) as a more
cost-effective solution to high performance
computing [2]. Our research efforts are focused
in this important area.

The main advantage of this approach is that
NOWs can be constructed from commercial off-
the-shelf hardware. Lately, the evolution of
CPU technology has brought high-end Personal
Computers (PCs) to performance levels in the
range of workstations at a very competitive
cost, so they are already a very cost effective
alternative to workstations as processing nodes
in NOW platforms [13]. The major limitation of
PC clusters is the high communication overhead
in exchanging messages between nodes. Unlike
a multiprocessor that has a custom low la-

tency/high bandwidth network, in a PC cluster a
LAN with a lower bandwidth is used to connect
the nodes. Therefore, we have used fast net-
works in the cluster of PCs, concretely a 1.28
Gbit/s Myrinet and a 100 Mbit/s Fast Ethernet.

First of all, we have run P-EDR on an IBM
SP2. IBM SP2 constitutes a high performance
supercomputer that employs the distributed
memory paradigm. Consequently, message
passing is used in this machine as the parallel
programming model. The IBM SP2 we have
used in our tests consists of 12 + 32 processors
(42 thin160 and 2 wide), 12 GB total main
memory, 128 KB cache memory, 494 GB disk
and 27.41 Gflop/s theoretical peak. In this envi-
ronment we could use two different versions of
MPI: MPICH (from Argonne National Labora-
tory and Mississippi State University) [10] and
IBM MPI-F. The latter promises to obtain better
performance results, as it has been specifically
adapted to this supercomputer [9]. We have
employed IBM MPI-F in our tests.

We could not miss the opportunity of
evaluating P-EDR using a cluster of PCs. Clus-
ters of PCs could be seen as loosely coupled
parallel machines, so it is imperative the use of
a message passing programming model. We use
Linux as the operating system on each PC. Two
different versions of MPI have been used with
Linux, one for each of the two clusters we have
evaluated. MPICH [10] for the 100 Mbit/s
cluster of PCs, and BIP from University of
Lyon [3] for the 1.28 Gbit/s cluster of PCs.

In order to test the algorithm in such differ-
ent environments, we took advantage of MPI
portability. P-EDR source code does not need
any change, we use exactly the same code for
MPI-F, MPICH and BIP versions. This consti-
tutes one of the most important characteristics
of MPI.

As we have mentioned before, the bottle-
neck that we find when using a cluster of PCs
for parallel computing is the interconnection
network. Actually, this problem has been eased
with the introduction of high-speed networks, as
155 Mbit/s ATM or 1.28 Gbit/s Myrinet.

We carried out the execution of P-EDR in
two clusters of PCs with two different networks.
First, it has been used a low cost network, a 100
Mbit/s Fast Ethernet (using a 3Com 905-
network adapter), in a cluster of PCs made up of
7 Pentium 200 MHz processors, each one with
64 MB main memory and 256 KB cache mem-
ory. Then a 1.28 Gbit/s Myrinet, which repre-
sents a medium-high cost network, has been

tested with a cluster of PCs made up of 6
Pentium II 350 MHz processors, each one also
with 64 MB main memory and 512 KB cache
memory.

Both sequential program and parallel MPI
program have been compiled on each environ-
ment with the –O2 optimization compiler op-
tion.

Table 1 summarizes the main characteristics
of the different environments used.

IBM SP2 Myrinet
cluster

Fast Ethernet
cluster

Node type Thin160 Pentium II
350 MHz

Pentium
200 MHz

Memory 256 MB 64 MB 64 MB
Cache 128 KB 512 KB 256 KB
MPI IBM MPI-F BIP 0.95c MPICH 1.0.13
Operating
System

AIX
4.2.1

Linux
2.0.35

Linux
2.0.36

Nodes 28 6 7
Table 1. Description of the workbench envi-

ronments

4 Results
In this section we present a detailed analysis of
the results obtained when running our P-EDR
algorithm implementation on parallel environ-
ments introduced in previous section. Execution
times and speed-up reached when executing P-
EDR implementation in these environments are
showed. Different database sizes have been
used in our tests: small sizes (with 500 and
1000 elements), a medium size database of
1500 items, and large databases of 2000 and
2500 elements which need 128 MB main mem-
ory to complete their executions (in the sequen-
tial version).

P-EDR algorithm has been run on each test
with a value of h of 0.5 and an accuracy factor
of 0.001 (for more details, see [8]).

Finally, we present a comparison between
IBM SP2 and clusters of PCs from results ob-
tained.

4.1 The IBM SP2 results
We have employed in our test the IBM SP2 of
the CESCA-CEPBA, at Barcelona. Parallel
program has been inserted inside the Parallel
Queue, and executed with different number of
nodes (from 2 to 8). In order to corroborate the
good scalability of P-EDR implementation, we
have also used 16 and 28 nodes in our tests.

Table 2 shows the times obtained (in sec-
onds) when running P-EDR algorithm on the
IBM SP2. Figure 2 shows graphically the evo-

lution of the speed-up with respect to the num-
ber of processors.

Speed-ups reached are very significant es-
pecially when large-size databases are used
(nearly linear for 2500 elements). The good
scalability expected from our P-EDR algorithm
is confirmed because of the speed-ups obtained
when using 16 nodes in the executions (almost
13 for 2500 elements), and 28 (more than 19 for
2500 elements) nodes are using in the calculus.

Size
Nodes 500 1000 1500 2000 2500

1 5,00 20,00 44,00 79,00 123,00
2 3,00 11,50 25,00 44,00 69,00
3 2,67 8,00 17,34 28,34 44,00
4 2,25 6,00 13,00 21,75 33,75
5 2,00 5,20 10,80 18,60 28,20
6 1,83 5,00 9,34 15,17 23,34
7 1,57 4,57 8,28 13,86 20,28
8 1,25 4,37 7,25 12,00 18,00

16 1,62 3,06 4,75 6,94 9,62
28 1,38 3,03 3,46 4,93 6,43

Table 2. Execution times (seconds) on an IBM SP2

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Nodes

S
p

ee
d

-u
p

500

1000

1500

2000

2500

Figure 2. Speed-ups on an IBM SP2

4.2 The results on Cluster of PCs with
Fast Ethernet

The 100 Mbit/s cluster of 7 PCs nodes used in
our tests belongs to our Research Group. It con-
stitutes a low-cost and broadly available solu-
tion for parallel computing.

Table 3 shows the times obtained (in sec-
onds) when executing P-EDR algorithm on the
100 Mbit/s Fast Ethernet cluster of PCs de-
scribed in section 3. Figure 3 shows graphically
the evolution of the speed-up with respect to the
number of processors.

Important speed-up values are reached in
this environment, almost 6 when using 7 proc-
essors for 2500 elements. These values vary in a
very narrow band, comprised between 4,3 (for
500 items samples) and 5,9 (for 2000 and 2500
items samples).

Size
Nodes 500 1000 1500 2000 2500

1 12,87 51,77 116,84 211,60 330,53
2 7,23 27,54 68,02 118,62 185,03
3 5,54 20,80 45,57 81,94 125,73
4 4,27 15,69 34,61 61,38 96,86
5 3,86 12,95 28,26 49,50 78,13
6 3,39 11,16 24,12 42,30 65,64
7 3,01 9,53 21,50 35,94 56,18
Table 3. Execution times (seconds) on the Fast

Ethernet cluster of PCs

1

2

3

4

5

6

7

1 2 3 4 5 6 7

Nodes

S
p

ee
d

-u
p
500

1000

1500

2000

2500

Figure 3. Speed-ups on the cluster of PCs with Fast
Ethernet

4.3 The results on Cluster of PCs with
Myrinet

We have also run P-EDR on a 1.28 Gbit/s clus-
ter of PCs with 6 nodes. This working environ-
ment belongs to the Computer Science Depart-
ment of the University of Castilla-La Mancha.

Table 4 shows the times obtained (in sec-
onds) when executing P-EDR algorithm on the
1.28 Gbit/s Myrinet cluster of PCs described in
section 3. Figure 4 shows graphically the evo-
lution of the speed-up with respect to the num-
ber of processors.

In this case, we also obtain important
speed-up values (approximately 4,5 when using
6 processors).

As it can be observed from figure 4, speed-
up values reached when running P-EDR on this
1.28 Gbit/s Myrinet are very near. More pre-

cisely, we could place them inside a very nar-
row band, between 4,25 and 4,55 values.

Size
Nodes 500 1000 1500 2000 2500

1 6,04 24,16 54,30 97,30 155,18
2 3,15 12,53 28,19 50,33 79,58
3 2,78 10,53 24,34 43,37 67,76
4 2,05 8,09 18,16 32,27 50,29
5 1,66 6,54 14,67 26,07 40,66
6 1,42 5,60 12,30 21,70 34,10

Table 4. Execution times (seconds) on the cluster of
PCs with Myrinet

1

2

3

4

5

6

1 2 3 4 5 6

Nodes

S
p

ee
d

-u
p

500

1000

1500

2000

2500

Figure 4. Speed-ups on the cluster of PCs with My-
rinet

4.4 Comparison
In terms of speed-ups, our 100 Mbit/s cluster of
PCs constitutes a tough opponent to IBM SP2.
It outperforms the IBM SP2 speed-up for small-
size databases (4.3 vs. 3.2 for 500 items), but
not for medium/large-size databases, although
in this case the speed-up obtained was not very
far from IBM SP2 one (5.8 vs. 6.1 for 2500
items).

In terms of execution times, 100 Mbit/s Fast
Ethernet cluster of PCs, which consists of
Pentium 200 MHz computers, does not obtain
so good results. In this case, sequential program
completes its execution in about 330 seconds
(with a database of 2500 items), whereas, for
example, the IBM SP2 executes this sequential
version employing 123 seconds. But, of course,
it is sure that the use of more powerful PCs
would reduce drastically these differences.

1.28 Gbit/s Myrinet cluster of PCs consti-
tutes a serious alternative to the IBM SP2, in
both execution time and speed-up terms. We
can observe how it obtains better speed-ups
than IBM SP2 when small-size databases are
used (4.2 vs. 2.7 for 500 items and 4.3 vs. 3.87
for 1000 items). For medium-size databases
(1500 items) they reach practically the same

speed-up values (4.4 vs. 4.7). However, for
large-size databases (2000 and 2500 items) IBM
SP2 represents the best option. In terms of exe-
cution times, they obtain very similar results
when small-size databases are used, but as we
increase database sizes differences between
these environments appear.

5 Conclusions and future work
Results obtained in our workbench environ-
ments confirm the good scalability expected
from P-EDR. P-EDR speed-up on an IBM SP2
was very significant (nearly linear, when data-
bases of 2500 elements are used). Even if we
used a large number of nodes (16, 28 nodes) the
reached speed-up continues growing signifi-
cantly (almost 13 for 16 nodes and more than
19 for 28 nodes, also for 2500 elements data-
bases). These results demonstrate that the par-
allel program scales very well (as we predicted
in [8]), despite the overhead introduced by sig-
nificant communications in each iteration.

For 100 Mbit/s Fast Ethernet cluster of PCs,
the speed-up obtained was greater than 5.8 (for
7 processors and with 2500 elements data-
bases), that is not so far from the IBM SP2 re-
sult. With the 1.28 Gbit/s Myrinet cluster of
PCs better speed-ups than IBM SP2 ones are
obtained for 500 and 1000 sizes. For 1500 size
both IBM SP2 and 1.28 Gbit/s Myrinet cluster
of PCs obtain the similar results. And for 2000
and 2500 sizes, the IBM SP2 outperforms to
1.28 Gbit/s Myrinet cluster of PCs.

With respect to execution times, the differ-
ences between the IBM SP2 and our 100 Mbit/s
cluster of PCs are important. It is sure that this
gap could be reduced using current Pentium II
or Pentium III processors, as we could see with
the 1.28 Gbit/s Myrinet cluster of PCs. This
cluster was equipped with powerful 350 MHz
Pentium II PCs. They were able to run the se-
quential program in 155 seconds (always with a
database of 2500 items), very near to the 123
seconds need by the IBM SP2.

Summarizing, this paper presents an ex-
haustive evaluation of the P-EDR algorithm.
The evaluation has been carried out using three
different parallel programming environments,
with different costs and performance. IBM SP2
constitutes the most expensive option, but it
obtains the best results when large databases are
used (in both speed-up and execution time).
Also, we have tested a cluster of Pentium II 350
MHz PCs with a 1.28 Gbit/s Myrinet network,

that represents a medium-high cost solution,
and obtains results very near the MPP when
500, 1000 and 1500 databases are employed (in
terms of both speed-up and execution time).
Finally, a cluster of Pentium 200 MHz PCs with
a cheap and broadly available 100 Mbit/s Fast
Ethernet has been measured. It obtains good
speed-ups, but due the limitations of the proces-
sors used (Pentium 200 MHz), it can not com-
pete with the IBM SP2 results in execution
times.

Results obtained demonstrate how with
much cheaper equipment we are able to solve
certain parallel programs with very acceptable
performances.

In brief we will replace these old-fashioned
Pentium 200 MHz processors with modern
Pentium II processors. An interesting future
work would be measuring P-EDR in such new
cluster with Fast Ethernet in order to study the
differences between a 100 Mbit/s Fast Ethernet
and a 1.28 Gbit/s Myrinet for this application.

Acknowledgments
This research has been performed using the
facilities of the Centre de Computació i Comu-
nicacions de Catalunya (CESCA-CEPBA).
The authors would like to thank the Computer
Science Department of the University of Cas-
tilla-La Mancha for its important help when
using their 1.28 Gbit/s Myrinet cluster of PCs,
especially to Pedro García and Francisco J.
Alfaro for their helpful comments and sugges-
tions when configuring BIP.

References
[1] M. Acacio, O. Cánovas, J. M. García and

P. E. López-de-Teruel. An Evaluation of
Parallel Computing in PC Clusters with
Fast Ethernet. In Procc. of the ACPC 99,
LNCS 1557, pp. 570-571, 1999.

[2] T.E. Anderson, D.E. Culler and D.A. Pat-
terson. A Case for NOW. IEEE Micro, vol.
15, nº 1, pp. 54-64, 1995.

[3] BIP Messages. http://lhpca.univ-lyon1.fr/
bip.html

[4] N.J. Boden, et al. Myrinet: A Gigabit-per-
second Local Area Network. IEEE Micro,
vol. 15, nº 1, pp. 29-36, 1995.

[5] W. Gropp, E. Lusk and A. Skjellum. Using
MPI: Portable Parallel Programming with
the Message Passing Interface. The MIT
Press, 1994.

[6] K. Langendoen, R. Hofman and H. Bal.
Challenging Applications on Fast Net-
works. In Procc. of the 4th Int. HPCA,
IEEE Computer Society Press, pp. 68-79,
1998.

[7] B. Lester. The Art of Parallel Program-
ming. Englewoods Cliff, New Jersey,
Prentice Hall, 1993.

[8] P.E. López-de-Teruel, J.M. García, M.
Acacio and O. Cánovas. P-EDR: An Algo-
rithm for Parallel Implementation of Par-
zen Density Estimation from Uncertain
Observations. In Procc. of the 2nd Int.
Merged IPPS/SPDP, IEEE Computer So-
ciety Press, 1999.

[9] J. Miguel, A. Arruabarrena, R. Beivide and
J.A. Gregorio. Assessing the performance
of the new IBM SP2 communication sub-
system. IEEE Parallel and Distributed
Technology, Vol. 4, nº4, pp. 12-22, 1996.

[10] MPICH-A Portable Implementation of
MPI. http://www.mcs.anl.gov/Projects/mpi
/mpich.

[11] S. Nagar, D. Seed, A. Sivasubramaniam.
Implementing Protected Multi-User Com-
munication for Myrinet. In Procc. of 2nd

Int. Workshop CANPC’98, LNCS Vol.
1362, Springer-Verlag, pp. 31-44, 1998.

[12] A. Ruiz, P.E. López-de-Teruel and M.C.
Garrido. Kernel Density Estimation from
Heterogeneous Indirect Observations.
Proceedings of the Learning’98, pp. 86-96,
1998.

[13] T. Sterling. The Scientific Workstation of
the Future May Be a Pile of PCs. In
Comm. of ACM, vol. 39, nº 9, pp. 11-12,
1996.

