
Improving the Performance of Scienti�c Parallel

Applications in a Cluster of Workstations�

A� Flores and J�M� Garc��a

Dept� de Ingenier��a y Tecnolog��a de Computadores� University of Murcia�
Campus de Espinardo s�n�

���	� Spain
fa
ores� jmgarciag�dif�um�es

Abstract� Recent improvements in LANs make network of workstations
a good alternative to traditional parallel computers in some applications�
However� in this platform the communication performance is over two
orders of magnitude inferior to state�of�art multiprocessors� Currently
networking technologies have put the pressure in the software overhead�
Because of this� applications could not take advantage of this commu�
nication performance potential� In this paper� we present an implemen�
tation of Virtual Circuit Caching that reduces the software overhead by
allocating communication resource once and re�using them for multiple
messages to the same destinations� With this approach� the communica�
tion overhead is reduced by approximately a �
� for long messages� this
reduction should enable the extensive use of networks of workstations for
scienti�c parallel applications�

keywords� Latency Hiding� Fast Network Interface� Cluster of Worksta�
tions� Network Protocol�

� Introduction

Research in parallel computing has traditionally focused on multicomputers and
shared memory multiprocessors� Currently� networks of workstations �NOWs�
are being considered as a good alternative to parallel computers� That is due
to there are high performance workstations with microprocessors that challenge
custom�made architectures� This class of workstations is widely available at rel�
atively low cost� Furthermore� these networks provide the wiring 	exibility� scal�
ability and incremental expansion capability required in this environment�

Communication performance at the application level depends on the collab�
oration of all components in the communication system� especially the network
interface hardware and the low�level communication software that bridges the
hardware and the application� In principle� scienti
c parallel applications should
be coded in a portable message�passing library� as MPI ��
 or PVM ��
� Usu�
ally� these libraries are based in the TCP�IP layer� Unfortunately� TCP�IP layer

� This work was supported in part by the Spanish CICYT under Grant TIC����	���
C�����



� A� Flores and J�M� Garc��a

imposes large software overhead ���
�several hundred to several thousand in�
structions per message�� As a result� only embarrassingly parallel applications
�that is� applications that almost never communicate� can make use of work�
station clusters� To solve this problem� we can design better layers or we can
improve the TCP�IP layer� In both cases� the 
nal objective is the same� that
is� improving the network interface rather than the network switches and links
��
�

Currently� in the 
rst approach there are new layers with reduced overheads
�that is� on the scale of tens of instructions per message�� Active Messages ��
 is
one of this� This layer o�ers simple� general�purpose communication primitives
as a minimal layer over the raw hardware� However� it is not intended for direct
use by application programmers and it is not portable� In fact� Active Messages
provide low level services from which communication libraries can be built� The
current prototype of Active Messages is the GAMMA project ��
� GAMMA ex�
ploits a more general Active Message�like model inspired to Thinking Machines�
CMAML for the CM��� where each process has a number of communication

ports and may attach both a receiver handler and a data structure to a single
communication port in order to handle all messages incoming through that port�
This technique is suitable for MIMD as well as SPMD programming� as it does
not require a common address space among cooperating processes�

The second approach is more interesting form point of view of portability�
The main objective in this approach is to improve the network performance
via to reduce the latency of the network� Traditionally� latency and throughput
are the two parameters used to indicate the performance of an interconnection
network� Although these parameters are very related� it is easier to increase
the peak throughput �achievable for long messages�� but it is harder to reduce
the latency �because the software overhead�� Recently� several works have been
developed in this way as Pupa ���
 or Beowulf ��
� These approaches have been
implemented over o��the�shelf network hardware and they co�exist with legacy
communication software such as TCP�IP�

Our research line is in the later approach� Nowadays� it does make sense from
a technological as well as 
nancial point of view to use o��the�shelf network hard�
ware with existing software� usually based on TCP�IP� So� it is very important
to study this protocol and try to reduce the large software overhead that it
imposes� In this paper� we focus on analyzing the TCP�IP layer to detect the
main software overhead points� and to solve this problem via the Virtual Circuit
Caching technique� In this way� we can signi
cantly reduce the communication
latency in the network�

The rest of the paper is structured as follows� In the next section we an�
alyze sources of software overhead in the communication system� In section ��
we describe the techniques used to reduce software communication overhead�
The results of running test programs are analyzed in section �� Finally� some
conclusions and ways of future work are drawn�



Lecture Notes in Computer Science �

� Analysis Software Overhead Sources

As Local Area Networks improve the performance� their interfaces� resources�
organization� and integration into their host computer become increasingly im�
portant� Recent papers have pointed out that announced performance for such
as LANs could su�er a severe degradation due to overhead in communication
software� Currently� with the most widespread use of ATM ��
 in LANs and the
announcement of Ethernet Gigabit standard ��
� bottleneck studies and alterna�
tive solutions become essential�

To make an exhaustive study of software overhead� we must evaluate the
communication channel performance at several layers in the protocol stack in
order to identify bottlenecks� Using this technique we can measure the added
overhead of each layer� the total software overhead and the network congestion�

0

100

200

300

400

500

600

0 512 1204 2048 3072 4096 5120 6144 7168 8192 10240

seconds

message size (bytes)

Send
TCP

IP
send packet

doing delayed work

data copy
packet creation

μ

Fig� �� Detailed study of software overhead in TCP�IP layer�

Figure � show software overhead breakdown in a TCP send call� Data was
obtained take advantage of TCP�IP source code available in LINUX operat�
ing system� By introducing measurement instructions in appropriate points of
TCP�IP implementation� we could obtain real overhead of critical sections of
TCP�IP protocols� To obtain an accurate measurement we measure a portion
of TCP�IP source code at once� The measurement overhead was estimate in



� A� Flores and J�M� Garc��a

��secs� Measurement results were retrieve via an additional system call that we
introduce for this purpose�

As it can be seen in the 
gure� the send latency is composed by various fac�
tors� This 
gure shows two important facts� Firstly� packet creation and data
copy are the main causes of the send software overhead as expected� The second
thing is that exists a signi
cant di�erence between TCP layer overall overhead
and the breakdown of this overhead� That is� the overhead obtained by adding
the measured overhead of critical sections of TCP�IP communication layer� Al�
though there are lines of code that are not taken into account� their impact in
the overhead is very small� The real reason is the behavior of LINUX TCP�IP
protocols with high workloads� In this case� most of the work is delayed in order
to avoid saturation in the receiver side� This delayed work will be done as soon as
possible� interrupting the normal program execution and introducing a software
overhead that have been labeled as �doing delayed work� in 
gure ��

Above� we show packet creation and data copy were the main causes of
software overhead in a send system call� So� it should be possible to improve
the network performance by reducing these two overhead sources� In the next
section� we show an approach that minimizes these two overhead causes�

� Latency Tolerance and Reduction Techniques

In previous section� we identi
ed two main sources of software overhead in com�
munication events� Namely� overhead due to allocation of resources and overhead
due to data copy from�to user memory space�

The 
rst factor can be greatly alleviated by implementing software techniques
of resource reutilization� In ��
� authors propose a new technique named Virtual
Circuit Caching �VCC� that enable reduction in communication overheads by
allocating communication resources once and re�using them form multiple mes�
sages to the same destination�

In the MPI�RT Standard Draft ���
� is proposed a similar technique in bu�er
management� allowing to the operating system bu�er re�use� This technique also
allows zero copy data transfer at the expense of limited bu�er length�

We propose a transparent software implementation that allows bu�er reuti�
lization at top level of protocol stack� Figure � show the basic idea of resource
utilization� In this case� the resource to re�use is packet structure used by oper�
ating system�

The idea is the following� When a packet is sent� the packet structure �proto�
cols headers and data space� is not freed but insert in a pool of free packets� In
this way� they can be reused to hold new data� avoiding the overhead of handling
the creation and deallocation of messages�

The second factor �software overhead due to data copy from�to user mem�
ory space� is more di�cult to hide because the overhead can not be distributed
among several messages� However� a precommunication technique can be applied
in some cases obtaining good results� Next� we show an example of communica�
tion pattern when this technique can be applied�



Lecture Notes in Computer Science 


Sent

User space

Protocol Headers

Valid data

Invalid data

Insert in
Packet Pool

Free Packet Pool

Kernel space

Remove from
Packet Pool

Outgoing Chanel

User Message

Fig� �� Overview of VCC software implementation �Opaque to users��

Example of no dependence pattern

compute message A�

recv�token�length�token��� �� Waiting for permission� ��

send�dest�A�length�A��� �� Permission granted� send A� ��

We have observed this communication pattern in programs with global com�
munication events� such as barriers� where all processes wait in the barrier until
last process arrive� We can use this idle time in order to process subsequent
send events in the assumption of no data dependence� In order to deal with this
communication pattern� we have include a new system call� named indication�
that allows an earlier processing of the send system call� Then� the modi
ed code
with the precommunication technique is seen as follows�

Precommunication of message A

compute message A�

indication�dest�A�length�A��� �� There is a send with no ��

�� dependence� ��

recv�token�length�token��� �� Waiting for permission� ��

�� begin to process A sending� ��

send�dest�A�length�A��� �� Permission granted� send A� ��



� A� Flores and J�M� Garc��a

� Result Evaluation

��� Hardware and Software platforms

We have performed our tests on a cluster of workstations with Intel Pentium
���Mhz processor� �� Mbytes main memory� ���KBytes cache memory� �GByte
IDE hard disk and Fast Ethernet SMC EtherPower ������ adapter� The oper�
ating system used is Linux �������

��� The test program

To evaluate performance parameters� we make use of Ping�Pong test� This test
program is written in standard C� The best compiler option is always applied�
unless otherwise noted� The test Ping�Pong is a simple echo between two ad�
jacent nodes� A receiving node simply echoes back whatever it is sent� and the
sending node measures round�trip time� When precommunication technique is
used� we suppose no dependence between send and receive messages� although
program order is maintain �a message is not sent until the process receives the
matching message�� Times are collected for some number of iterations �we have
used ������ over various messages sizes and after a transient period of ��� itera�
tions� The minimal time� the maximal time and the mean time from all processes
are collected� To interpret the results� we focus on the average time� because it
is more representative of the performance the user can obtain from the machine�

��� Results

Figure � show software overhead for messages up to �K� Results are obtain
by subtract delay due to physical transmission from round�trip time� In the
ideal case� hiding of almost all software overhead� results will be near to zero�
Results are shown for three cases� original TCP�IP protocols� TCP�IP with
VCC �Virtual Circuit Caching�� and TCP�IP with precommunication and packet
VCC�

From 
gure � several interesting conclusions follow� First of all� using a trans�
parent technique such as packet reuse mechanism we reduce software overhead
in a range that vary from ����� for short messages up to ������ for long ones�

Another remarkable fact is the software overhead reduction when using pre�
communication� For messages up to �K� utilization of both techniques� precom�
munication and VCC packet show worse performance that packet reuse tech�
nique� This is due to new software overhead sources� Namely� indication system
call and modi
cations introduced in recv system call to deal with precommuni�
cation� For longer messages� this overhead is overwhelmed with bene
ts of an
earlier bu�er copy�



Lecture Notes in Computer Science �

0

100

200

300

400

500

600

700

800

0 512 1204 2048 3072 4096 5120

seconds

message size (bytes)

TCP/IP
TCP/IP with VCC

TCP/IP precommunication (No Dependencies)

μ

Fig� �� Software overhead in TCP�IP protocol�

� Conclusions and future work

The emergence of high�bandwidth� low�latency networks makes the use of work�
station clusters attractive for parallel computing applications� Up to date� the
main problem in this environment is the high latency compared to integrated
custom multiprocessors�

In this paper� we have presented a software implementation of Virtual Circuit
Caching �VCC� that enables reductions in communication overheads by allocat�
ing communication resource once and re�using them for multiple messages to
the same destinations� The software overhead is reduced in a range that varies
from ����� for short messages up to ������ for long ones� In same cases� further
reduction in communication overheads can be achieved using stalls in process
execution to process messages ahead in program order�

Our future work is focused on testing these techniques with usual scienti
c
applications �FFT� LU� etc�� Furthermore� we are currently examining the latest
generation of ATM network interfaces and the Gigabit Ethernet standard to
study the application of our techniques to these new interfaces�

References

�� D� Becker� T� Sterling� D� Savarese� J� Dorband� U� Ranawake� C� Packer� Beowulf�
A Parallel Workstation for Scienti�c Computation� Procc� of Int� Conference on
Parallel Processing� ���
�



	 A� Flores and J�M� Garc��a

�� G� Ciaccio� Optimal Communicationn Performance on Fast Ethernet with GAMMA�
Procc� of the Workshop on Personal Computer Based Networks of Workstations�
IPPS�SPDP� ���	�

�� D�E� Culler� L�T� Liu� R�P� Martin and C�O� Yoshikawa� Assessing Fast Network
Interfaces� IEEE Micro� Vol� ��� No� �� pp� �
���� Feb� �����

�� B�V� Dao� S� Yalamanchili� and J� Duato� Architectural Support for Reducing Com�
munication Overhead in Multiprocessor Interconnection Networks� Procc� of the
Third Int� Symp� on High Performance Computer Architecture� February �����


� T� Von Eicken et al� Active Messages� A Mechanism for Integrated Communication
and Computation� Procc� of the ��th ISCA� pp� �
������ May �����

�� A� Geist� A� Beguelin� J� Dongarra� W� Jiang� R� Manchek and V� Sunderam� PVM�
Parallel Virtual Machine� The MIT Press� �����

�� W� Gropp� E� Lusk and A� Skjellum� Using MPI� The MIT Press� �����
	� R� Handel� M�N� Huber and S� Schroder� ATM Networks� Concepts� Protocols� Ap�

plications� Addison�Wesley ����� ��e�
�� Gigabit Ethernet Alliance� DRAFT Document for IEEE 	����z Gigabit Ethernet

Standard� http���www�gigabit�ethernet�org�
��� Real�time Message Passing Interface �MPI�RT� Forum� DRAFT Document for the

Real�time Message Passing Interface �MPI�RT� Standard� http���www�mpirt�org�
May ���	�

��� J� Piernas� A� Flores� J� M� Garc��a� Analyzing the Performance of MPI in a Cluster
of Workstations base on Fast Ethernet� Procc� of �th European PVM�MPI Users�
Group Meeting� pp� ������ November �����

��� M� Verma� T� Chiueh� Pupa� A low Latency Communication System for Fast Ether�
net� Procc� of theWorkshop on Personal Computer Based Networks of Workstations�
IPPS�SPDP� ���	�


