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Abstract

This work is focused on accelerating upgrade misses in
cc-NUMA multiprocessors. These misses are caused by
store instructions for which a read-only copy of the line
is found in the L2 cache. Upgrade misses require a mes-
sage sent from the missing node to the directory, a direc-
tory lookup in order to find the set of sharers, invalida-
tion messages being sent to the sharers and responses to
the invalidations being sent back. Therefore, the penalty
paid by these misses is not negligible, mainly if we con-
sider that they account for a high percentage of the total
miss rate. We propose the use of prediction as a means of
providing cc-NUMA multiprocessors with a more efficient
support for upgrade misses by directly invalidating sharers
from the missing node. Our proposal comprises an effec-
tive prediction scheme achieving high hit rates as well as a
coherence protocol extended to support the use of predic-
tion. Our work is motivated by two key observations: first,
upgrade misses present a repetitive behavior and, second,
the total number of sharers being invalidated is small (one,
in some cases). Using execution-driven simulations, we
show that the use of prediction can significantly acceler-
ate upgrade misses (latency reductions of more than 40%
in some cases). These important improvements translate
into speed-ups on application performance up to 14%. Fi-
nally, these results can be obtained including a predictor
with a total size of less than 48 KB in every node.

1 Introduction and Motivation
The user’s view of a shared-memory system is elegantly

simple: all processors read and modify data in a single
shared store. This makes shared-memory multiprocessors
preferable to message-passing multicomputers from the
user’s point of view. Most shared-memory multiprocessors
accelerate memory accesses using per-processor caches.
Caches are usually transparent to software through a cache
coherence protocol. Directory-based coherence protocols
(cc-NUMA multiprocessors) offer a scalable performance
path beyond snooping-based ones (SMP designs) by allow-
ing a large number of processors to share a single global ad-
dress space over physically distributed memory. The main
difficulty in such designs is to implement the cache coher-
ence protocol in such an efficient way that minimizes L2
miss latencies.

Even with non-blocking caches and out-of-order proces-
sors, previous studies have shown that the relatively long
L2 miss latency found in cc-NUMA multiprocessors con-
stitutes a serious hurdle to performance [25], and, as re-
cently stated by Hill [12], relaxed consistency models do
not reduce this long penalty sufficiently to justify their
complexity. Thus, there are compelling reasons to exam-
ine transparent hardware optimizations.

In our previous work [2], we proposed an architecture
especially designed to reduce the long L2 miss latencies
that characterize cc-NUMA designs by means of integrat-
ing some key components into the processor die. Our pro-
posal significantly reduced the latency of all the types of
L2 misses but one, the so-called upgrade misses. Unfortu-
nately, we found several applications for which an impor-
tant fraction of the L2 misses falls into this category (more
than 30% of the total miss rate in several cases). Upgrade
misses are caused by a store instruction that finds a read-
only copy of the line in the L2 cache. For this kind of
misses, the L2 cache already has the valid data and only
needs exclusive ownership. The directory must invalidate
all the copies of the memory line but the one held by the
requesting processor. This way, the directory must first de-
termine the identity of the sharers by accessing directory
information. Then, invalidation messages are created and
sent. Only when the directory has received all the replies to
the invalidations, the requesting node is returned the own-
ership of the line. This scenario is illustrated in Figure 1,
left.

In this work, we focus on reducing the negative impact
of upgrade misses by means of avoiding the directory indi-
rection. As shown in Figure 1, right, upgrade misses could
be significantly accelerated if instead of going through the
directory, sharers were directly invalidated from the re-
questing node. This way, on an upgrade miss, the faulting
node would predict current sharers for the line and would
directly send invalidation messages to them. In order to
check the prediction, the upgrade miss is also sent to the
directory. However, differently from a conventional co-
herence protocol, now the directory is accessed in parallel
with the invalidation process. If all sharers were correctly
predicted (which is the case presented in Figure 1), the di-
rectory would immediately give the ownership of the line.
On the contrary, if any of the real sharers was not included
in the list of predicted sharers, the directory would inval-
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Figure 1: Coherence operations for an upgrade miss in a conventional cc-NUMA (left) and in a cc-NUMA including prediction (right)

idate it before replying to the requesting node. This node
assumes the ownership of the line once it has received all
the responses from the predicted nodes as well as the ac-
knowledgment from the directory. It is important to note
that, correctly predicting the sharers of a certain memory
line would make the access to the slow DRAM directory
be performed in parallel with the invalidation of the shar-
ers, significantly reducing the number of cycles employed
by directories to satisfy upgrade misses. On the other hand,
when prediction fails the miss will be satisfied as usual and
its latency could be slightly affected as a result of the in-
crease on network and cache controller occupancies to cre-
ate, send and process invalidation messages and their asso-
ciated responses.

Our proposal is based on the observation that upgrade
misses present a repetitive behavior: the nodes that are in-
validated on an upgrade miss for a certain memory line will
be invalidated again on future upgrade misses for the same
line. Also, as previously pointed [5], we have observed
that the number of sharers that must be invalidated after
an upgrade miss is very small (one, in some cases), which
reveals that a more efficient management of this kind of
misses could be effective. Therefore, a well-tuned predic-
tion engine could be employed to capture the repetitive be-
havior of upgrade misses, significantly accelerating them
by removing the access to the directory from the critical
path and, thus, improving the performance of cc-NUMA
architectures.

Our baseline machine is a conventional sequentially
consistent cc-NUMA multiprocessor implementing a write
invalidate coherence protocol, such as the state-of-the-art
SGI Origin 2000 [18]. Two main elements are developed
in order to provide prediction: first, an effective prediction
engine able to find out the identity of current sharers in
case of an upgrade miss and, second, a coherence protocol
designed to support the use of prediction. The proposed
prediction scheme is an address-based predictor, accessed
on an upgrade miss to obtain the identity of up to three po-
tential sharers. As we will later show, this predictor usually
obtains very high hit rates. Regarding the new coherence
protocol, the main goal is to provide prediction by intro-
ducing the minimum number of changes into an already
existing coherence protocol.

We observe two main contributions of this work. First,
we propose a prediction scheme and extend a four-state
MESI coherence protocol to support prediction. The use

of prediction can significantly reduce the latency of up-
grade misses up to 45%, which translates into speed-ups
on application performance up to 14%. Second, we show
how these performance advantages could be reached using
a prediction scheme with a total size of less than 48 KB in
every node.

The rest of the paper is organized as follows. The related
work is given in Section 2. Section 3 shows the prediction
scheme that we propose. The extended coherence protocol
is presented and justified in Section 4. Section 5 shows
a detailed performance evaluation of our novel proposal.
Finally, Section 6 concludes the work.

2 Related Work
Snooping and directory protocols are the two domi-

nant classes of cache coherence protocols for hardware
shared-memory multiprocessors. Snooping systems (such
as the Sun UE1000 [4]) use a totally ordered network to
directly broadcast coherence transactions to all processors
and memory. This way, lower latencies than directory
protocols are achieved for upgrade misses (for all sharing
misses in general). Unfortunately, the energy consumed
by snoop requests, snoop bandwidth limitations and the
need to act upon all transactions at every processor, make
snooping-based designs extremely challenging, especially
in light of aggressive processors with multiple outstanding
requests. In contrast, directory protocols transmit coher-
ence transactions over an arbitrary point-to-point network
to the corresponding home directories which, in turn, redi-
rect them to the processors caching the line. The conse-
quences are that directory systems (such as the SGI Origin
2000 [18]) can scale to large configurations, but they have
higher unloaded latency because of the overheads of direc-
tory indirection and message sequencing. Therefore, many
research efforts have been focused on studying techniques
to reduce the usually long L2 miss latencies that character-
ize cc-NUMA architectures.

Several works, as [6], [20] and [28], have tried to re-
duce the latency of upgrade misses by using a multicast
scheme to make the invalidation of the sharers. However,
the small number of messages sent per invalidation event
[9] precludes multicast schemes from obtaining any signif-
icant advantage.

The new Compaq AlphaServer GS320 [7] constitutes
an example of a cc-NUMA architecture specifically tar-
geted at medium-scale multiprocessing (up to 64 proces-



sors). The hierarchical nature of its design and its limited
scale make it feasible to use simple interconnects, such as a
crossbar switch, to connect the handful of nodes, allowing
a more efficient handling of upgrade misses than traditional
directory-based multiprocessors by exploiting the extra or-
dering properties of the switch to eliminate explicit inval-
idation acknowledgments. On the contrary, our proposal
does not require any interconnection network with special
ordering.

Apart from reducing the memory overhead entailed by
directories in cc-NUMA architectures ([1], [10] and [24]),
caching directory information has also been proposed as
a technique to minimize directory access time and, conse-
quently, L2 miss latency ([2][22]). Unfortunately, upgrade
misses (conversely to other types of misses) could not take
significant benefit from finding directory information in a
fast directory cache even if it is included into the processor
die [2]. The reason is that on an upgrade miss, invalida-
tion messages must be created and sent and the directory
must wait until all responses from the sharers have been
received to conclude the miss. Now, we try to optimize up-
grade misses by doing the access to directory information
at the same time that invalidation messages are going to
their destinations.

Prediction has a long history in computer architecture
and it has proved useful in improving microprocessor per-
formance. Prediction in the context of shared memory was
first studied by Mukherjee and Hill, who showed that it
is possible to use address-based1 2-level predictors at the
directories and caches to track and predict coherence mes-
sages [21]. Subsequently, Lai and Falfasi modified these
predictors to reduce their size and showed how they can be
used to accelerate reading of data [16]. Finally, Kaxiras
and Young [15] used prediction to reduce access latency in
distributed shared-memory systems by attempting to move
data from their creation place to their use points as early as
possible.

Another related technique to reduce coherence overhead
resulting from the invalidation of shared lines was orig-
inally presented in [19]. Some heuristics are applied to
allow each processor to detect and self-invalidate those
shared lines that will not be probably accessed in the fu-
ture. Subsequently, Lai and Falsafi [17] proposed Last-
Touch Predictors (LTPs) to improve self-invalidation ac-
curacy. Contrary to our prediction scheme that could be
implemented using less than 48 KB, LTPs require much
more memory to store their signatures (encoding of pro-
gram traces used to detect last-touches to every line).

Alternatively, Kaxiras and Goodman [14] and Nilsson
and Dahlgren [23] examined a hardware technique to de-
tect and tag loads in the instruction stream that are fol-
lowed by a store to the same address. The idea was to
reduce L2 miss rate by converting a load miss into a co-
herent write. Note that, this technique allows saving the
load miss (which would be converted into the subsequent
store miss) but it does not accelerate upgrade misses at all.

Bilir et al. [3] investigated a hybrid protocol that tries

1Address-based stands for predictors whose table is accessed using the
effective memory address.

to achieve the performance of snooping protocols and the
scalability of directory-based ones. The protocol is based
on predicting which nodes must receive each coherence
transaction. If the prediction hits, the protocol approxi-
mates the snooping behavior (although the directory must
be accessed in order to verify the prediction). Performance
results in terms of execution time were not reported and
the design was based on a network with a completely or-
dered message delivery, which could restrict its scalabil-
ity. Our work focuses on reducing the latency of upgrade
misses by means of predicting the sharers of the memory
line. We can take advantage of any of the current and future
high-performance point-to-point networks and it could be
incorporated into cc-NUMA multiprocessors with minimal
changes in the coherence protocol.

3 Predictor Design for Upgrade Misses

The first component of our proposal is an effective pre-
diction scheme that allows each node of a cc-NUMA mul-
tiprocessor to guess the sharers of a certain memory line
once an upgrade miss for the line is triggered.

Figure 2 illustrates the architecture of the prediction
scheme that we propose and evaluate in this work. The
scheme consists of a prediction table which, on an upgrade
miss, provides a list of the nodes supposed to have a read-
only copy of the memory line and an Invalidated Lines Ta-
ble (ILT) used to save the addresses of some of the memory
lines for which a predicted invalidation was received. The
latter is done to ensure the correctness of the coherence
protocol, as will be discussed in Section 4.

The prediction table is indexed using the effective mem-
ory address that caused the miss. Therefore, this is an ex-
ample of an address-based predictor [14]. As shown in
Figure 2, each entry in the prediction table consists of a set
of pointers (three in our particular case), each one with its
corresponding confidence bits (a 2-bit up-down saturating
counter). These pointers are used to encode the identity
of the sharers for a particular line (a subset of them when
more than three sharers are found). This way, each one of
the entries needs ( ���������
	����� ) bits, for a N-node system.

An important design decision is the maximum number
of pointers that each entry must provide. Having a small
number of pointers could make all the potential sharers for
a line not be included. On the other hand, having N 2-bit
up-down saturating counters per entry, for a N-node sys-
tem, would increase the width of the predictor and, conse-
quently, its final size. Earlier studies have shown that most
of the time only a few caches have a copy of a line when it
is written [5]. We observed that having three pointers per
line is enough to store the identity of all the potential shar-
ers for most of the cases. Also, it is important to note that
small benefits can be expected from applying prediction to
lines that are widely shared. Thus, we think that providing
three pointers per entry constitutes a good compromise.

The prediction table is implemented as a non-tagged
table and works as follows: initially, all the entries store
value 0 into the 2-bit saturating counters. On each upgrade
miss, the predictor is probed. The miss is predicted when
at least one of the 2-Bit Counter fields provides confidence
(values of 2 or 3). In this case, invalidation messages are
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Figure 2: Anatomy of the prediction scheme proposed in this work

sent to the nodes indicated by those pointers whose 2-Bit
Counter fields store values of 2 or 3. On the responses,
predictions are verified. The reply message received from
the directory for an upgrade miss contains the list of those
nodes that actually had a copy of the line. Whereas, the
predictor holds a list of three potential sharers. Confi-
dence counters associated with the pointers of those nodes
that appear in both lists are incremented. On the other
hand, confidence bits of those pointers whose nodes are
not present in the list of actual sharers are decremented. Fi-
nally, those sharers that do not have an associated pointer
are added with a confidence value of 2 as long as free point-
ers are available (confidence values of 1 or less). An addi-
tional optimization is also included as a consequence of the
observation made by Gupta and Weber in [9]. The authors
found migratory sharing as causing an important percent-
age of the upgrade misses. Migratory sharing arise when
shared data is modified in turn by several processors. We
are aware of this fact by updating the predictor each time
the read-only copy of a certain memory line is not received
from the corresponding home directory but from the owner
of the line through a cache-to-cache transfer. This way, the
owner of the line is considered a potential sharer.

The ILT structure is used to store the address of some
of the lines for which a predicted invalidation was received
and that have not been referenced since then. This informa-
tion is originally stored into the L2 cache entry when the
line is invalidated (by setting the corresponding bit). Only
when this cache entry is subsequently assigned to a differ-
ent memory line (and the corresponding bit is still set), this
information is moved to the ILT table. Therefore, each en-
try at the ILT table consists of the address of a memory line
and a presence bit indicating whether the entry is currently
being used or not.

4 Coherence Protocol Supporting Prediction

Some modifications must be included into the coher-
ence protocol in order to make use of the above prediction
scheme. Our starting point is an invalidation-based, four-
state MESI coherence protocol similar to the one included
in the SGI Origin 2000 [18]. Two main premises guided
our design decisions: first, to keep the resulting coherence

protocol as close as possible to the original one, avoiding
additional race conditions, and second, to assume sequen-
tial consistency [12]. As in [5], we use the following ter-
minology for a given memory line:

� The directory node is the node in whose main memory
the block is allocated (also known as home node).

� The sharer nodes are those nodes that hold read-only
copies of the line.

� The requesting node is the node containing the L2
cache that issues an upgrade miss for the line.

When an upgrade miss for a certain memory line occurs,
the predictor implemented into the cache controller of the
requesting node is accessed. If an entry for the line is not
found or it is not confident, the miss is sent to the directory
node, where is satisfied as usual. Otherwise, the upgrade
miss is predicted and the following actions are undertaken:
Requesting Node Operation (1). Sends invalidation mes-
sages to the nodes predicted to have read-only copies of
the line (sharer nodes). Each message includes a bit iden-
tifying the invalidation as predicted. In order to verify the
prediction, the miss is also sent to the corresponding home
directory (a list of the predicted nodes is included into the
message).
Directory Node Operation. When a predicted upgrade
miss for a line in the Shared state is received, the directory
node checks if all current sharers were predicted and, thus,
invalidated. If any (or some) of the sharers was not pre-
dicted, the directory invalidates it (or them) as for a non-
predicted upgrade miss. Once the non-predicted sharers
have been invalidated2 (if any), the directory updates the
entry associated with the line (now the requesting node has
the ownership of the line) and sends the reply message giv-
ing the exclusive ownership of the line to the requesting
node. If a predicted upgrade miss is received for a line that
is not in the Shared state, something preceding the upgrade
miss took place. In this case, the miss is converted into
non-predicted and processed as usual.

2The directory has received the corresponding replies to the invalida-
tions from them.
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Sharer Node Operation. When a predicted invalidation
for a certain memory line comes to the L2 cache controller,
the line is searched into the L2 cache. One of these situa-
tions could occur:

1. The line is not found in the L2 cache. In this case,
a nack message is returned to the requesting node in-
forming that the prediction for this node missed. Ad-
ditionally, if the predicted node has a pending load
miss for the line, the invalidation is noted down in the
mshr associated with the miss (as it would be done in
the normal case).

2. The line is found to be in the Exclusive or Modified
states. In this case, this node requested a read-write
copy of the line and the directory satisfied this miss
before the predicted one. Thus, a nack must be re-
turned to the requesting node.

3. The line is found to be in the Shared state. This is
the case of a prediction hit. There are three possible
situations that should be considered:

3.1 The node has not a pending upgrade for the line.
In this case, the line is immediately invalidated
and an ack reply is sent to the requesting node.
Besides, the line is marked as having been inval-
idated by a remote node (not by the directory)
by setting a bit (the Predicted bit) into the corre-
sponding L2 cache entry (this bit will be cleared
in the next miss at that line). Later on, if this L2
cache entry were used to store a different mem-
ory line, an entry for the previously invalidated
line would be allocated in the Invalidated Lines
Table (ILT) whenever the Predicted bit is still
set. If all entries in the ILT table are being used
at this moment, one of them would be used (a
kind of replacement) and a load miss would be
forced for the memory line associated with the
removed entry. An entry for a certain memory
line in the ILT is freed as soon as a L2 cache
miss appears for that line.

3.2 The node has a pending upgrade for the line but
the reply from the directory has not arrived yet.
In this case, the line is invalidated and an ack
reply returned.

3.3 The node has a pending upgrade for the line
and the reply from the directory has already ar-
rived. In this case, this node is becoming the
new owner for the line, so the line must not be
invalidated and, thus, a nack message is sent to
the requesting node.

Requesting Node Operation (2). Once the requesting
node has received all the ack/nack replies from the pre-
dicted nodes as well as the reply from the directory, the
miss would seem to have been completed. If the miss was
not satisfied as an upgrade miss (due to a different upgrade
miss was first served) the requesting node can now assume
the exclusive ownership of the line, since it has already
been guaranteed by the directory. In case of an upgrade
miss we can not be completely sure all shared copies of the
line have been invalidated. There are two possible scenar-
ios in which this is not actually true.

The first scenario is illustrated in Figure 3 and arises
when one of the predicted sharers (say node A) requests a
read-only copy of the previously invalidated line (due to a
load miss) and this request reaches the directory before the
predicted upgrade miss that caused the invalidation. The
directory would satisfy the load miss as usual3 and, after-
wards, on processing the predicted upgrade miss, it would
assume that the last copy on node A has been invalidated
by the requesting node. Fortunately, this situation would
be easily avoided if node A notifies the directory that the
load miss is for a line for which a predicted invalidation
has previously been received (remember that this informa-
tion was stored into the L2 entry for the line when the pre-
dicted invalidation was applied or into the ILT table if the
entry was subsequently used). This is done by setting a par-
ticular bit into the load miss message. This way, when the
directory receives a load miss that has been originated af-
ter a predicted invalidation for certain line, it will stop the
load miss until the corresponding predicted upgrade miss
has been completed (that is, until node A does not appear
as holding the line in the sharing code associated with the
memory line).

Although very infrequent and strange, a second scenario
could still occur (see Figure 4). Assume the case of a pre-

3This is true since our coherence protocol does not implement replace-
ment hints for lines in the Shared state in order to increase throughput.
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Table 1: How the coherence protocol works

dicted node (say node C) as having a pending load miss. As
previously pointed, a nack response would be returned to
the requesting node and the invalidation would be applied
after completing the load miss. However, when the pre-
dicted invalidation message reaches node C, it is unknown
whether the directory is going to satisfy the pending load
miss before the predicted upgrade miss or after it. Thus,
the line can not be marked as invalidated as a consequence
of a prediction and a problem could arise if the load miss
reaches the directory before the predicted upgrade miss. In
this case, it is possible for the invalidated node to incur into
another load miss for the line once the reply from the di-
rectory for the former load miss has been received and the
line has been invalidated as a consequence of the predicted
invalidation. If this new load miss reaches the directory
once the predicted upgrade miss has been served, there is
no problem. Otherwise, a read-only copy of the line would
be given to node C and, subsequently, on receiving the pre-
dicted upgrade miss, the directory would assume that the
copy in node C has been invalidated by the predicted mes-
sage previously sent by the requesting node. In our co-
herence protocol, this situation is solved by the requesting
node. It takes notice of those nodes that having been pre-
dicted as sharers replied with a nack to the predicted in-
validation. When the upgrade reply from the directory is
received and all the responses for the predicted nodes have
been collected, some of the nodes are re-invalidated. In
particular, those from which nack replies were received but
the directory identified them as having a copy of the line.
If frequent, this re-send of invalidations could significantly
increase the latency of upgrade misses. However, as we
will see, this situation has been found to occur very infre-
quently (less than 1% of the upgrade misses for all the cases
and 0% for the majority).

Table 1 summarizes all the situations that could appear
as a consequence of applying prediction.

5 Performance Results and Analysis
In this section, we present a detailed performance evalu-

ation of our proposal using extensive execution-driven sim-

ulations. First, we present the simulation environment.
Next, we analyze the accuracy of the prediction scheme
presented in Section 3. Finally, we demonstrate the ability
of our prediction-based technique to significantly improve
performance.

5.1 Simulation Environment

We have used a modified version of Rice Simulator for
ILP Multiprocessors (RSIM), a detailed execution-driven
simulator [13]. RSIM models an out-of-order superscalar
processor pipeline, a two-level cache hierarchy, a split-
transaction bus on each processor node, and an aggressive
memory and multiprocessor interconnection network sub-
system, including contention at all resources. The mod-
eled system is a 16-node cc-NUMA that implements a full-
map, invalidation-based, four-state MESI directory cache-
coherent protocol and uses a 2-dimensional mesh to in-
terconnect the system nodes. Second-level caches are as-
sumed to be integrated into the processor chip (as in [11]).
Table 2 summarizes the parameters of the simulated sys-
tem. These parameters have been chosen to be similar to
the parameters of current multiprocessors.

Probing and updating the predictors do not add any cy-
cle. Contrary to the uniprocessor/serial-program context
where predictors are updated and probed continuously with
every dynamic instruction instance, we only update the pre-
diction history and only probe the predictor to retrieve in-
formation in the case of an upgrade miss. Thus, as in [14],
we believe that the predictors neither constitute a potential
bottleneck nor add cycles to the critical path, because their
latency can be hidden from the critical path (for example,
by speculatively accessing the predictor in parallel with the
L2 cache lookup). Prediction messages are created one-
per-cycle.

With all these parameters, the resulting no-contention
round-trip latency of a load access satisfied at various levels
of the memory hierarchy is shown in Table 3.

Table 4 describes the applications we use in this study.
In order to evaluate the benefits of our proposals, we have
selected several scientific applications covering a variety



16-Node System Parameters
ILP Processor

Processor Speed 1 GHz
Max. fetch/retire rate 4
Instruction Window 64
Functional Units 2 integer arithmetic

2 floating point
2 address generation

Memory queue size 32 entries
Cache Parameters

Cache line size 64 bytes
L1 cache (on-chip, WT) Direct mapped, 32KB
L1 request ports 2
L1 hit time 2 cycles
L2 cache (off-chip, WB) 4-way associative, 1024KB
L2 request ports 1
L2 hit time 15 cycles, pipelined
Number of MSHRs 8 per cache

Memory Parameters
Memory access time 70 cycles (70 ns)
Memory interleaving 4-way
Directory Cycle 10 cycles
First coherence message creation time 4 directory cycles
Next coherence messages creation time 2 directory cycles

Internal Bus Parameters
Bus Speed 1 GHz
Bus width 8 bytes

Network Parameters
Topology 2-dimensional mesh
Flit size 8 bytes
Non-data message size 16 bytes
Router speed 250 MHz
Arbitration delay 1 router cycle
Router’s internal bus width 64 bits
Channel width 32 bits
Channel speed 500 MHz

Table 2: Base system parameters

Round Trip Access Latency (Cycles)

Secondary Cache 19
Local 118

Remote (1-Hop) 234

Table 3: No-contention round-trip latency of load accesses

of computation and communication patterns for which up-
grade misses constitute an important percentage of the total
miss rate (more than 25% in all the cases). MP3D is from
the SPLASH benchmark suite [26], FFT and Ocean are
from SPLASH-2 benchmark suite [27]. EM3D is a shared-
memory implementation of the Split-C benchmark. Un-
structured is a computational fluid dynamics application
that uses an unstructured mesh. All experimental results
reported in this paper are for the parallel phase of these ap-
plications. Data placement in our programs is either done
explicitly by the programmer or by RSIM which uses a
first-touch policy on a cache-line granularity. Thus, ini-
tial data-placement is quite effective in terms of reducing
traffic in the system.

Program Size

EM3D 38400 nodes, degree 2, 15% remote, 25 timesteps
FFT 64K Points

MP3D 48000 nodes, 20 timesteps
Ocean 130x130 array, �����

�
error tolerance

Unstructured Mesh.2K, 5 timesteps

Table 4: Applications and input sizes

Using these applications we compare, through extensive
simulation runs, the base system (Base) with two configu-
rations using two instances of the prediction scheme pre-
sented in this work. The first, the UPT configuration, in-
cludes a prediction table with an entry per each one of the
memory lines and an unlimited number of entries in the ILT
table. Of course, this predictor has a prohibitive cost, but it
completely eliminates the aliasing effect caused by the non-
tagged nature of the prediction table. The second, the LPT
configuration, implements a realistic version of the former
predictor. In this case, the number of entries available in

the prediction table and in the ILT table are limited to 16K
and 128 respectively, resulting in a total size of less than 48
KB. We think this is a reasonable size given that 1 MB L2
caches are being used. The access to the prediction table is
carried out using the 14 bits resulting from computing the
XOR between the 14 less significant bits of the line address
and its most significant bits. As in [8], we use XOR-based
placement to distribute the utilization of the entries in the
prediction table and, thus, to reduce conflicts. Finally, due
to its small number of entries, the ILT table is organized as
a totally associative buffer structure.

5.2 Predictor Accuracy

Figure 5 presents accuracy results for the prediction
scheme described in Section 2. Over the total number
of upgrade misses, it shows the percentage of those for
which prediction was applied and one of these situations
occurred: (1) all sharers were predicted and invalidated
from the requesting node (Total Hit), (2) some of the shar-
ers could be predicted but not all (Partial Hit) and, finally,
(3) other but none of the actual sharers were predicted (To-
tal Miss). Also, we show the percentage of upgrade misses
that did not make use of prediction (Not Predict) and the
percentage of predictions that were not served as an up-
grade miss by the directory (Not Inv). The latter is shown
starting from 100% (since it corresponds to misses that are
not upgrade misses) and takes place, for example, when
two nodes try to simultaneously gain the exclusive owner-
ship of a line in the Shared state held in both caches. Only
one of them will be serviced as an upgrade miss whereas
the other will be subsequently satisfied with a cache-to-
cache transfer. However, as derived from Figure 5, this
situation appears very infrequently in all the applications.

Observe from Figure 5 that the small size of the pre-
dictor used in the LPT configuration (less than 48 KB)
is enough to virtually obtain the same accuracy results
than the unbounded predictor (UPT). Its limited size, how-
ever, makes some of the entries be used by different mem-
ory lines, which slightly increases the number of upgrade
misses for which prediction is applied. Whereas Partial Hit
and Total Miss cases suffer a small growth compared to the
results obtained for the UPT configuration, this does not
affect the percentage of Total Hit upgrade misses.

As derived from Figure 5, the majority of upgrade
misses could be completely predicted for all applications.
Total Hit case represents more than 85% of the upgrade
misses for all the applications but FFT, reaching almost
100% in EM3D, MP3D and Unstructured. For these ap-
plications, upgrade misses are concentrated on a small set
of memory lines, which are frequently cached by the same
nodes. For FFT only 60% of the upgrade misses could be
predicted. The computation in FFT is split into two phases.
The first performs the fast Fourier transform using the six-
step FFT method whereas during second phase the inverse
FFT is computed in order to perform a test of the output.
For the majority of the memory lines, a single upgrade miss
takes place in each one of the phases. This way, prediction
is not applied during the first phase and the majority of the
predictions are done during the second one, which explains
the large percentage of upgrade misses that were not pre-
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Figure 6: Normalized average upgrade miss latency

dicted (almost 40%). Finally, note that the Total Miss case
constitutes a very small percentage which remains lower
than the Not Predicted case for all the applications but
Ocean. For Ocean, we have found that a small subset of
the upgrade misses do not present the repetitive behavior
observed for the majority. The initialization of the 2-bit
counters of the predictor to 2 makes these upgrade misses
be predicted and, consequently, failed. Initializing the 2-bit
counters to 1 instead of 2 would eliminate these prediction
misses, reducing, as the negative counterpart, the number
of prediction hits in favor of the Not Predicted case. Thus,
due to the small percentage of upgrade misses completely
failed (Total Miss case) it is preferable to have these coun-
ters initialized to 2.

5.3 Performance Analysis

Total Hit case represents those upgrade misses that
could be accelerated as a consequence of using prediction.
This is also true for those upgrade misses falling into the
Partial Hit category although in less extension. Finally,
Total Miss and Not Inv cases could have negative conse-
quences on the final performance as a result of the in-
crease on network and cache controller occupancies to cre-
ate, send and process invalidation messages and their asso-
ciated responses. This section analyzes the consequences
that using prediction has on application performance.

Correctly predicting the sharers of a certain memory line
on an upgrade miss prevents the directory from invalidat-
ing the sharers and, consequently, significantly reduces the
number of cycles that the directory must dedicate to pro-
cess the upgrade miss. Figure 6 illustrates the normalized
average latency for upgrade misses split into network la-
tency, directory latency and miscellaneous latency (buses,
cache accesses...), for the base, UPT and LPT configura-
tions. Network latency comprises the number of cycles the
upgrade miss spends on the interconnection network. Di-
rectory latency represents the cycles needed by the direc-
tory to satisfy the miss. For UPT and LPT configurations,
directory latency also includes the number of cycles be-
tween the missing node receives the reply to an upgrade
miss from the directory and the response for the last pre-
dicted invalidation has been processed. Normalized aver-
age latencies are computed dividing the average latencies
for each one of the configurations by the average latencies
for the base case. Table 5 shows the average number of in-
validations per upgrade miss sent by the directory (for the
base system) and the average number of invalidations sent

Application Base UPT LPT

EM3D 1.96 1.77 2.03
FFT 1.00 1.00 1.01

MP3D 1.07 1.83 1.84
Ocean 1.13 1.25 1.26

Unstructured 1.40 1.74 1.76

Table 5: Invalidations per upgrade miss (for Base case) and nodes
included per prediction (for UPT and LPT cases)

by the requesting node when an upgrade miss is predicted.
As observed in Figure 6, the use of the LPT prediction

scheme significantly reduces the latency of upgrade misses
for EM3D (45%), MP3D (35%), Ocean (41%), Unstruc-
tured (38%) and, in less extension, for FFT (25%). These
improvements almost coincide with those obtained with the
unrealistic predictor (UPT). Sending invalidations from the
requesting node on an upgrade miss accelerates the inval-
idation process and, consequently, the component of the
latency caused by the directory is significantly decreased,
as shown in Figure 6. Now the invalidation of the sharers
occurs in parallel with the access to the directory whereas,
in a traditional cc-NUMA multiprocessor, it can not start
until the directory has determined the identity of the shar-
ers. Besides, as shown in Table 5, the regularity exhibited
by upgrade misses allows our prediction scheme to obtain
the high accuracy shown in Figure 5 without having to send
an excessive number of unnecessary invalidation messages,
which could degrade performance. Only for Ocean and
Unstructured we have found that the average number of
invalidation messages sent on a predicted upgrade miss is
slightly greater than the average number of sharers. This is
the reason for the small increase on the network component
of the average upgrade miss latency observed in Figure 6
for these applications.

Load Store misses
Application misses Upgrade misses Rest store misses

EM3D 66.25% 33.75% 0.00%
FFT 54.52% 45.47% 0.01%

MP3D 49.78% 47.99% 2.23%
Ocean 51.51% 40.36% 8.13%

Unstructured 37.10% 29.93% 32.97%

Table 6: Classification of the L2 misses according to the instruc-
tion that caused them

Normalized average latencies for load and store misses
are also shown in Figure 7. Table 6 presents the fraction
of L2 misses caused by load and store instructions. Store
misses are in turn split into upgrade miss and rest of store
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miss categories. As shown in Figure 7, the important bene-
fits found for upgrade misses also lead to reductions in the
average latency of store instructions. For EM3D and FFT,
each store miss finds a read-only copy of line in the local
L2 cache causing an upgrade miss (as derived from Table
6). Thus, reductions reported for upgrade misses are trans-
lated into store miss latency reductions (45% for EM3D
and 25% for FFT). For MP3D, Ocean and Unstructured
part of the store misses do not cause an upgrade miss and,
thus, prediction can not be applied to them. As shown in
Table 6, this percentage is small for MP3D and Ocean and
latency reductions close to the ones reported for upgrade
misses are obtained (31% for MP3D and 25% for Ocean).
On the other hand, 32.97% of the store misses found in
Unstructured do not cause an upgrade miss and latency re-
ductions of 16% are obtained for store misses. Note also
that, for all the applications but Ocean, our proposal does
not increase the latency of load misses. Ocean is the ap-
plication for which a greater number of predicted upgrade
misses require some of the invalidation messages to be re-
tried as a consequence of the scenario previously presented
in Section 4. While the percentage of predicted upgrade
misses for which invalidations must be re-tried (over the to-
tal number of predictions) has been observed to be less than
0.34% for EM3D, FFT, MP3D and Unstructured, it reaches
0.78% for Ocean. For this application, we have found that
upgrade misses are closely followed by load misses from
other nodes which, in case of a predicted upgrade miss with
invalidations re-tried, are slightly delayed, causing the per-
formance degradation for load misses shown in Figure 7.

The ultimate metric for application performance is the
execution time. Figure 8 shows the speed-ups in execu-
tion time for UPT and LPT configurations with respect to
the base system. As it can be observed, important speed-
ups are derived from the use of prediction in MP3D (14%),
Unstructured (11%) and EM3D (9%). Although upgrade
misses were significantly accelerated in Ocean and they
constitute an important fraction of the total L2 miss rate,
the degradation observed for average load miss latency af-
fects the final performance and a speed-up of 4% is ob-
tained. Finally, the important fraction of upgrade misses
that could not be predicted in FFT limits the speed-up
found for this application to 4%.

6 Conclusions
Upgrade misses account for an important fraction of the

total miss rate. This type of misses are caused by a store

instruction for which the local L2 cache holds a read-only
copy of the memory line and the directory is accessed in
order to gain exclusive ownership of the line. This requires
a message sent from the missing node to the directory, a
directory lookup in order to find the set of sharers, invali-
dation messages being sent to the sharers and responses to
the invalidations being sent back. Only when the directory
has received all the replies to the invalidations, the request-
ing node is returned the ownership of the line and, conse-
quently, the penalty paid by these misses is not negligible.

In this work, we propose the use of prediction to sig-
nificantly accelerate upgrade misses. On an upgrade miss,
the faulting node predicts current sharers for the line and
directly sends invalidation messages to them. In order to
check the prediction, the upgrade miss is also sent to the
directory. However, differently from a conventional co-
herence protocol, now the access to the directory is per-
formed in parallel with the invalidation process. If all shar-
ers were correctly predicted, the directory would immedi-
ately give the ownership of the line. On the contrary, if any
of the sharers was not sent the corresponding invalidation
message, the directory would invalidate it before respond-
ing the requesting node. The requesting node assumes the
ownership of the line once it has received all the responses
from the predicted nodes as well as the acknowledgment
from the directory. Our proposal is based on the observa-
tion that upgrade misses present a repetitive behavior. Ad-
ditionally, the number of sharers that must be invalidated
on an upgrade miss has been previously reported to be very
small (one, in some cases), which reveals that a more effi-
cient treatment of this kind of misses could be rewarding.

The prediction-based technique proposed in this work
consists of two main components. The first is an address-
based prediction engine able to find out the identity of up
to three potential sharers in case of an upgrade miss. The
second component is a four-state MESI coherence proto-
col, similar to the one used in the SGI Origin 2000, prop-
erly extended (with minimal changes) to support the use of
prediction.

In order to evaluate the effects of our proposal, we ex-
ecuted several shared-memory applications on top of the
RSIM detailed execution-driven simulator. First, we ana-
lyzed the accuracy of the proposed predictor and found that
for a great percentage of the upgrade misses (which reaches
almost 100% for some applications) the set of sharers was
successfully predicted. Then, we analyzed our proposal in
terms of its impact on application performance. The high



percentage of upgrade misses correctly predicted translated
into latency reductions on average of more than 40% in
some cases. These benefits caused important reductions on
the average latency of store instructions whereas load la-
tency remained virtually unaffected. Finally, application
execution times were accelerated up to 14%. These results
can be obtained including a predictor with a total size of
less than 48 KB in every node.

As part of our future work, we are performing a com-
parison between our technique and some other related
schemes, as those presented in [14], [17] and [23].
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