Effective Parallelization of Non-Bonded
| nteractions Kernel for Virtual Screening on
GPUs

Ginés D. Guerrero, Horacio&Pez-Sinchez, Wolfgang Wenzel, oM. Cecilia and
Jo€ M. Garda

Abstract In this work we discuss the benefits of using massively paratichitec-
tures for the optimization of Virtual Screening methods.a&kgirically demonstrate
that GPUs are well suited architecture for the acceleratioon-bonded interaction
kernels, obtaining up to a 260 times sustained speedup cethpa its sequential
counterpart version.

1 Introduction

The discovery of new drugs is a complicated process that sam®usly profit,
in the first stages, from the use of Virtual Screening (VS)hods. The limitations
of VS predictions are directly related to a lack of computiadil resources, a major
bottleneck that prevents the application from detailegh¥accuracy models to VS.
However, the emergent massively parallel architectures) as the Cell Broadband
Engine (CBE) and the Graphics Processing Units (GPU), aréramusly demons-
trating great performances in a wide variety of applicatiand, particularly, in such
simulation methods [5].

The CBE [6] is composed of several (6, 8, 16) very fast inddpanspecialised
processors called Synergistic Processing Elements (SREs)ly optimised for
single-precision floating point operations and capablescfar processing reaching
a theoretical peak performance of around 230 GFLOPS. Thestayenerations of

Ginés D. Guerrere Jog M. Cecilia- Jog M. Garda

Grupo de Arquitectura y Computaci Paralela, Dpto. de Ing. y Tecnolagle Computadores
Facultad de Inforratica, Universidad de Murcia, Campus de Espinardo 30100, lsiusgiain
e-mail: {gines.guerrero, chema, jmgargf@ditec.um.es

Horacio FRerez-&inchez Wolfgang Wenzel

Institute of Nanotechnology, Karlsruhe Institute of TechiggildHermann-von-Helmholtz-Platz 1,
76344 Eggenstein-Leopoldshafen, Germany

e-mail: {horacio.sanchez, wolfgang.weng@kit.edu

2 Ginés D. Guerrero et al.

GPUs are massively parallel processors which can suppatadéhousand concur-
rent threads. Current NVIDIA GPUs contain up to 512 scalacessing elements
per chip and are programmed using C language extensioesl c2lJDA (Compute
Unified Device Architecture) [3]. In late 2009, some modeaaahed a peak per-
formance above 1000 GFLOPS, which is 4 to 5 times the peakmeaince of the
CBE.

In this paper, we focus on the optimization of the calculatbnon-bonded inter-
actions (such as electrostatics, van der Waals forces)jsakernel is an important
bottleneck to different VS methods [5]. This kernel is widesed and implemented
in several VS methods, concretely the docking progFdexScreen [2]. Different
authors have already worked on its implementation and dgaition; on the CBE,
Schiller et al. [7] attained a 30 times speedup whideg2-Sinchez et al. [4] achieved
a 150 times speedup. On GPUs, Stone et al. [8] reached speetiapound 100
times, while Harvey et al. [1] achieve a 200 times accelematiVe test our kernel
in GPUs to exploits the paralelism of this application, ipetup 260 times speedup
compared to its sequential version.

The rest of the paper is organized as follows. Section 2 dtres the GPU ar-
chitecture and CUDA programming model from NVIDIA. Secti8rpresents our
CUDA implementation for the electrostatic interactionsriet. The performance
evaluation is discussed in the Section 4. Finally, Sectiemd&s with some conclu-
sions and ideas for future work.

Host CPU ‘

‘ Main Memory ‘

Devi P
evice GPU ‘ Host Interface ‘

/|
e

/| I I I I | I I N

I o

< Interconnection Network > / \
| M
| f
ﬁGIObial M;mo; 7777777777777 - Streaming Multiprocessor
GDDR3 H GDDR3 H GDDR3 H GDDR3 H GDDR3 H GDDR3 H GDDR3 H GDDR3 ‘ ‘ Shar(ighlilg)mory

L= — = — = = = 4 SP | SP | SP |SP

SP | SP | SP |SP

Fig. 1: Tesla C1060 GPU with 240 SPs.

Effective Parallelization of Non-Bonded Interactions Kelrfor VS on GPUs 3

2 GPU architecture and CUDA overview

In this section we introduce the main characteristics ofNMEDIA Tesla C1060
graphics card used in our experiments and the CUDA progragymiodel.

The Tesla C1060 is based on scalable processor array whicR4ilestreaming
processors (SPs) cores organized as 30 streaming muégzois (SMs) and 4GB
off-chip GDDR3 memory calledevice memory. Each SM contains eight SPs, one
double precision unit, a set of 16384 32-bit registers an@-Klyte read/write on-
chip shared memory that has a very low access latency (see figure 1).

The CUDA programming model allows write parallel programms&PUs using
some extensions of the C language. A CUDA program is diviaéol two main
parts: the progam which run on the CPhbét part) and the program executed on
the GPU (evice part), which is calledkernel. In akernel there are two main levels
of parallelism: CUDA threads, and CUDA thread blocks [3]. ladk is a batch of
threads which can cooperate together because they areessmthe same multi-
processor. A grid is composed of several blocks which aralggdistributed and
scheduled among all multiprocessors, since there shouhddoe blocks than mul-
tiprocessors (see figure 2). SMs create, manage, schediilexaoute threads in
groups of 32 threads, this set of threads is calledp. Thewarp is the scheduled
unit, so the threads of the same block are scheduled in a giwdtiprocessowarp
by warp. The programmer declares the number of blocks, the numbtmreéds
per block and their distribution to arrange parallelismegithe program constraints
(i.e., data and control dependencies).

Host Device
Grid 1
Kernel 1 » | Block Block Block
(0,0 (1,0) (2,0)
Block | Block [y Block
0.4 a,1) Vo2
| Grid 2/
Kernel 2 >
' - [L L K]
Block (1, 1)
Thread Thread | Thread Thread | Thread
Warp (0,0) o | @o (3,0 (. 0)
Thread Thread Thread Thread Thread

©, 1 ()] ()] G. D @1 —

Thread Thread Thread | Thread Thread
©,2) (1,2) (2,2) 3.2) “.2)

Fig. 2: CUDA programming model.

4 Ginés D. Guerrero et al.

3 Our CUDA implementation

In order to exploit all the resources available on the GP, g&t the maximum
benefit from CUDA, we focus first on finding ways to parallelibe sequential
version of the electrostatic interaction kernel, which ti®w in the algorithm 1,
whererec is the biggest moleculéjg the smallest moleculerec the number of
atoms ofrec andnlig the number of atoms dfg.

Algorithm 1 The sequential pseudocode.
1: for i=0tonrecdo

2 for j=0tonligdo

3: calculus(rec|i],lig[j])

4

5:

end for
end for

Our best approach is that CUDA threads are in charge of lnglthe interac-
tion between atoms. However, the task developed by the CliBstat! blocks in this
application can drastically affect the overall performanto avoid communication
overheads, each thread block should contain all the infoomeelated to the ligand
or protein. Two alternatives come along to get this. The farm to identify each
thread block with information about the biggest molecule; CUDA threads are
overloaded, and there are few thread blocks running in lghr@he latter is exactly
the opposite, to identify each thread as one atom of thatentdeand then CUDA
threads are light-weight, and there are many thread blaadyrfor execution. The
second alternative fits better in the GPU architecture ydiosasy.

Figure 3 shows this design. Each atom from the biggest miglésuepresented
by a single thread. Then, every CUDA thread goes throughhallatoms of the
smallest molecule.

Thread Block

Thread 0 Thread 2 Thread i Thread n

! !EATOMS i\ \ z\ NLIGATOMSE

Fig. 3: GPU design foK thread blocks (wittX = 1) with n threads layout.

Algorithm 2 outlines the GPU pseudocode we have implemerNetice that,
before and after the kernel call, it is needed to move the dataeen the CPU
RAM and the GPU memory.

Effective Parallelization of Non-Bonded Interactions Kelrfor VS on GPUs 5

Algorithm 2 The GPU pseudocode.

: CopyDataFromCPUtoGPU (rec)

: CopyDataFromCPUtoGPU (lig)

: numBlocks := nrec/numT hreads

: Kernel (numBlocks, numT hreads)

: CopyDataFromGPUtoCPU (result)

O WNPRE

The kernel implementation is straightforward from figur&=ach thread simply
do the electrostatic interaction calculations with itsresponding atom of theec
molecule and all théig molecule atoms.

CUDA Kernels

Kernel 2 Tiles implementation
Kernel 1 Basic implementation

1: for all Blocksdo
1: for all Blocksdo 2 numlt = nlig/numT hreads
2: fori=0tonligdo 3 for i =0 tonumlt do
3: cal cul us(myAtomRec, lig]i]) 4: copyBlockDataToSharedMemory(lig)
4: endfor 5: cal cul usBl ock(myAtomRec, |igBl ock)
5: end for 6 end for

7: end for

We have derived two different implementations: the basie @kernel 1), and
the advanced one (kernel 2), where a blocking (or tilinghtégue is applied to
increase the performance of the application, grouping atofithelig molecule in
blocks and taking them to thehared memory, taking advantage in this way of the
very low access latency to tlshared memory.

4 Performance evaluation

The performance of our sequential and GPU implementatiomswzaluated in a
guad-core Intel Xeon E5530 (Nehalem with 8 MB L2 cache), Wlzcts as a host
machine for our NVIDIA Tesla C1060 GPU. We compare it with dl @eplemen-
tation [4] in a IBM BladeCenter QS21 with 16 SPE.

Figure 4 shows the execution times for all our implementetiboth GPU and
Cell) taking into account the data movement between the RA&Mory and the
corresponding device memory. All the calculations are desieg simple preci-
sion floating point, due the smaller number of double preaiginits of the Tesla
C1060. The benchmarks are executed by varying the numbépmokaof the small-
est molecule and also the number of atoms of the biggest meléar studying both:
a protein-protein and ligand-protein interactions. Irstfigure the performance of
the Cell implementation, GPU basic implementation (GPU &i1g GPU tiles im-
plementation (GPU V2) enhances along with the valueret, defeating the se-

6 Ginés D. Guerrero et al.

> Electrostatic I nteractions

1E+10
g 1E+09 A W
B ieos . A &\ ad
= ko7 A pal d 4
% 1E+06
€ 1E+05
S 16404
£ 1E+03
‘E 1E+02
S 1E+01
=
§ 1E+00
3 ‘ 5 ‘ 8 ‘11‘14‘17‘20‘23‘26 5‘ 8 ‘11‘14‘17‘20‘23‘26 5 ‘ 8 ‘11‘14‘17‘20‘23‘26‘ 5‘ 8 ‘11‘14‘17‘20‘23‘26‘ 5‘ 8 ‘11‘14‘17‘20‘23‘26‘

8 10 12 ‘ 14 16
NLIG variation for each value of NREC (num of atomsin power of 2
——-GPUV2 —4&—GPUV1 —8—Cell —e—Segertial

Fig. 4: Results obtained for different molecular size ratiose Execution time for the calcula-
tion of the electrostatic potential, in single precision, exted 128 times in a loop for different
conformations of the molecule.

quential code by a wide margin (up to a speed factor of 260x}icH that, the
speedup factor between GPU and CPU increases faster whemaltleeofnrec is
higher. It is because the number of thread blocks runningialfel is also higher,
and then the GPU resources are fully used. Similarly, faydawalues oflig, the
speedup factor between GPU and CPU increases also becaresartamore threads
running at the same time. However, it remains flat for a condition greater than
256 threads per block.

Cell processor is not able to execute some of the biggeshbearks due to its
hardware constraints, mainly related to the 256K SPE Lot@la8e. However, it
performs similarly compared to the GPUs for the smallestherarks in which the
GPU is not fully used.

5 Conclusions and future work

In this paper we have introduced the kernel implementatioritfe calculation of
non-bonded interactions applied to electrostatic intesas for different emergent
parallel architectures. The results obtained for GPU atead promising, given the
obtained speedup values up to 260x, compared to its segleaision. Cell pro-
cessor gives similar results to GPUs only in some cases,enthermolecules are
small and the saturation situation for the GPU is not reachetfor higher work-
loads GPUs attain speedup values 7 times higher than the@ekssor. This way
we can work with bigger molecules and thus perform moresgailcalculations.

Given the adequacy of GPUs for the optimization of such datmns, our next
step will be the implementation on the new GPU architectate$ as the NVIDIA
Fermi, which provides higher double precision floating pperformance, and thus
increasing the accurancy of the calculations. This pdredission of the kernel will
be adapted and integrated into the docking progiFéerScreen.

Effective Parallelization of Non-Bonded Interactions Kelrfor VS on GPUs 7

Acknowledgements This research was supported by a Marie Curie Intra Europedovistlip
within the 7th European Community Framework Programme (FP7 IEFILNCODRUGDIS-
COVER), by the Fundabin Sneca (Agencia Regional de Ciencia y Tecnao@Regon de Mur-
cia) under grant 00001/CS/2007, and also by the Spanish MEEamghean Commission FEDER
under grants CSD2006-00046 and TIN2009-14475-C04.

References

1. Harvey, M. J., De Fabritiis, G.: An Implementation of the SmoB#trticle Mesh Ewald
Method on GPU Hardware. J. Chem. Theory. Compu2371-2377 (2009).

2. Kokh, D., Wenzel, W.: Flexible side chain models improve @mmient rates in in silico
screening. J. Med. Cherfl, 5919-5931 (2008).

3. NVIDIA. CUDA Programming Guide 3.2. (2010).

4. Perez-@inchez, H. E., Wenzel, W.: Implementation of an effective honeed interactions
kernel for biomolecular simulations on the cell processor. Insélischaft fuer Informatik,
Jahrestagung 2009 (Lecture Notes in InformatitS}, pp. 721-729 (2009).

5. Perez-&nchez, H. E., Wenzel, W.: Optimization methods for virtuaésaing on novel com-
putational architectures. Curr. Comput. Aided. Drug. De4-17 (2011).

6. Pham, D., Aipperspach, T., Boerstler, D., Bolliger, M., Giffay, R., Cox, D., Harvey, P.,
Hofstee, H., Johns, C.: Overview of the architecture, circestigh, and physical implemen-
tation of a first-generation cell processor. IEEE J. Solid-Stateuits.41, 179-196 (2006).

7. Schiller, A., Sutmann, G., Yang, L.: A Fast Wavelet Based Imgletation to Calculate
Coulomb Potentials on the Cell/B.E. In: Proceedings of th@82m0th IEEE ICHPCC, IEEE
Computer Society: pp. 162-168 (2008).

8. Stone, J. E., Phillips, J. C., Freddolino, P. L., Hardy, D. gaptico, L. G., Schulten, K.
Accelerating molecular modeling applications with graplposcessors. J. Comput. Chem.
28, 2618-2640 (2007).

