
Effective Parallelization of Non-Bonded
Interactions Kernel for Virtual Screening on
GPUs

Ginés D. Guerrero, Horacio Pérez-Śanchez, Wolfgang Wenzel, José M. Cecilia and
Jośe M. Garćıa

Abstract In this work we discuss the benefits of using massively parallel architec-
tures for the optimization of Virtual Screening methods. Weempirically demonstrate
that GPUs are well suited architecture for the accelerationof non-bonded interaction
kernels, obtaining up to a 260 times sustained speedup compared to its sequential
counterpart version.

1 Introduction

The discovery of new drugs is a complicated process that can enormously profit,
in the first stages, from the use of Virtual Screening (VS) methods. The limitations
of VS predictions are directly related to a lack of computational resources, a major
bottleneck that prevents the application from detailed, high-accuracy models to VS.
However, the emergent massively parallel architectures, such as the Cell Broadband
Engine (CBE) and the Graphics Processing Units (GPU), are continuously demons-
trating great performances in a wide variety of applications and, particularly, in such
simulation methods [5].

The CBE [6] is composed of several (6, 8, 16) very fast independent specialised
processors called Synergistic Processing Elements (SPEs)mainly optimised for
single-precision floating point operations and capable of vector processing reaching
a theoretical peak performance of around 230 GFLOPS. The newest generations of

Ginés D. Guerrero· Jośe M. Cecilia· Jośe M. Garćıa
Grupo de Arquitectura y Computación Paralela, Dpto. de Ing. y Tecnologı́a de Computadores
Facultad de Inforḿatica, Universidad de Murcia, Campus de Espinardo 30100, Murcia, Spain
e-mail:{gines.guerrero, chema, jmgarcia}@ditec.um.es

Horacio Ṕerez-Śanchez· Wolfgang Wenzel
Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1,
76344 Eggenstein-Leopoldshafen, Germany
e-mail:{horacio.sanchez, wolfgang.wenzel}@kit.edu

1

2 Ginés D. Guerrero et al.

GPUs are massively parallel processors which can support several thousand concur-
rent threads. Current NVIDIA GPUs contain up to 512 scalar processing elements
per chip and are programmed using C language extensions called CUDA (Compute
Unified Device Architecture) [3]. In late 2009, some models reached a peak per-
formance above 1000 GFLOPS, which is 4 to 5 times the peak performance of the
CBE.

In this paper, we focus on the optimization of the calculation of non-bonded inter-
actions (such as electrostatics, van der Waals forces), as this kernel is an important
bottleneck to different VS methods [5]. This kernel is widely used and implemented
in several VS methods, concretely the docking programFlexScreen [2]. Different
authors have already worked on its implementation and optimization; on the CBE,
Schiller et al. [7] attained a 30 times speedup while Pérez-Śanchez et al. [4] achieved
a 150 times speedup. On GPUs, Stone et al. [8] reached speedups of around 100
times, while Harvey et al. [1] achieve a 200 times acceleration. We test our kernel
in GPUs to exploits the paralelism of this application, getting up 260 times speedup
compared to its sequential version.

The rest of the paper is organized as follows. Section 2 introduces the GPU ar-
chitecture and CUDA programming model from NVIDIA. Section3 presents our
CUDA implementation for the electrostatic interactions kernel. The performance
evaluation is discussed in the Section 4. Finally, Section 5ends with some conclu-
sions and ideas for future work.

Device GPU

Host CPU

Main Memory

Host Interface

GDDR3 GDDR3 GDDR3 GDDR3 GDDR3 GDDR3 GDDR3 GDDR3

Global Memory

Interconnection Network

Shared Memory

(16 KB)

Streaming Multiprocessor

SP SP SP SP

SPSPSPSP

Fig. 1: Tesla C1060 GPU with 240 SPs.

Effective Parallelization of Non-Bonded Interactions Kernel for VS on GPUs 3

2 GPU architecture and CUDA overview

In this section we introduce the main characteristics of theNVIDIA Tesla C1060
graphics card used in our experiments and the CUDA programming model.

The Tesla C1060 is based on scalable processor array which has 240 streaming
processors (SPs) cores organized as 30 streaming multiprocessors (SMs) and 4GB
off-chip GDDR3 memory calleddevice memory. Each SM contains eight SPs, one
double precision unit, a set of 16384 32-bit registers and a 16-Kbyte read/write on-
chip shared memory that has a very low access latency (see figure 1).

The CUDA programming model allows write parallel programs for GPUs using
some extensions of the C language. A CUDA program is divided into two main
parts: the progam which run on the CPU (host part) and the program executed on
the GPU (device part), which is calledkernel. In akernel there are two main levels
of parallelism: CUDA threads, and CUDA thread blocks [3]. A block is a batch of
threads which can cooperate together because they are assigned to the same multi-
processor. A grid is composed of several blocks which are equally distributed and
scheduled among all multiprocessors, since there should bemore blocks than mul-
tiprocessors (see figure 2). SMs create, manage, schedule and execute threads in
groups of 32 threads, this set of threads is calledwarp. Thewarp is the scheduled
unit, so the threads of the same block are scheduled in a givenmultiprocessorwarp
by warp. The programmer declares the number of blocks, the number ofthreads
per block and their distribution to arrange parallelism given the program constraints
(i.e., data and control dependencies).

Fig. 2: CUDA programming model.

4 Ginés D. Guerrero et al.

3 Our CUDA implementation

In order to exploit all the resources available on the GPU, and get the maximum
benefit from CUDA, we focus first on finding ways to parallelisethe sequential
version of the electrostatic interaction kernel, which is show in the algorithm 1,
whererec is the biggest molecule,lig the smallest molecule,nrec the number of
atoms ofrec andnlig the number of atoms oflig.

Algorithm 1 The sequential pseudocode.
1: for i = 0 to nrec do
2: for j = 0 to nlig do
3: calculus(rec[i], lig[j])
4: end for
5: end for

Our best approach is that CUDA threads are in charge of calculating the interac-
tion between atoms. However, the task developed by the CUDA thread blocks in this
application can drastically affect the overall performance. To avoid communication
overheads, each thread block should contain all the information related to the ligand
or protein. Two alternatives come along to get this. The former is to identify each
thread block with information about the biggest molecule; i.e. CUDA threads are
overloaded, and there are few thread blocks running in parallel. The latter is exactly
the opposite, to identify each thread as one atom of that molecule and then CUDA
threads are light-weight, and there are many thread blocks ready for execution. The
second alternative fits better in the GPU architecture idiosyncrasy.

Figure 3 shows this design. Each atom from the biggest molecule is represented
by a single thread. Then, every CUDA thread goes through all the atoms of the
smallest molecule.

��������	
�� �����	
��

���

������

	������� 	������� 	������� 	�������

������ ������

	�����������

Fig. 3: GPU design forX thread blocks (withX = 1) with n threads layout.

Algorithm 2 outlines the GPU pseudocode we have implemented. Notice that,
before and after the kernel call, it is needed to move the databetween the CPU
RAM and the GPU memory.

Effective Parallelization of Non-Bonded Interactions Kernel for VS on GPUs 5

Algorithm 2 The GPU pseudocode.
1: CopyDataFromCPUtoGPU(rec)
2: CopyDataFromCPUtoGPU(lig)
3: numBlocks := nrec/numT hreads
4: Kernel(numBlocks,numT hreads)
5: CopyDataFromGPUtoCPU(result)

The kernel implementation is straightforward from figure 3.Each thread simply
do the electrostatic interaction calculations with its corresponding atom of therec
molecule and all thelig molecule atoms.

CUDA Kernels

Kernel 1 Basic implementation

1: for all Blocksdo
2: for i = 0 to nlig do
3: calculus(myAtomRec, lig[i])
4: end for
5: end for

Kernel 2 Tiles implementation

1: for all Blocksdo
2: numIt = nlig/numT hreads
3: for i = 0 to numIt do
4: copyBlockDataToSharedMemory(lig)
5: calculusBlock(myAtomRec, ligBlock)
6: end for
7: end for

We have derived two different implementations: the basic one (kernel 1), and
the advanced one (kernel 2), where a blocking (or tiling) technique is applied to
increase the performance of the application, grouping atoms of thelig molecule in
blocks and taking them to theshared memory, taking advantage in this way of the
very low access latency to theshared memory.

4 Performance evaluation

The performance of our sequential and GPU implementations are evaluated in a
quad-core Intel Xeon E5530 (Nehalem with 8 MB L2 cache), which acts as a host
machine for our NVIDIA Tesla C1060 GPU. We compare it with a Cell implemen-
tation [4] in a IBM BladeCenter QS21 with 16 SPE.

Figure 4 shows the execution times for all our implementations (both GPU and
Cell) taking into account the data movement between the RAM memory and the
corresponding device memory. All the calculations are doneusing simple preci-
sion floating point, due the smaller number of double precision units of the Tesla
C1060. The benchmarks are executed by varying the number of atoms of the small-
est molecule and also the number of atoms of the biggest molecule for studying both:
a protein-protein and ligand-protein interactions. In this figure the performance of
the Cell implementation, GPU basic implementation (GPU V1)and GPU tiles im-
plementation (GPU V2) enhances along with the value ofnrec, defeating the se-

6 Ginés D. Guerrero et al.

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

5 8 11 14 17 20 23 26 5 8 11 14 17 20 23 26 5 8 11 14 17 20 23 26 5 8 11 14 17 20 23 26 5 8 11 14 17 20 23 26

8 10 12 14 16

E
xe

cu
ti

on
 t

im
e

in
 m

se
cs

 (
lo

g
sc

al
e)

NLIG variation for each value of NREC (num of atoms in power of 2)

Electrostatic Interactions

GPU V2 GPU V1 Cell Sequential

Fig. 4: Results obtained for different molecular size ratios. The execution time for the calcula-
tion of the electrostatic potential, in single precision, executed 128 times in a loop for different
conformations of the molecule.

quential code by a wide margin (up to a speed factor of 260x). Notice that, the
speedup factor between GPU and CPU increases faster when thevalue ofnrec is
higher. It is because the number of thread blocks running in parallel is also higher,
and then the GPU resources are fully used. Similarly, for larger values ofnlig, the
speedup factor between GPU and CPU increases also because there are more threads
running at the same time. However, it remains flat for a configuration greater than
256 threads per block.

Cell processor is not able to execute some of the biggest benchmarks due to its
hardware constraints, mainly related to the 256K SPE Local Storage. However, it
performs similarly compared to the GPUs for the smallest benchmarks in which the
GPU is not fully used.

5 Conclusions and future work

In this paper we have introduced the kernel implementation for the calculation of
non-bonded interactions applied to electrostatic interactions for different emergent
parallel architectures. The results obtained for GPU are indeed promising, given the
obtained speedup values up to 260x, compared to its sequential version. Cell pro-
cessor gives similar results to GPUs only in some cases, where the molecules are
small and the saturation situation for the GPU is not reached, but for higher work-
loads GPUs attain speedup values 7 times higher than the Cellprocessor. This way
we can work with bigger molecules and thus perform more realistic calculations.

Given the adequacy of GPUs for the optimization of such calculations, our next
step will be the implementation on the new GPU architecturessuch as the NVIDIA
Fermi, which provides higher double precision floating point performance, and thus
increasing the accurancy of the calculations. This parallel version of the kernel will
be adapted and integrated into the docking programFlexScreen.

Effective Parallelization of Non-Bonded Interactions Kernel for VS on GPUs 7

Acknowledgements This research was supported by a Marie Curie Intra European Fellowship
within the 7th European Community Framework Programme (FP7 IEF INSILICODRUGDIS-
COVER), by the Fundación Śeneca (Agencia Regional de Ciencia y Tecnologı́a, Regíon de Mur-
cia) under grant 00001/CS/2007, and also by the Spanish MEC andEuropean Commission FEDER
under grants CSD2006-00046 and TIN2009-14475-C04.

References

1. Harvey, M. J., De Fabritiis, G.: An Implementation of the SmoothParticle Mesh Ewald
Method on GPU Hardware. J. Chem. Theory. Comput.5, 2371–2377 (2009).

2. Kokh, D., Wenzel, W.: Flexible side chain models improve enrichment rates in in silico
screening. J. Med. Chem.51, 5919-5931 (2008).

3. NVIDIA. CUDA Programming Guide 3.2. (2010).
4. Ṕerez-Śanchez, H. E., Wenzel, W.: Implementation of an effective non-bonded interactions

kernel for biomolecular simulations on the cell processor. In: Gesellschaft fuer Informatik,
Jahrestagung 2009 (Lecture Notes in Informatics).154, pp. 721-729 (2009).

5. Ṕerez-Śanchez, H. E., Wenzel, W.: Optimization methods for virtual screening on novel com-
putational architectures. Curr. Comput. Aided. Drug. Des.7, 1–17 (2011).

6. Pham, D., Aipperspach, T., Boerstler, D., Bolliger, M., Chaudhry, R., Cox, D., Harvey, P.,
Hofstee, H., Johns, C.: Overview of the architecture, circuit design, and physical implemen-
tation of a first-generation cell processor. IEEE J. Solid-StateCircuits.41, 179–196 (2006).

7. Schiller, A., Sutmann, G., Yang, L.: A Fast Wavelet Based Implementation to Calculate
Coulomb Potentials on the Cell/B.E. In: Proceedings of the 2008 10th IEEE ICHPCC, IEEE
Computer Society: pp. 162-168 (2008).

8. Stone, J. E., Phillips, J. C., Freddolino, P. L., Hardy, D. J., Trabuco, L. G., Schulten, K.:
Accelerating molecular modeling applications with graphicsprocessors. J. Comput. Chem.
28, 2618–2640 (2007).

