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Abstract� Recent improvements in LANs make network of workstations
a good alternative to traditional parallel computers in some applications�
However� in this platform the communication performance is over two
orders of magnitude inferior to state�of�art multiprocessors� Currently
networking technologies have put the pressure in the software overhead�
Because of this� applications could not take advantage of this commu�
nication performance potential� In this paper� we present an implemen�
tation of Virtual Circuit Caching that reduces the software overhead by
allocating communication resource once and re�using them for multiple
messages to the same destinations� With this approach� the communica�
tion overhead is reduced by approximately a �
� for long messages� this
reduction should enable the extensive use of networks of workstations for
scienti�c parallel applications�

keywords� Latency Hiding� Fast Network Interface� Cluster of Worksta�
tions� Network Protocol�

� Introduction

Research in parallel computing has traditionally focused on multicomputers and
shared memory multiprocessors� Currently� networks of workstations �NOWs�
are being considered as a good alternative to parallel computers� That is due
to there are high performance workstations with microprocessors that challenge
custom�made architectures� This class of workstations is widely available at rel�
atively low cost� Furthermore� these networks provide the wiring 	exibility� scal�
ability and incremental expansion capability required in this environment�

Communication performance at the application level depends on the collab�
oration of all components in the communication system� especially the network
interface hardware and the low�level communication software that bridges the
hardware and the application� In principle� scienti
c parallel applications should
be coded in a portable message�passing library� as MPI ��
 or PVM ��
� Usu�
ally� these libraries are based in the TCP�IP layer� Unfortunately� TCP�IP layer
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imposes large software overhead ���
�several hundred to several thousand in�
structions per message�� As a result� only embarrassingly parallel applications
�that is� applications that almost never communicate� can make use of work�
station clusters� To solve this problem� we can design better layers or we can
improve the TCP�IP layer� In both cases� the 
nal objective is the same� that
is� improving the network interface rather than the network switches and links
��
�

Currently� in the 
rst approach there are new layers with reduced overheads
�that is� on the scale of tens of instructions per message�� Active Messages ��
 is
one of this� This layer o�ers simple� general�purpose communication primitives
as a minimal layer over the raw hardware� However� it is not intended for direct
use by application programmers and it is not portable� In fact� Active Messages
provide low level services from which communication libraries can be built� The
current prototype of Active Messages is the GAMMA project ��
� GAMMA ex�
ploits a more general Active Message�like model inspired to Thinking Machines�
CMAML for the CM��� where each process has a number of communication

ports and may attach both a receiver handler and a data structure to a single
communication port in order to handle all messages incoming through that port�
This technique is suitable for MIMD as well as SPMD programming� as it does
not require a common address space among cooperating processes�

The second approach is more interesting form point of view of portability�
The main objective in this approach is to improve the network performance
via to reduce the latency of the network� Traditionally� latency and throughput
are the two parameters used to indicate the performance of an interconnection
network� Although these parameters are very related� it is easier to increase
the peak throughput �achievable for long messages�� but it is harder to reduce
the latency �because the software overhead�� Recently� several works have been
developed in this way as Pupa ���
 or Beowulf ��
� These approaches have been
implemented over o��the�shelf network hardware and they co�exist with legacy
communication software such as TCP�IP�

Our research line is in the later approach� Nowadays� it does make sense from
a technological as well as 
nancial point of view to use o��the�shelf network hard�
ware with existing software� usually based on TCP�IP� So� it is very important
to study this protocol and try to reduce the large software overhead that it
imposes� In this paper� we focus on analyzing the TCP�IP layer to detect the
main software overhead points� and to solve this problem via the Virtual Circuit
Caching technique� In this way� we can signi
cantly reduce the communication
latency in the network�

The rest of the paper is structured as follows� In the next section we an�
alyze sources of software overhead in the communication system� In section ��
we describe the techniques used to reduce software communication overhead�
The results of running test programs are analyzed in section �� Finally� some
conclusions and ways of future work are drawn�
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� Analysis Software Overhead Sources

As Local Area Networks improve the performance� their interfaces� resources�
organization� and integration into their host computer become increasingly im�
portant� Recent papers have pointed out that announced performance for such
as LANs could su�er a severe degradation due to overhead in communication
software� Currently� with the most widespread use of ATM ��
 in LANs and the
announcement of Ethernet Gigabit standard ��
� bottleneck studies and alterna�
tive solutions become essential�

To make an exhaustive study of software overhead� we must evaluate the
communication channel performance at several layers in the protocol stack in
order to identify bottlenecks� Using this technique we can measure the added
overhead of each layer� the total software overhead and the network congestion�
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Fig� �� Detailed study of software overhead in TCP�IP layer�

Figure � show software overhead breakdown in a TCP send call� Data was
obtained take advantage of TCP�IP source code available in LINUX operat�
ing system� By introducing measurement instructions in appropriate points of
TCP�IP implementation� we could obtain real overhead of critical sections of
TCP�IP protocols� To obtain an accurate measurement we measure a portion
of TCP�IP source code at once� The measurement overhead was estimate in
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��secs� Measurement results were retrieve via an additional system call that we
introduce for this purpose�

As it can be seen in the 
gure� the send latency is composed by various fac�
tors� This 
gure shows two important facts� Firstly� packet creation and data
copy are the main causes of the send software overhead as expected� The second
thing is that exists a signi
cant di�erence between TCP layer overall overhead
and the breakdown of this overhead� That is� the overhead obtained by adding
the measured overhead of critical sections of TCP�IP communication layer� Al�
though there are lines of code that are not taken into account� their impact in
the overhead is very small� The real reason is the behavior of LINUX TCP�IP
protocols with high workloads� In this case� most of the work is delayed in order
to avoid saturation in the receiver side� This delayed work will be done as soon as
possible� interrupting the normal program execution and introducing a software
overhead that have been labeled as �doing delayed work� in 
gure ��

Above� we show packet creation and data copy were the main causes of
software overhead in a send system call� So� it should be possible to improve
the network performance by reducing these two overhead sources� In the next
section� we show an approach that minimizes these two overhead causes�

� Latency Tolerance and Reduction Techniques

In previous section� we identi
ed two main sources of software overhead in com�
munication events� Namely� overhead due to allocation of resources and overhead
due to data copy from�to user memory space�

The 
rst factor can be greatly alleviated by implementing software techniques
of resource reutilization� In ��
� authors propose a new technique named Virtual
Circuit Caching �VCC� that enable reduction in communication overheads by
allocating communication resources once and re�using them form multiple mes�
sages to the same destination�

In the MPI�RT Standard Draft ���
� is proposed a similar technique in bu�er
management� allowing to the operating system bu�er re�use� This technique also
allows zero copy data transfer at the expense of limited bu�er length�

We propose a transparent software implementation that allows bu�er reuti�
lization at top level of protocol stack� Figure � show the basic idea of resource
utilization� In this case� the resource to re�use is packet structure used by oper�
ating system�

The idea is the following� When a packet is sent� the packet structure �proto�
cols headers and data space� is not freed but insert in a pool of free packets� In
this way� they can be reused to hold new data� avoiding the overhead of handling
the creation and deallocation of messages�

The second factor �software overhead due to data copy from�to user mem�
ory space� is more di�cult to hide because the overhead can not be distributed
among several messages� However� a precommunication technique can be applied
in some cases obtaining good results� Next� we show an example of communica�
tion pattern when this technique can be applied�
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Example of no dependence pattern

compute message A�

recv�token�length�token��� �� Waiting for permission� ��

send�dest�A�length�A��� �� Permission granted� send A� ��

We have observed this communication pattern in programs with global com�
munication events� such as barriers� where all processes wait in the barrier until
last process arrive� We can use this idle time in order to process subsequent
send events in the assumption of no data dependence� In order to deal with this
communication pattern� we have include a new system call� named indication�
that allows an earlier processing of the send system call� Then� the modi
ed code
with the precommunication technique is seen as follows�

Precommunication of message A

compute message A�

indication�dest�A�length�A��� �� There is a send with no ��

�� dependence� ��

recv�token�length�token��� �� Waiting for permission� ��

�� begin to process A sending� ��

send�dest�A�length�A��� �� Permission granted� send A� ��
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� Result Evaluation

��� Hardware and Software platforms

We have performed our tests on a cluster of workstations with Intel Pentium
���Mhz processor� �� Mbytes main memory� ���KBytes cache memory� �GByte
IDE hard disk and Fast Ethernet SMC EtherPower ������ adapter� The oper�
ating system used is Linux �������

��� The test program

To evaluate performance parameters� we make use of Ping�Pong test� This test
program is written in standard C� The best compiler option is always applied�
unless otherwise noted� The test Ping�Pong is a simple echo between two ad�
jacent nodes� A receiving node simply echoes back whatever it is sent� and the
sending node measures round�trip time� When precommunication technique is
used� we suppose no dependence between send and receive messages� although
program order is maintain �a message is not sent until the process receives the
matching message�� Times are collected for some number of iterations �we have
used ������ over various messages sizes and after a transient period of ��� itera�
tions� The minimal time� the maximal time and the mean time from all processes
are collected� To interpret the results� we focus on the average time� because it
is more representative of the performance the user can obtain from the machine�

��� Results

Figure � show software overhead for messages up to �K� Results are obtain
by subtract delay due to physical transmission from round�trip time� In the
ideal case� hiding of almost all software overhead� results will be near to zero�
Results are shown for three cases� original TCP�IP protocols� TCP�IP with
VCC �Virtual Circuit Caching�� and TCP�IP with precommunication and packet
VCC�

From 
gure � several interesting conclusions follow� First of all� using a trans�
parent technique such as packet reuse mechanism we reduce software overhead
in a range that vary from ����� for short messages up to ������ for long ones�

Another remarkable fact is the software overhead reduction when using pre�
communication� For messages up to �K� utilization of both techniques� precom�
munication and VCC packet show worse performance that packet reuse tech�
nique� This is due to new software overhead sources� Namely� indication system
call and modi
cations introduced in recv system call to deal with precommuni�
cation� For longer messages� this overhead is overwhelmed with bene
ts of an
earlier bu�er copy�
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Fig� �� Software overhead in TCP�IP protocol�

� Conclusions and future work

The emergence of high�bandwidth� low�latency networks makes the use of work�
station clusters attractive for parallel computing applications� Up to date� the
main problem in this environment is the high latency compared to integrated
custom multiprocessors�

In this paper� we have presented a software implementation of Virtual Circuit
Caching �VCC� that enables reductions in communication overheads by allocat�
ing communication resource once and re�using them for multiple messages to
the same destinations� The software overhead is reduced in a range that varies
from ����� for short messages up to ������ for long ones� In same cases� further
reduction in communication overheads can be achieved using stalls in process
execution to process messages ahead in program order�

Our future work is focused on testing these techniques with usual scienti
c
applications �FFT� LU� etc�� Furthermore� we are currently examining the latest
generation of ATM network interfaces and the Gigabit Ethernet standard to
study the application of our techniques to these new interfaces�
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