
CUDA 2D Stencil Computations for the Jacobi Method

José Marı́a Cecilia1, José Manuel Garcı́a1, and Manuel Ujaldón2

1Computer Engineering and Technology Department, University of Murcia, Spain
2Computer Architecture Department, University of Malaga, Spain

Abstract
This paper explores stencil operations in CUDA to optimize

on GPUs the Jacobi method for solving Laplace’s differential
equation. The code keeps constant the access pattern through
a large number of loop iterations, that way being representative
of a wide set of iterative linear algebra algorithms. Optimizations
are focused on data parallelism, threads deployment and the GPU
memory hierarchy, whose management is explicit by the CUDA
programmer. Experimental results are shown on Nvidia Teslas
C870 and C1060 GPUs and compared to a counterpart version
optimized on a quadcore Intel CPU. The speed-up factor for our
set of GPU optimizations reaches 3-4x and the execution times
defeat those of the CPU by a wide margin, also showing great
scalability when moving towards a more sophisticated GPU ar-
chitecture and/or more demanding problem sizes.

Keywords CUDA, GPGPU, Stencil Computation, Parallel Nu-
merical Algorithms

1 Introduction
The newest versions of programmable GPUs provide a
compelling alternative to traditional CPUs, delivering ex-
tremely high floating point performance for scientific ap-
plications which fit their architectural idiosyncrasies [8].
This fact has attracted GPUs to researchers in many fields
[5], among which numerical methods constitute one of the
most prolific ones.

A large number of numerical computing techniques use
large multidimensional arrays as its primary data structure,
which bring us a good opportunity to benefit from Single
Instruction Multiple Data (SIMD) parallelism. In addi-
tion, such algorithms use to have an iterative nature, that
is, they tend to converge through a number of steps to-
wards the final solution until certain condition is fulfilled.
Usually, parallelism is exploited within an iteration, where
each processor can work on a different subsection of the
global data to produce an output which is partially com-
municated to other processors. Then, data are rearranged
to become the input to the next iteration, which prevents
from parallelizing consecutive iterations.

Stencil computations are those in which each computing
node in a multi-dimensional grid is updated with weighted
values contributed by neighboring nodes. These neigh-
bours comprise the stencil, and multiple iterations across
the array are usually required to achieve convergence or

to simulate time steps. Among those stencil codes, our
work focuses on the Jacobi method to solve Laplace’s dif-
ferential equation, which is a priori not an ideal partner
for GPUs due to its low arithmetic intensity. We over-
come this drawback by exploring a wide set of optimiza-
tions paths, which try to illustrate the strength of CUDA
for high-performance computing.

The rest of the paper is organized as follows. Section 2
explains the Jacobi method. Section 3 outlines our CUDA
implementation, exposes the execution times and analyzes
the results. Finally, Section 4 reviews some related work
and Section 5 concludes.

2 The Jacobi Method

Jacobi [6] is a popular algorithm for solving Laplace’s
differential equation on a square domain, regularly dis-
cretized [4]. The kernel (see Figure 1) is based on the fol-
lowing idea: Let us consider a body represented by a 2D
array of particles, each with an initial value of temperature.
This body is in contact with a fixed value of temperature
on the four boundaries, and Laplace’s equation is solved
for all internal points to determine their temperature as the
average of the four neighboring particles.

Taking this task as the computational core, a number
of iterations are performed over the data to recompute av-
erage temperatures repeatedly, and the values gradually
converge to a finer solution until the desired accuracy is
reached. For experimental purposes, we consider a con-
stant number of 4096 iterations. Note that iterations have
to be serialized due to carried-loop dependencies, but par-
allelism is enabled within iterations for the computation at
each particle is independent. Thus, the workload depends
more on the number of iterations, whereas the amount of
parallelism that can be extracted from the code relies more
on the size of the 2D input matrix.

At the end, our Jacobi kernel consists of three nested
loops, with the two innermost being of length N (which is
the matrix dimension), and the outermost being of length
k (the number of iterations) - see Figure 1. The algorithm
complexity can be expressed as O(k ·N2).



for (k=0; k<4096; k++) {

for (i=0; i<N; i++)

for (j=0; j<N j++)

T[i][j] = 0.2*(A[i][j]+A[i-1][j]+

A[i+1][j]+A[i][j-1]+A[i][j+1]);

for (i=0; i<N; i++)

for (j=0; j<N j++)

A[i][j] = T[i][j]; }

Figure 1: Jacobi’s solver pseudocode.

3 Implementation
3.1 Optimal threads deployment
Blocks and threads are deployed following a 2D layout to
balance the decomposition of the computational domain on
each matrix dimension. Adjacent blocks share data placed
on boundaries, and each thread within a block is responsi-
ble for updating a single element on each iteration.

Among all possibilities concerning an input matrix of
size NxN and a squared block of BxB threads, we have se-
lected N = 1024,2048,4096,8192 and B = 14,16,18,20
for representing good choices after a preliminar survey.
Table 1 shows that 16x16 constitutes the optimal number
of threads per block, with a penalty around 5-10% for the
other three cases. All remaining squared alternatives for
the matrix of threads led to worse results.

3.2 Shared memory optimizations
Our CUDA baseline implementation does not use shared
memory. All threads access the device memory to read
an element together with its four matrix neighbours and
later update its value with the average. From this departure
point, three optimizations were incrementally developed:

1. Each input element read from device memory is
stored into shared memory by the owner thread prior
to the actual computation, and the output result is
written back into device memory. The kernel length
increases from 34 to 78 instructions, but this variant
notably reduces the pressure on device memory, just
requiring 18 GB/s of memory bandwidth compared to
122 GB/s in our baseline version.

On the Tesla C870, 99.68% of the memory ac-
cesses to device memory are non-coalesced when
running the code using CUDA Compute Capabilities
1.0 (CCC 1.0). On the Tesla C1060, things are very
different, for this device uses coalescing rules based
on CCC 1.3, leading to a 100% of coalesced accesses.
Benefits are therefore larger on the Tesla C1060 GPU.

2. Our second optimization uses an internal register
as substitute of the shared memory cell on each
thread, eliminates unnecessary synchronization bar-
riers between threads at block level, and enables data
prefetching. These enhancements behave similarly on
CCC 1.0 and 1.3, and are translated into minor im-
provements in the overall execution time.

1x1 stencil

X D

B

C

A

X = A+B+C+D

2x2 stencil

X

Y

A

C

D

E

F

B

T = C+D

X = A+B+T

Y = E+F+T

Figure 2: Benefits of increasing the stencil size: Some
redundant operations may be saved.

3. The third optimization reduces the tile size to de-
crease the use of shared memory. In CCC 1.0, the
maximum number of threads assigned to a multi-
processor is 768, whereas in CCC 1.3 this number
reaches 1024. In the first case, the tile size is de-
creased to reduce the amount of shared memory used
(4120 bytes) so that we can assign three blocks of 256
threads to each multiprocessor. In the second case,
the tile size is reduced even more until we can as-
sign four blocks of 256 threads, which increases par-
allelism leading to slightly better results.

Table 2.a shows the execution times for all these ver-
sions on a Tesla C870 and Table 2.b does the same for the
Tesla C1060 GPU. An average speed-up factor of 3.5x is
roughly attained.

3.3 The effect of larger 2D stencils
Our next alternative kernel tries to evaluate the effect of
changing the 2D stencil size, which imposes a coarser
granularity on SIMD parallelism. Instead of a single el-
ement, a 2x2 matrix of elements was assigned to every
thread. Using this new stencil, partial sums on diagonal
elements of the matrix can be reused for computing the
output elements on the other diagonal (see Figure 2), sav-
ing two arithmetic operations and four memory accesses
on each thread at the expense of using two registers for
storing auxiliary values.

Execution times are shown in Table 3 on a Tesla C1060
GPU for different threads deployment (depicted on rows).
The input matrix size is 40962 and our kernel uses shared
memory without further optimizations. Times slowdown
30-40% on average with respect to the case in which each
thread computes a single element, proving that context
switch is free in CUDA and the block startup is not: Us-
ing a 1x1 stencil we require 341x341 block calls, whereas
using a 2x2 stencil, we just need 157x157 block calls.

3.4 Floating-point accuracy and performance
Peak performance on the Tesla C1060 is 933 GFLOPS
in single precision and 78 GFLOPS in double precision.
However, Table 4 shows that times barely double when
switching from single to double precision. This basically
means that our application is bandwidth limited and the
fact that double precision numbers occupy 64 bits versus
32 bits for single precision explains the slowdown factor.



Matrix (threads deployment per CUDA block)

size (14x14) (16x16) (18x18) (20x20)

10242 13.50 13.16 13.70 14.13

20482 52.73 50.74 52.57 52.43

40962 206.99 203.35 207.06 211.28

81922 843.55 850.18 899.46 852.26

Matrix (threads deployment per CUDA block)

size (14x14) (16x16) (18x18) (20x20)

10242 3.27 2.34 3.24 3.071

20482 12.73 8.72 11.88 11.594

40962 50.36 34.60 46.28 44.402

81922 211.03 144.02 211.16 177.795

(a) Tesla C870. (b) Tesla C1060.

Table 1: Execution times (in seconds) for our Jacobi baseline implementation.

Input Baseline: Optimization 1: Optimizations 1+2: Optimizations 1+2+3:
matrix No shared Using shared Shared memory Also solving
size memory used memory + coalescing banks conflicts
10242 13.16 3.77 (3.49x) 3.76 (3.50x) 3.88 (3.39x)

20482 50.74 14.49 (3.50x) 14.45 (3.51x) 14.71 (3.45x)

40962 203.35 55.60 (3.65x) 55.59 (3.65x) 57.45 (3.54x)

81922 850.18 243.00 (3.50x) 241.81 (3.51x) 241.81 (3.51x)
(a) Tesla C870.

Input Baseline: Optimization 1: Optimizations 1+2: Optimizations 1+2+3:
matrix No shared Using shared Shared memory Also solving
size memory used memory + coalescing banks conflicts
10242 2.34 0.73 (3.20x) 0.65 (3.60x) 0.63 (3.71x)

20482 8.72 2.79 (3.12x) 2.47 (3.53x) 2.42 (3.60x)

40962 34.60 11.45 (3.02x) 9.93 (3.48x) 9.66 (3.58x)

81922 144.02 45.70 (3.15x) 40.35 (3.57x) 40.29 (3.57x)
(b) Tesla C1060.

Table 2: Execution times (in seconds) for our Jacobi implementation using different optimizations. Between parenthesis, we
show the speed-up factor versus the baseline implementation on the same platform. Threads deployment is 16x16 for all cases.

Threads Stencil size Slowdown
deployment One 2x2 factor
14x14 13.91 19.31 38%

16x16 11.45 15.43 34%

18x18 13.27 18.16 36%

20x20 13.83 18.40 33%

Table 3: Execution times (in seconds) on a Tesla
C1060 GPU for different threads deployment (depicted
on rows). The input matrix size is 40962 and the code
version uses shared memory without further optimiza-
tions. The stencil size is the number of elements com-
puted by each thread.

3.5 GPU versus CPU multi-core performance

Table 5 presents the execution times that we have obtained
parallelizing the Jacobi method on the GPU using CUDA
and the CPU using pthreads. For the multithreaded CPU
version, the best performance was obtained by assigning
entire rows to each CPU core as data partition.

We can see that the Tesla C1060 GPU is unbeatable, and

Matrix Single Double Slowdown
size Precision Precision factor
10242 0.90 1.70 89%

20482 3.36 6.55 95%

40962 13.41 26.33 96%

Table 4: Execution times (in seconds) for the optimal
version of our Jacobi implementation (that is, optimiza-
tions 1, 2 and 3 performed), using single and double pre-
cision in our Tesla C1060 GPU. We run out of memory
for the 81922 case on double precision. Threads deploy-
ment is 16x16 for all cases.

the C870 is also more effective that the quad-core in most
of the cases, overall when working with large matrices. It
can also be seen how the CPU times are poorly scalable
when the working set exceeds the L2 cache size (12 MB in
our case), that is, from the 20482 case on. In other words,
the CPU cores have to rely on caches to become effective,
and the Jacobi method becomes even more bandwidth lim-
ited when running on multicore CPUs.



Input On a Tesla GPU On an Intel Core 2 Quad Q9450 CPU
matrix C870 C1060 1 core 2 cores 4 cores 4 cores 4 cores
size 1 thread 2 threads 4 threads 8 threads 16 threads
10242 13.16 2.34 12.30 6.04 3.08 3.91 4.26

20482 50.74 8.72 50.05 53.13 61.10 61.17 59.02

40962 203.35 34.60 200.56 220.02 252.92 251.84 251.44

81922 850.18 144.02 807.87 876.00 1003.01 1009.11 1000.43

Table 5: Execution times (in seconds) for different architectures and implementations.

4 Related Work
APIs such as OpenMP are able to tile stencil loops at run-
time and execute the tiles in parallel [7]. Researchers have
investigated the best combination of tiling strategies that
optimizes both cache locality and parallelism, and even
propose automatic tuning for tiling stencil computations
on multicores [3], GPUs [9] and the Cell [2].

Stencil kernels on GPUs have recently gained attention
by the scientist community. Listed in order of affinity with
our work, we may select the following four contributions:
Datta et al [3] tune a benchmark of 3D stencil kernels on
GPUs and multicores, Christen et al. [2] consider a 7-point
stencil kernel to be implemented on GPUs and the Cell
BE, Amorim et al. [1] perform a comparison of the Jacobi
method between a GPU parallelization using OpenGL and
CUDA, and finally, Venkatasubramanian et at. [9] also im-
plement the Jacobi method on GPUs and hybrid CPU/GPU
systems.

Focusing on the work performed specifically on Jacobi
method, Amorim et al. [1] use diagonal matrices and a dif-
ferent access pattern than ours to compare results against
a CPU implementation on a quad-core AMD Phenom pro-
cessor, obtaining a 78x speed-up factor. On the other hand,
the work in [9] was developed in parallel to ours with a
similar methodology. Our implementation sacrifices two
idle threads on each half-warp to be rewarded on coalesced
and conflicts-free accesses to memory banks, since mem-
ory bandwidth is more a bottleneck than the availability of
computing cores within the GPU. Also, padding is more
profitable in our coalesced case because it allows us to
take advantage of remarkable improvements introduced in
CUDA Compute Capabilities 1.3.

5 Summary and Conclusions
This paper explores CUDA on GPUs to optimize sten-
cil computations using as benchmark the Jacobi method
for solving Laplace’s differential equation. Optimization
paths are focused on data parallelism, threads deployment
and the GPU memory hierarchy, with a clear influence of
the stencil access pattern.

Experimental results show great success for our tech-
niques on Teslas C870 and C1060 GPUs, achieving great
scalability and good performance versus a quad-core Intel
CPU. The speed-up factor for our set of GPU optimiza-
tions reaches 3-4x and the execution times defeat those of
the CPU by a wide margin, also showing great scalability

when moving towards a more sophisticated GPU architec-
ture and/or more demanding problem sizes.

Streaming and arithmetic intensive kernels produce
higher performance on the GPU to reach two orders of
magnitude gain factors with respect to a multicore CPU.
However, our kernel for Jacobi is bandwidth limited, pre-
venting us from further optimizations. This behavior is
also confirmed when comparing single to double precision
performance, as the peak computational power is theoreti-
cally more than an order of magnitude higher for the single
precision case and the execution time barely gets better by
a factor of two.

References
[1] R. Amorim, G. Haase, M. Liebmann, and R. Weber dos San-

tos. Comparing CUDA and OpenGL Implementations for a
Jacobi Iteration. Technical report, Graz University of Tech-
nology, December 2008.

[2] M. Christen, O. Schenk, E. Neufeld, P. Messmer, and
H. Burkhart. Parallel Data-Locality Aware Stencil Computa-
tions on Modern Micro-Architectures. In Proceedings IEEE
Intl. Parallel and Distributed Processing Symposium, Rome,
Italy, May 2009.

[3] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter,
L. Oliker, D. A. Patterson, J. Shalf, and K. Yelick. Sten-
cil Computation Optimization and Auto-Tuning on State-of-
the-art Multicore Architectures. In Proceedings ACM/IEEE
Supercomputing 2008, pages 1–12, Austin, TX, USA,
November 2008.

[4] J. Demmel. Applied Numerical Linear Algebra. SIAM,
Philadelphia, PA, USA, 1997.

[5] GPGPU. General-Purpose Computation Using Graphics
Hardware, 2009.

[6] B. Lester. The Art of Parallel Programming. Prentice Hall,
Englewood Cliffs, New Jersey, 1993.

[7] OpenMP. The OpenMP API, 2009.

[8] J. Owens, D. Luebke, Govindaraju, M. Harris, J. Kruger,
A. Lefohn, and T. Purcell. A Survey of General-Purpose
Computation on Graphics Hardware. Journal Computer
Graphics Forum, 26(1):80–113, Mar. 2007.

[9] S. Venkatasubramanian and R. W. Vuduc. Tuned and Wildly
Asynchronous Stencil Kernels for Hybrid CPU/GPU Sys-
tems. In Proceedings ACM Intl. Conference on Supercom-
puting, New York, USA, June 2009.


	Introduction
	The Jacobi Method
	Implementation
	Optimal threads deployment
	Shared memory optimizations
	The effect of larger 2D stencils
	Floating-point accuracy and performance
	GPU versus CPU multi-core performance

	Related Work
	Summary and Conclusions

