
Evaluating the cost of the dynamic reconfiguration of
a multicomputer network

 J. M. García J. Duato
 Dpto. de Informática Facultad de Informática
 Universidad de Castilla-La Mancha Universidad Politécnica
 Campus Universitario s/n Camino de Vera s/n
 02071 Albacete (Spain) 46071 Valencia (Spain)

Abstract

 The dynamic reconfiguration of the interconnection network is
an advanced feature of some multicomputers. It allows to reduce
the communication overhead, improving the performance. In a
previous paper [6], we presented a reconfiguration algorithm
based on a cost function. It reconfigured the network in such a
way that the original topology was preserved. However, that
algorithm did not take into account the cost of the
reconfiguration itself. In this paper, we consider that cost. The
resulting reconfiguration algorithm has been evaluated by
simulating the execution of a test problem (triangularization of a
sparse matrix). The results show the benefits obtained when the
interconnection network is reconfigured dynamically.

Keywords: Multicomputer network, multicomputer performance, dynamic
network reconfi-guration, computer architecture.

1. INTRODUCTION.

Multicomputers [3] are among the most interesting architectures,

meeting the high performance computing requirements in application areas

like computational fluid dynamics, image processing and circuit simulation.

Multicomputers rely on an interconnection network between nodes

(processors) to support the message-passing mechanism.

The interconnection network plays a central role in determining the

overall performance of a multicomputer [2,11]. If the network cannot provide

adequate performance, nodes will frequently be forced to wait for data to

arrive. Further, as technological improvements increase the computing power

of nodes, additional pressure is placed on the communication network to

provide a comparable improvement in performance to avoid becoming a

bottleneck. In addition to performance considerations, the interconnection

network should be tolerant to failures.

A interesting solution to alleviate this problem is to make the

interconnection topology reconfigurable, i.e., the network topology can change

almost arbitrarily at runtime [7,10]. A network with this feature has two

properties: on the one hand, it can easily match the network topology to the

communication requirements of a given program, thus exploiting the

communication locality, even when those requeriments vary over time. On the

other hand, faulty nodes or links can be easily bypassed and spare nodes can

be switched on. Nowadays, there are several multicomputers with this

advanced feature [1,4].

In a previous paper [6], we presented a reconfiguration algorithm based

on a cost function to handle the dynamic reconfiguration of the

interconnection network in a multicomputer. The goal of the dynamic

reconfiguration is to increase the multicomputer performance by means of

minimizing the traffic of messages through the network. Therefore, the cost

function evaluate the network traffic for each node, taking into account the

total message traffic between a node and the other ones, weighed with the

nominal distance between nodes.

This algorithm reconfigure the network in such a way that the original

topology is preserved. The first results showed an important improvement for

application programs with a time varying communication pattern. However,

that algorithm did not take into account the cost of the reconfiguration itself.

In this paper we consider this cost, evaluating the time needed to

reconfigure the network. We also show the performance improvement

obtained in a complex mathematical problem, when that time is taken into

account.

The rest of paper is organized as follows. Section 2 summarizes our

previous work detailing the reconfiguration protocol we have implemented. In

section 3 the time needed to reconfigure the network is computed. The new

algorithm which includes the reconfiguration cost has been evaluated,

showing in section 4 the results obtained by simulation. Finally, the main

conclusions are presented in section 5.

2. MACHINE MODEL AND DYNAMIC RECONFIGURATION PROTOCOL.

This work was originated while trying to increase the communication

performance of a transputer-based machine, the PARSYS SN 1000. Then, we

have mainly focussed on store-and-forward networks. Also, we assume that a

static scheduling is used to map processes to processors, thus preventing

process migration. To handle the dynamic reconfiguration, we have set up a

control in a centralized way, such as it is available in the SN 1000.

All the work has been carried out on the FDP environment [8], which

permits the simulation of the behaviour of a multicomputer with a particular

topology. FDP also offers a simple and efficient programming environment

with a friendly user interface.

The basic idea for the dynamic reconfiguration is the following: When

the traffic between a pair of nodes is intense, the reconfiguration algorithm

will try to put the source node close to the destination node by exchanging the

positions of either the source node and a neighbour of it or the destination

node and one of its neighbours. It must be noticed that the implementation of

this algorithm is distributed, each node taking into account the information

recorded locally.

The dynamic reconfiguration is a suitable technique to deal with those

problems whose communication pattern varies over time, especially when it is

not possible to predict the variation a priori. The reconfiguration algorithm we

have developed decides when it is convenient to carry out a change in the

topology. The algorithm has been described in [6].

Our machine model is based on the Parsys SN1000. In this model, a

master node (the system controller) is responsible for controlling the

reconfiguration.

The network reconfiguration protocol works in the following way:

1).- When a node decides that it is necessary to reconfigurate the

network, it sends a signal to the system controller through the control bus.

2).- Then, the system controller informs all the nodes that it is going to

make a reconfiguration and therefore they should stop sending messages to

each other. To minimize the reconfiguration time and relieve the cost that it

implies, messages in transit are only allowed to reach the next intermediate

node. After stopping messages in transit, each node sent an acknowlegement

to the system controller.

3).- The node which made the request sends the reconfiguration data to

the system controller to carry out the reconfiguration.

4).- The system controller modifies the interconnection network

topology, adapting it to the new circumstances.

5).- Once the new configuration has been established, the system

controller broadcasts this configuration to all the nodes and permits node

communication again.

This protocol is easily implementable using the control bus available in

the SN1000 architecture, which does not add message traffic to the network.

The centralized control could be a bottleneck for the whole system,

since all the nodes must send reconfiguration requests to the system

controller. To avoid it, the reconfiguration algorithm will only reconfigurate the

network when it estimates that a large amount of data have to be transferred.

3. THE RECONFIGURATION COST.

As the machine is not ideal, whenever a change is made in the topology,

some time is wasted, which reduces the improvement that would be obtained

in an ideal machine. In this paper, we focus on the cost involved when a

change in the network topology is performed.

By analysing the network reconfiguration protocol, the following times

can be obtained:

a) Ta : Time spent in each node to evaluate the cost function and to

decide whether a reconfiguration is needed. It measures part of the step 1 of

the previous protocol.

b) Tb : Time spent to transfer the reconfiguration information from the

node which requests the change to the system controller. It includes the time

required to request the change as well as broadcasting the message to stop

the communication between nodes, receiving the acknowledgement and

sending information about the new topology to the system controller.

Therefore, this time includes part of the step 1 and steps 2 and 3 of the

previous protocol.

c) Trec : Time needed to reconfigurate the interconnection network

topology. It corresponds to step 4 of the previous protocol.

d) Tc : Time needed to broadcast the new configuration to all the nodes,

allowing again communications between processors. It corresponds to the last

step of the previous protocol.

Then, the cost for making a change in the network topology is given by

the following expression:

Tchange = Ta + Tb + Trec + Tc (1)

Let us compute an upper bound for this expression. Ta is the time

required to compute the cost function. We estimate a value of 100 µsec for it.

The communications between the system controller and the nodes are

performed through the control bus, requiring less than 100 µsec. With regard

to the time needed to stop message traffic, we are going to compute the time

required to transfer a message between adjacent nodes. In [12] the following

formula is used:

Tcomm = α + β * L (2)

where L is the length of the message (in bytes) and α and β are machine

dependent constants. Usually, long messages are split into fixed size packets.

For the transputer [9], we have obtained for Tcomm a value ranging from 500

µsec to 1 ms, giving for Tb an estimated value ranging from 600 µsec to 1.1

ms.

The other constant factor, Tc, also measures communications through

the control bus. Again, we estimate a value equal to 100 µsec.

Finally, we have to evaluate the time needed to perform a

reconfiguration in the interconnection network. In [5] the following formula to

compute the reconfiguration time is proposed:

Trec = γ + δ * N (3)

where γ is the start-up time for the reconfiguration, δ is the required time per

modified link and N is the number of modified links in each reconfiguration.

Since changes are local, the number of links which are modified in each

change is always the same. When two nodes exchange their positions, the

number of modified links is equal to 6. Using the values proposed in [5] for γ

(100 µsec) and δ (100 µsec/link), the time needed to perform a network

reconfiguration is equal to:

Tchange = 800 + 100 + 100 * 6 = 1,500 µsec = 1,5 ms (4)

for short messages. For long messages, Tchange = 2 ms.

4. EVALUATION OF THE ALGORITHM.

To evaluate the performance of the reconfiguration algorithm in a

complex case, we have chosen the triangularization of a sparse matrix based

on Givens rotations. This algorithm is very suitable for parallel machines

because of its inherent parallelism. This algorithm has been chosen because

the communication pattern will vary over time, making it very suitable for

dynamic reconfiguration. A detailed explanation of the algorithm as it has

been simulated under FDP can be found in [7].

The results we show measure the total message traffic in the network.

In the case of dynamic reconfiguration, we can take into account the

reconfiguration cost. The reconfiguration cost is approximately equal to the

time required to transfer three messages between adjacent nodes in the worst

case (short messages). Therefore, it is important to limit the number of

changes.

In figure 1 we show the total traffic of messages through the network for

a 600x300 sparse matrix with an average of two non-zero elements per row.

For comparison purposes, we show the results obtained with three static

topologies (ring, 2-D mesh and hypercube) and the results obtained when

network reconfiguration is allowed, both with (real reconfiguration) and

without (ideal reconfiguration) the reconfiguration cost.

In the case of reconfiguration, the basic topology is a hypercube. The

values obtained for the

network traffic vary as a

function of different

parameters from the

reconfiguration algorithm

[6].

As can be seen in

the figure, the reduction

in the network traffic is

drastic with respect to the

static hypercube. However, the reduction is smaller when compared with the

ring topology, because this is the optimal topology when the matrix is full. It

must be noticed that small matrices are quickly filled.

Fig. 1. Message traffic in the network for a 600x300 matrix

These results have been confirmed with many tests with matrices of

different sizes [7]. The results obtained are very good, showing that the larger

the matrix, the better results are achieved.

These results confirm the suitability of the dynamic reconfiguration as a

means of achieving a reduction in message traffic, therefore improving the

performance of multicomputers.

5. CONCLUSIONS.

In this paper we have presented the dynamic reconfiguration of the

interconnection network as a valid alternative to solve the main problem

associated to multicomputers: the communication bottleneck. By means of

using a dynamic topology, the principle of locality in communications is

exploited, leading to a substantial improvement in network latency [2].

The main contribution of this paper is the evaluation of the time needed

for reconfiguring the topology according to the proposed protocol. Once this

time has been computed we have shown how the use of the network

reconfiguration leads to a reduction in message traffic.

REFERENCES

[1] Adamo, J. and Bonello, C. "Tenor++: A dynamic configurer for Supernode

machines". Lecture Notes in Computer Science No. 457, pp. 640-651, Springer-

Verlag, 1990.

[2] Agarwal, A. "Limits on interconnection network performance". IEEE Trans.

on Parallel and Distributed Systems, Vol. 2, No. 4, pp. 392-412, October 1991.

[3] Athas, W. C. and Seitz, C. L. "Multicomputers: Message-passing

concurrent computers". IEEE Computer, Vol. 21, No. 8, pp. 9-24, August

1988.

[4] Bauch, A.; Braam, R. and Maehle, E. "DAMP: A dynamic reconfigurate

multiprocessor system with a distributed switching network". Proc. 2nd

European Distributed Memory Computing Conference, Munich, April 1991.

[5] Desprez, F. and Tourancheau, B. "Evaluation des performances de la

machine T.node". La lettre du Transputer, LIB Besacon, France, No. 7, 1990.

[6] García, J.M. and Duato, J. "An algorithm for dynamic reconfiguration of a

multicomputer network". Proc. Third IEEE Symposium on Parallel and

Distributed Processing, Dallas, December 1-5, 1991.

[7] García Carrasco, José M. "Desarrollo de Herramientas para una

Programación Eficiente de las Redes de Transputers: Estudio de la

Reconfiguración Dinámica de la Red de Interconexión". PhD thesis. Universidad

Politécnica de Valencia. December, 1991.

[8] García, J.M. and Duato, J. "An Advanced Environment for Programming

Transputer Networks with Dynamic Reconfiguration". Int. Conf. on Parallel

Computing and Transputer Applications, Barcelona, September 1992.

[9] Inmos Corporation. "The Transputer Databook". Inmos Ltd., England, 1989.

[10] Nicol, D.A. "Reconfigurate transputer processor architectures", in T.J.

Fountain and M.J. Shute (Ed), Multiprocessor Computer Architectures, North-

Holland, 1990.

[11] Reed, D.A. and Fujimoto, R.M. "Multicomputer Networks: Message-based

parallel processing". The Mit Press. London, England, 1987.

[12] Zhang, X. "System effects of interprocessor communication latency in

multicomputers". IEEE Micro, pp. 12-15 and 52-55, April 1991.

