
AN ADVANCED ENVIRONMENT FOR PROGRAMMING
TRANSPUTER NETWORKS WITH DYNAMIC RECONFIGURATION

 García, J. M. Duato, J.
 Dpto. de Informática Facultad de Informática
 Universidad de Castilla-La Mancha Universidad Politécnica
 02071 Albacete (Spain) 46071 Valencia (Spain)

SUMMARY

In this paper we present a programming environment for
multicomputers. Among other features, it allows us to evaluate the
performance of parallel algorithms running on a multicomputer with
both, static and dynamically reconfigurable topologies. The results of
this evaluation are obtained by simulating a machine model based on a
transputer network.

Our environment -called FDP- permits the simulation of the
behaviour of a multicomputer. Several machine parameters can be
adjusted. For example, we can vary the network topology, the number
of nodes, the routing algorithm in the network, etc. Choosing different
options is easy, because FDP has a friendly user interface.

In our environment, a parallel algorithm is programmed in the
Distributed Pascal language. This new parallel language, which we
have developed, is based on standard Pascal. Some extensions allow an
easy and elegant programming of parallel algorithms, consisting of
processes which communicate by means of message-passing.

1. INTRODUCTION.

The increasing demand of greater processing power capacity in
computers has led to the development of several parallel architectures,
usually of the SIMD or MIMD type according to the classification
proposed by Flynn [1]. MIMD computers can be classified as machines
with shared memory (multiprocessors) or distributed memory
(multicomputers). In recent years more attention has been given to
message-passing multicomputers because they offer a good
cost/performance ratio and they are easily expandable up to a large
number (hundreds or thousands) of nodes [2].

The basic idea behind parallel programming is straightforward: to
split a computation among several processes cooperating in the
solution of the global problem. The first difficulties arise when this idea
is put into practice, as then one discovers that the sharing and
cooperation among processes is a complex task and that this task is
dependent upon the type of architecture the machine has. In
multicomputers, cooperation and synchronization among processes is

usually performed by exchanging messages.
As for Von Newmann architectures, a set of software tools are

needed for the development and execution of programs in these parallel
architectures. The development of languages, compilers, operative
systems, debuggers, performance monitors, etc., is at present one of
the main research areas in order to obtain the required performance
from the new architectures.

Usually, this research focuses on two ways of programming these
systems:

a) Automatic parallelization: In this technique, the compiler
assumes the responsibility of detecting which loops (or generally
speaking, a series of sentences in the language) can be executed in
parallel.

b) Definition of new languages. We face two different possibilities.
We can add extensions to sequential languages, allowing the
communication between processes. Alternatively, a new language can
be defined; an example of this is the Occam language [3].

In this paper we present an environment for multicomputer
programming. This environment allows us to edit a program written in
Distributed Pascal [4], compile, debug and simulate its execution on a
multicomputer, thus permitting the use of different parameters.

Moreover, our environment also provides the opportunity to
study the main problem we face at present when dealing with
multicomputers: the interconnection network.

For many applications, the interconnection network is the main
bottleneck for this architecture. There are several ways to alleviate this
problem. One of the most important improvements consists of
pipelining message transfers. The best known technique of this kind is
wormhole routing [5]. Another important improvement consists of
allowing the network topology to be reconfigured dynamically, in such a
way that the nodes which communicate more frequently can be directly
connected. Although this technique can be applied to both, store-and-
forward and wormhole networks, the only commercially available
machines with that feature are transputer-based machines, like the
Parsys SN 1000. Up to now, these machines only support store-and-
forward routing. A multicomputer with a dynamically reconfigurable
network can change its own topology arbitrarily at runtime [6,7]. With
this feature, we can attempt matching the network topology with the
communication requirements of the application program, increasing
the performance of these machines.

A remarkable feature of our environment is the possibility to
evaluate the improvement obtained in the multicomputer performance
when using a dynamically reconfigurable interconnection network. This
improvement is more noticeable for those applications with a time
varying communication pattern.

The rest of this paper is structured in the following way. Section
2 is dedicated to the presentation of our environment, focusing on its

basic features. The advanced features of our environment are presented
in section 3. Section 4 is devoted to the presentation of the related work
in this field. Finally, in section 5, the main conclusions are presented
as well as alternative ways for future work.

2. FDP: AN ENVIRONMENT FOR PARALLEL PROGRAMMING.

FPD (Friendly Distributed Pascal) is a friendly environment for
program development with the Distributed Pascal language [4].

This programming environment has been developed for an IBM
PC or compatible, although it can be easily ported to other computers,
e.g. workstations. It allows us to edit a Distributed Pascal program,
compile it and detect possible errors as well as executing it on a
simulated multicomputer. The environment has a graphical interface.

Next, we are going to present two fundamental aspects of FDP:
the machine model in which this environment is based and the basic
features it has.

2.1. Computer model.

FPD is an advanced environment developed for multicomputers.
Therefore, the only way to communicate and synchronize the different
processes is by means of message-passing.

In order to make the environment independent of the computer,
the number of processes in a program is not limited to the number of
processors. With regard to the programming of an algorithm the
concept of virtual processor is used, i.e., we assume that there are as
many processors as there are declared processes. It is a function of the
run-time kernel to determine which processes are loaded in each
processor (mapping). This mapping is static, i.e. once it has been
decided in which processor each process is executed there is no change
throughout the execution of the program.

The communication model is based on message-passing. For the
programming the concept of virtual network is employed, supplying a
totally connected topology to the user. This concept permits a direct
communication between processes without taking into account the
interconnection network found in a particular multicomputer. The user
must take this into account, since the correct execution of a program
must not depend upon the topology of the interconnection network.
Again, it is a function of the kernel to determine if the source and
destination processes of a message are in the same processor or not. In
the first case, the communication is internal. Otherwise, the router is
executed in each processor through which a message passes. The
physical channels of a processor are multiplexed to provide service for
all the processes which are being executed on it. This can be done
because the mapping is static and known throughout the entire
system.

The programming style we have adopted is the SPMD one [8], i.e.,
all the processes execute the same code. In the case several processes

share a processor, there is only one code copy in memory, each process
having its own variables. This approach reduces memory occupation
significantly. However, it does not imply that all the processes execute
the same instructions. In order to be able to execute some code blocks
only by some processes, the Distributed Pascal language defines the
variable process, which identifies each process. So, for the process 0
the variable process will be equal to 0, for the process 1 it will be 1,
etc...

2.2. Basic features.

FDP includes a set of basic features shared by most
programming environments. For a detailed description, the interested
reader can see [9]. Figure 1 shows the aspect of the FDP environment
during the edition of a program with several displayed windows.

The main menu consists of the following items:

a) FILE: Several functions for file handling, such as creating a
file, loading or saving a file, etc.
b) EDIT: To create new files or modify the ones that already exist.
c) COMPILE: It compiles a file written in Distributed Pascal to an
intermediate language. In case of error, it informs with a suitable
message about its type and location.
d) RUN: It runs a previously compiled program. This option
allows the configuration of the multicomputer architecture.
e) DEBUG: This menu option gives access to a symbolic debugger
with three functions and allows a more efficient error detection
and correction.

 File Edit Compile Run Debug F1-Help F2-Text
+)))))))))))))))))))))))644444444444444444444447)))))))))))))))))))))) EDIT),
* Lin 1 Col 1 5 Run 5PLE1.DIS *
*program example1; 5 Program Reset 5 *
*processes 5; 5 Step by step 5 *
*var a, total: integer; 5 Dynamic 5 *
*begin 5 User Screen 5 *
*if process=0 then begin5 Topology 5 *
* send(process+1, proc5 Messages 5 *
* writeln('Node 0 has 944444444444444444444448 *
* receive (total); *
* writeln('Total is ...', total); *
* end *
*else begin *
* receive (a); *
* a:= a + process; *
* if process<processes-1 then send(process+1, a) *
* else send(0, a); *
*end; *
*end. *
/))) MESSAGES)1
* *
* *
* File loaded *
.))-

Fig. 1. The main menu and the run menu with a loaded
program.

The environment offers a context-sensitive help to the user,
displaying the adequate information. It also presents an information
window, displaying messages when functions are executed: file saving,
program compilation, etc.

During the execution, the intermediate code generated by the
compiler is interpreted and the behaviour of the real computer is
simulated with the supplied parameters. One of the advantages of this
approach is the possibility to detect execution errors due to parallel
processing. For instance, in the case of deadlock, information is given
about where each process was blocked (at the source code level). In this
way we can comfortably learn how to move form sequential to parallel
programming, detecting the most frequent errors produced when
programming parallel systems. In fact, this environment has proved to
be extremely helpful while teaching parallel programming.

3. ADVANCED FEATURES OF FDP.

FDP includes two advanced features: symbolic debugging of a
parallel program and selection of a specific architecture to simulate the
execution of a program.

3.1. Symbolic debugging of a parallel program.

Most environments developed to simulate multicomputers
include debugging functions. Through these functions the programmer
intends to become familiar with the complex parallel world, while
simultaneously permitting a more efficient error detection and
correction.

FDP includes a symbolic debugger with three functions:

1) Step-by-step execution: FDP allows a step-by-step execution of
a program by concurrently executing a statement from each
active process; generally, this statement is different for each
process, since the execution is asynchronous. With this option, a
procedure or function is also executed step-by-step. In the
bottom right margin of the environment the process being
executed step-by-step at that moment is shown.
2) Quick step-by-step execution: During the step-by-step
execution of a program, sometimes it is desired that procedures
and functions are executed in a single step. To achieve this, the
debugger offers this alternative function which allows a more
effective and rapid step-by-step execution of a program.
3) Variable value display: The third function of the debugger
allows to observe the contents of the variables declared by each
process, whether they are local or global variables for a procedure
(whenever such procedure is activated).

3.2. Multicomputer architecture.

As it has already been mentioned, programming is simplified by
implementing a generic multicomputer with an ideal architecture. This
architecture supports the concepts of virtual processor and completely
connected topology. Regarding the execution of the program, FDP
allows the specification of a group of features related to the
multicomputer architecture. The mentioned features are the following:

a) Network topology. FDP admits the specification of three
different topologies for the interconnection network: 2-D mesh,
hypercube and the ring. The routing algorithm is static and uses
a store-and-forward flow control mechanism. Network traffic can
be reduced by dynamically reconfiguring the network topology.
Reconfiguration is carried out in such a way that the topology is
not altered. Simply, some nodes interchange their positions in
the network [10].
b) Number of nodes. The concept of virtual processor allows the
programmer to define any number of processes without taking
into account the number of physical processors available in the
multicomputer. This number of physical processors can be
changed using one of the options of the environment. Most of the
simulations have been carried out with a number of nodes equal
to 16, because this is the number of nodes of the Supernode SN
1000 available in our laboratory.
c) Mapping of processes to processors. The mapping of processes
to processors is performed in a simple way, leaving aside
requirements such as load balancing for each processor or a low
communication cost. Using this mapping, a satisfactory load
balance is obtained for most numeric algorithms, for which this
environment has been designed. The reduction in the
communication cost is expected to be attained from the dynamic
reconfiguration of the network. A process i is assigned to a node j
according to the following function:

j = i mod node_count

where node_count indicates the total amount of physical nodes
for that particular simulation. By applying this function, a cyclic
distribution of processes to processors is obtained.
The number of links each processor has to communicate with
other processors is restricted to four, using the transputer [11] as
a model. It implies that the maximum number of nodes for
hypercube topology is also four.
d) Dynamic reconfiguration. The most remarkable feature of FDP
is the simulation of a multicomputer with a dynamically
reconfigurable interconnection network. Some of the parameters
for the reconfiguration can be changed, for example, if the
dynamic reconfiguration is active or not, the minimum
thresholds to reconfigure and the kind of algorithm used in the
reconfiguration. An explanation of the main features of these

algorithms and some simulations results can be found in [10,12].
These algorithms are transparent to the programmer.
e) Simulation results. The main menu offers the possibility to
create a file where the results of the simulation are collected. Two
levels of detail are available. The information given in the file
covers the following aspects:

- Changes performed: In the case the option of dynamic
reconfiguration of the network is selected, it informs about the
number of reconfigurations performed.

- Message traffic: Whenever a message has to cross an
intermediate node to arrive at the destination node, the message
traffic in such intermediate node is supplied. The sum of the
traffic in every node is the total message traffic in the
interconnection network. This is a very important parameter
because it is used to measure the quality of the algorithms for
dynamic reconfiguration; one of the main goals of the dynamic
reconfiguration of the network is to decrease the message traffic
through the interconnection network. From this point of view, for
the same number of changes in the topology, the best
reconfiguration algorithm will achieve the lowest message traffic.

- Reconfiguration threshold: Two thresholds are necessary
to decide when the reconfiguration is carried out [10]. Therefore,
some information is given about the value established by the
user for such thresholds.

- Processor traffic: Another important objective of the
reconfiguration is to reduce the traffic through intermediate
nodes. In order to do so, it informs about the five processors with
the lowest traffic and the five processors with the highest traffic
(specifying the value for each case).

- Total number of messages: It also gives information about
the value of the total number of messages which have been sent
through the network. This is useful to obtain a percentage of the
amount of messages which have caused message traffic in the
intermediate nodes.

- Local information for each node: When the higher level of
detail is selected, it also adds the number of messages each node
has sent, the amount it has received and the amount of
messages which have circulated through it (local message traffic
in that node).

Figure 2 shows a report for the lower detail level.

4. RELATED WORK.

Some projects have also been developed in order to model
multicomputers, mainly aimed at developing programming
environments and tools for programmers, rather than tools designed to
work with the architecture of the system. This is the case of PIE [13], a
programming and instrumentation environment for parallel processing.
Although it has originally been designed for shared-memory systems, it
is expected to be translatable to other systems. PIE offers a graphic
representation of the processes and their interrelations.

Another environment is Poker [14], which has been designed to
emulate a specific architecture: the Configurable Highly Parallel
Computer. Poker presents an integrated environment and allows the
user to control several levels of the architecture of the system. Although
Poker offers an excellent modelling of the multicomputer, it is difficult
to add new architectures; it has been recently extended to support the
Cosmic Cube.

Two other recent developments are PARET and Hypertool. PARET
[15] attempts to simulate the behaviour of a specific program in a
specific architecture rather than emulating in detail the execution of
the program itself. The objective of PARET is the design and study of
multicomputers as systems, rather than considering them as separate
components. Algorithms and architectures have been graphically
represented, and their state is controlled interactively during the
simulation.

Even newer than PARET is the Hypertool [16] environment.
Hypertool has been designed to increase the programmer's productivity.
The development of a parallel program using Hypertool is as follows:
the programmer designs an algorithm, he carries out a partition in
processes writing a sequential program as a set of procedures (the
different processes). Hypertool automatically converts the program to a
parallel program for a machine with message-passing, assigns each
process to a processor, simulating its execution and properly informing
about the results obtained regarding power, execution time,
communication time, inactivity time for each processor and delay

Threshold_1: 55 Threshold_2: 35
Message traffic: 1787
Changes: 34
Processors without traffic:
Processors with higher traffic: 15 (283), 3 (195), 11 (107),
Messages sent: 833

Fig. 2. The report for the lower detail level.

introduced in the network in each communication channel. This report
also presents the dependency of data among processors, as well as the
extent of parallelism and load distribution for each processor. The
transmission time of a message is evaluated by means of a classic
linear model as a function of the length of the message and the startup
time; the model assumes that the traffic within the network is not too
heavy, and therefore it ignores the delay caused by message contention
in a node.

Finally, we are going to describe Tenor++ [17]. This environment
is a high level interface which allows the development of applications
with variable topologies on the Supernode reconfigurable
multiprocessor. The functionality of the interface is available by means
of two algorithmic languages -the SDR and the SDT- which allow
reconfiguring strategies to be specified and topologies to be
symbolically described. Tenor++ aims at taking advantage of the
dynamic reconfiguration facilities of the Supernode. These facilities are
available via two programs: a first program for defining the application
as a set of phases separated by reconfiguration points, and a second
program where the topology is defined as a graph construction.

This environment, the most similar to FDP, is distinguished from
FDP by two fundamental aspects. In the first place, in FDP an
application program is not divided into phases for the reconfiguration
of the network. We have developed an algorithm which controls the
reconfiguration of the network. Depending on the message traffic, the
algorithm modifies the network topology in order to decrease such
traffic, therefore increasing the multicomputer performance. In
Tenor++, the main problem is that we must know which topology
adjusts better to each phase before the execution of the application
program.

Secondly, at the end of the execution, FDP presents the results
concerning message traffic and saturation in intermediate nodes. This
report allows us to compare different topologies both, with and without
dynamic reconfiguration.

5 CONCLUSIONS AND FUTURE WORK.

In this paper, we have presented a new programming
environment, the FDP, suitable for the programming of distributed
memory MIMD computers, such as transputer networks. The
programming language for this environment is the Distributed Pascal,
which allows us a simple, elegant, flexible and powerful programming
of these computers.

The most important feature of FDP is that it allows the study of
the interconnection network. This study can be considered from two
points of view: comparison of several static topologies and study of the
dynamic reconfiguration of the network.

Up to now, FDP is the only programming environment which
allows the study and evaluation of the dynamic reconfiguration of the
interconnection network in multicomputers. An algorithm has been

proposed which allows to reconfigure the network [12].
FDP has made possible the extensive evaluation of the dynamic

reconfiguration of the network, both for simple problems and for matrix
computations [10,12]. We have obtained excellent results, both with a
null cost for each reconfiguration and considering the cost for the
reconfiguration.

We are planning to generate code for multicomputers based on
transputer, given the spread of these computers in the EEC. We also
plan to develop various algorithms to handle the run-time problems:
mapping, load balancing, etc. We are specially interested in those
solutions that take advantage of a unique hardware feature found in
these computers: the dynamic reconfiguration of the interconnection
network.

REFERENCES

1. FLYNN, M.J.- Some Computer Organizations and their
Efectiveness,
IEEE Trans. on Computers, 21, 948-960, (1972).

2. ATHAS, W. and SEITZ, C.- Multicomputers: Message-passing
Concurrent Computers,
IEEE Computer, 21, Aug. 9-24, (1988).

3. INMOS LIMITED.- "Occam-2 Reference Manual". Prentice-Hall,
England, 1988

4. GARCIA, J.M.- A New Language for Multicomputer Programming,
Sigplan Noticies, To appear.

5. DALLY, W.J. and SEITZ, C.L.- Deadlock-free Message Routing in
Multiprocessor Interconnection Networks,
IEEE Trans. on Computers, 36, 547-553, (1987).

6. BAUCH, A.; BRAAM, R. and MAEHLE, E.- DAMP: A Dynamic
Reconfigurate Multiprocessor System with a Distributed
Switching Network,
2nd European Distributed Memory Computing Conference,
Munich, April 1991.

7. NICOL, D.A.- "Reconfigurate Transputer Processor
Architectures", Multiprocessor Computer Architectures,
Ed. T.J. Fountain and M.J. Shute, North-Holland, 1990.

8. KARP, A.- Programming for Parallelism,
IEEE Computer, 20, May 43-57, (1987).

9. GARCIA, J.M.- "Manual de Usuario del FDP". Universidad de
Castilla-La Mancha,
Albacete, 1992.

10. GARCIA, J. M.- "Desarrollo de Herramientas para una
Programación Eficiente de las Redes de Transputers: Estudio de la
Reconfiguración Dinámica de la Red de Interconexión". PhD
thesis. Universidad Politécnica de Valencia, December, 1991.

11. INMOS CORPORATION.- "The Transputer Databook". Inmos Ltd.,
England 1989.

12. GARCIA, J.M. and DUATO, J.- An Algorithm for Dynamic
Reconfiguration of a Multicomputer Network,
Proc. 3rd IEEE Int. Symp. on Parallel and Distributed Processing,
Dallas, December, 1991.

13. SEGALL, Z. and RUDOLPH, L.- PIE: A Programming and
Instrumentation Environment for Parallel Processing,
IEEE Software, Nov. 22-37, (1985).

14. SNYDER, L.- Parallel Programming and the POKER Programming
Environment, IEEE Computer, 17, July 27-36, (1984).

15. NICHOLS, K.M. and EDMARK, J.T.- Modeling Multicomputer
Systems with PARET, IEEE Computer, 21, May 39-48, (1988).

16. WU, Min-You and GAJSKI, D.D.- Hypertool: A Programming Aid
for Message-passing Systems, IEEE Trans. on Parallel and
Distributed Systems, 1, July 330-343, (1990).

17. ADAMO, J. and BONELLO, C.- Tenor++: A Dynamic Configurer
for Supernode Machines, Lecture Notes in Computer Science
457, 640-651, Springer-Verlag, 1990.

