
Using AOP to Automatycally Provide Distribution, Fault
Tolerance, and Load Balancing to the CORBA–LC

Component Model

Diego Sevilla1, José M. Garcı́a1, and Antonio Gómez2

1 Department of Computer Engineering
2 Department of Information and Communications Engineering

University of Murcia, Spain
{dsevilla, jmgarcia}@ditec.um.es, skarmeta@dif.um.es

Programming abstractions, libraries and frameworks are needed to better approach the design
and implementation of distributed High Performance Computing (HPC) applications, as the
scale and number of distributed resources is growing. Moreover, when Quality of Service
(QoS) requirements such as load balancing, efficient resource usage and fault tolerance have to
be met, the resulting code is harder to develop, maintain, and reuse, as the code for providing the
QoS requirements gets normally mixed with the functionality code. Component Technology,
on the other hand, allows a better modularity and reusability of applications and even a better
support for the development of distributed applications, as those applications can be partitioned
in terms of components installed and running (deployed) in the different hosts participating in
the system. Components also have requirements in forms of the aforementioned non-functional
aspects. In our approach, the code for ensuring these aspects can be automatically generated
based on the requirements stated by components and applications, thus leveraging the compo-
nent implementer of having to deal with these non-functional aspects. In this paper we present
the characteristics and the convenience of the generated code for dealing with load balanc-
ing, distribution, and fault-tolerance aspects in the context of CORBA–LC. CORBA–LC is a
lightweight distributed reflective component model based on CORBA that imposes a peer net-
work model in which the whole network acts as a repository for managing and assigning the
whole set of resources: components, CPU cycles, memory, etc.a

1 Introduction

Component-based development (CBD)1, resembling integrated circuits (IC) connections,
promises developing application connecting independently-developed self-describing bi-
nary components. These components can be developed, built and shipped independently
by third parties, and allow application builders to connect and use them. This development
model is very convenient for distributed applications, as components can be installed in
different hosts, matching the physically distributed nature of this kind of applications.

Moreover, as applications become bigger, they must be modularly designed. Com-
ponents come to mitigate this need, as they impose the development of modules that are
interconnected to build complete applications. Components, being binary, independent and
self-described, allow:

• Modular application development, which leads to maximum code reuse, as compo-
nents are not tied to the application they are integrated in.

aThis work has been jointly supported by the Spanish MEC and European Comission FEDER funds under grants
“Consolider Ingenio-2010 CSD2006-00046” and “TIN2006-15516-C04-03”.

1



• Soft application evolution and incremental enhancement, as enhanced versions of ex-
isting components can substitute previous versions seamlessly, provided that the new
components offer the required functionality. New components can also be added to
increase the set of services and functionality that new components can use, thus al-
lowing applications to evolve easily.

To bring the benefits of Component-Based Development to distributed High
Performance Computing (HPC), we developed CORBA Lightweight Components
(CORBA–LC)2, a distributed component model based on CORBA3. CORBA–LC offers
traditional component models advantages (modular applications development connecting
binary interchangeable units), while performing an automatic deployment of components
over the network. This deployment solves the component dependencies automatically,
using the complete network of hosts to decide the placement of component instances in
network nodes, intelligent component migration and load balancing, leading to maximum
network resource utilization.

In order to perform this intelligent deployment, components separate the actual com-
ponent functionality from the non-functional specification of Quality of Service (QoS)
requirements, such as load balancing, fault tolerance, and distribution. This information
is used by the CORBA–LC framework to generate the code that deals with those non-
functional aspects of the component. In this way, the programmer can concentrate only on
the component functionality, leaving to the framework the responsibility of ensuring that
the actual QoS requirements are met.

Moreover, separating component code from the specification of non-functional re-
quirements allows us to apply Aspect-Oriented Programming (AOP)4 techniques to the
CORBA–LC Component Model. In this paper we show how AOP techniques can be used
for automatic code generation of the aforementioned non-functional aspects code, and
discuss the convenience of this approach of combining Component-Based Development
(CBD) with AOP.

The paper is organized as follows: Section 2 offers an overview of CORBA–LC. Sec-
tion 3 shows how graphics applications can be used to define how to connect a set of
components and how to specify non-functional aspects requirements. Section 4 shows
how automatic code can be generated to seamlessly and transparently offer non-functional
aspects implementation. Finally, Section 5 offers related work in the fields of component
models and aspects, and Section 6 presents our conclusions.

2 The CORBA–LC Component Model

CORBA Lightweight Components (CORBA–LC)2, 5 is a lightweight component model
based on CORBA, sharing many features with the CORBA Component Model (CCM)6.
The following are the main conceptual blocks of CORBA–LC:

• Components. Components are the most important abstraction in CORBA–LC. They
are both a binary package that can be installed and managed by the system and a
component type, which defines the characteristics of component instances (interfaces
offered and needed, events produced and consumed, etc.) These are connection points
with other components, called ports.

2



Figure 1. Logical Node Structure.

• Containers and Component Framework. Component instances are run within a run-
time environment called container. Containers become the instances view of the
world. Instances ask the container for the required services and it in turn informs
the instance of its environment (its context).

• Packaging model. The packaging allows to build self-contained binary units which
can be installed and used independently. Components are packaged in “.ZIP” files
containing the component itself and its description as IDL (CORBA Interface Defini-
tion Language) and XML files.

• Deployment and network model. The deployment model describes the rules a set of
components must follow to be installed and run in a set of network-interconnected
machines in order to cooperate to perform a task. CORBA–LC deployment model is
supported by a set of main concepts:

– Nodes. The CORBA–LC network model can be seen as a set of nodes (hosts)
that collaborate in computations. Nodes maintain the logical network connec-
tion, encapsulate physical host information and constitute the external view of
the internal properties of the host they are running on. (Fig. 1). Nodes offer
information about memory and CPU load, and the set of components installed.

– The Reflection Architecture is composed of the meta-data given by the different
node services: The Component Registry provides information about (a) running
components, (b) component instances running in the node and the properties
of each, and (c) how those instances are connected via ports (assemblies); the
Resource Manager in the node collaborates with the Container implementing
initial placement of instances, migration/load balancing at run-time.

– Network Model and The Distributed Registry. The CORBA–LC deployment
model is a network-centered model: The complete network is considered as a
repository for resolving component requirements.

– Applications and Assembly. In CORBA–LC, applications are a set of rules that
a set of component instances must follow to perform a given task. Applica-
tions are also called assemblies, as they encapsulate explicit rules to connect

3



Figure 2. The CORBA–LC Assembler Graphical User Interface (GUI).

component instances. Application deployment is then issued by instantiating an
assembly: creating component instances and connecting them. The CORBA–LC
deployment process is intelligent enough to select the nodes to host the compo-
nent instances based on the assembly requirements. Users can create assemblies
using visual building tools, as the CORBA–LC Assembly GUI (Fig. 2).

3 Component Non-Functional Aspects

Components are not only a way of structuring programs, but a framework in which the
programmer can focus in the functionality, leaving other aspects (called non-functional as-
pects) such as reliability, fault tolerance, distribution, persistence, or load balancing to the
framework. The goal of CORBA–LC is to allow the programmer to write the functional-
ity of the components, then describe how the components would work in terms of those
non-functional aspects in a declarative manner, and let the framework to implement that
requirements.

We can use an assembly of an example Master/Worker application based on compo-
nents to show how CORBA–LC can achieve this goal. Figure 2 shows this assembly in the
CORBA–LC Assembly GUI. The upper left part of the screen shows the available com-
ponents in the network, while the lower left part shows the characteristics of the selected
component or connection. Each red rectangle in the right part represents a component.
Used interfaces are shown in the left part of the rectangle, while provided ones are shown
in the right part. You can see the connection among components.

The GenericMaster component is in charge of the standard Master/Worker proto-
col. Note that the only needs of this component is to have one component that provide the
generic Master interface, and a set of components that provide the generic Worker in-
terface. This is very convenient, as allows us to plug any pair of components that perform

4



that type of computation. In this case, the figure shows a pair of components that calculate
a Mandelbrot fractal.

In the lower left part, the figure shows the set of properties of the Worker connection
of the GenericMaster component instance (that is, the characteristics of the connection
between the GenericMaster and the MandelbrotWorker component through the
Worker interface.) The most important property is “strategy”, which defines how this
connection is made. In CORBA–LC, this property can have different possible values:

• default. This is a normal CORBA call.

• local. The connection is instructed to be local (both components must be instanti-
ated in the same node).

• remote. The connection is instructed to be remote (components must be instantiated
in different nodes).

• fault-tolerant. With this value, instead of one instance of the component, a
set of component instances (replicas) are created, in different nodes. Whenever the
component calls an operation on this interface, several threads are created to issue
concurrent calls to all the alive replicas, performing a final voting and a signaling of
dead replicas if necessary.

• load-balancing. Similar to the previous one, instead of one component instance,
several are created. When a call to that interface is issued, the call is redirected to the
less loaded node.

• max-use. Again, instead of one instance, the whole network will be used to create
as many component instances as possible.

The local strategy is useful for components that need an high-speed connection, such
as streaming processing. The remote value instead is useful for keeping a small set of
components in a low-end node (such as a PDA,) while the rest of components are in remote,
more powerful, nodes.

For the last three values, optional “min instances” and “max instances” prop-
erties can also be specified. When the CORBA–LC Assembler builds the application, it will
ensure the number of needed component instances and connections satisfy the needs of the
assembly. Note that in some cases, to meet the number required instances, this step may
also require sending the component for installation and instantiation to other nodes if there
are not enough nodes with this component available in the first place.

In this specific example, the “strategy” property shows the “max-use” value, as
suggested for the Master/Worker functionality.

Finally, AOP connections are also possible. In Figure 2, the stripped connection line
shows an AOP connection. These connections allows a component (that provides the
AOPIface interface) to take control each time a call is made between two components
(allow it, abort it, or even modify it.) In the figure, the BasicLogger component is in
charge of writing a log of all the calls made. Note that this behavior goes unnoticed for
both the caller and the callee, and that this functionality can be activated or deactivated at
any time, even at run-time, without any specific code written for logging in the application.

Other AOP connections can be made. In our research, an authenticator component has
also been created, allowing any connection to be authenticated prior to making any call.

5



Figure 3. Proxy call sequence.

4 Automatic Generation of Aspects Code

The CORBA–LC Code Generator is in charge of generating all the code to deal with the
required non-functional aspects of components. It uses the information of both (1) the
standard CORBA Interface Repository (IR), and (2) the Component’s XML file. While the
XML describes the component ports and non-functional requirements, the IR describes
all the IDL interfaces used in those ports. As output, the code generator produces the
needed implementation files and boilerplate that can be used by the programmer to write
the functionality proper of the component.

CORBA–LC must have control of all the communication that happens among the com-
ponent ports. This way, the framework can modify how the components communicate
assuring the required load balancing, fault-tolerance, etc. Thus, for each used and pro-
vided interface, interception code must be created by the Code Generator. This is also
referred to as “point-cuts” in Aspect-Oriented Programming (AOP)4 terminology.

For each provided interface of a component, CORBA implementation objects (ser-
vants) are created. Servants are in charge of receiving the actual CORBA calls, and prop-
agating the call to the final programmer code (called executor), that implements the func-
tionality of the offered interface. The servant can also perform pre- and post-processing on
the call. For instance, it can retrieve and store the executor data from a data-base, offering
seamless persistence (as another aspect) to component instances.

For each required (used) interface of a component, proxy objects are created. They
are in charge of delivering the local programmer code call to other component’s provided
interface as a normal CORBA call. At this point, the proxy code can also do some pre- and
post-processing. Concretely, they are in charge of (Fig. 3): (a) Calling the possibly attached
AOP connections to this port, passing them all the parameters of the call, (b) Maintaining
the set of active remote component instances, and (c) Depending on the strategy:

• Generating a pool of threads and concurrently calling all the remote component in-
stances, retrieve their results and optionally performing voting (fault-tolerant.)

• Localizing the less loaded node and sending the call to the component instance run-
ning in that particular node (load-balancing strategy.)

6



• Providing to the component the set of remote component instances (max-use.)

5 Related Work

To date, several distributed component models have been developed. Although
CORBA–LC shares some features with them, it also has some key differences.

Java Beans7, Microsoft’s Component Object Model (COM)8, .NET9 offer similar com-
ponent models, but lack in some cases that are either limited to the local (non-distributed)
case or do not support heterogeneous environments of mixed operating systems and pro-
gramming languages as CORBA does.

In the server side, SUN’s EJB10 and the recent Object Management Group’s CORBA
Component Model (CCM)11 offer a server programming framework in which server com-
ponents can be installed, instantiated and run. Both are fairly similar. Both are designed to
support enterprise applications, offering a container architecture with support for transac-
tions, persistence, security, etc. They also offer the notion of components as binary units
which can be installed and executed (following a fixed assembly) in Components Servers.

Although CORBA–LC shares many features with both models, it presents a more dy-
namic model in which the deployment is not fixed and is performed at run-time using
the dynamic system data offered by the Reflection Architecture. Also, CORBA–LC is
a lightweight model in which the main goal is the optimal network resource utilization
instead of being oriented to enterprise applications. Finally, CORBA–LC adds AOP con-
nections, not present in the other two models.

Applying Aspects-Oriented techniques to Component Models has also been explored
in several works. In12 the authors apply AOP techniques to the EJB component model.
This work is limited to Java and the usage of AspectJ13 to provide a finer grain of control
over actual calls in EJB. A quantitative study showing the benefits of AOP for component-
based applications (in terms of number of lines of code and number of places to change
when a modification on the application has to be done) can be found in14.

In15, the authors apply aspect oriented techniques in the context of the CORBA Com-
ponent Model and security policies using the Qedo framework (an implementation of the
CCM). Real-Time has been treated as an aspect in a CCM component framework imple-
mentaion (CIAO) in16. The approach of these works is similar to the one presented in this
paper, but none of them treat distribution, load balancing and fault tolerance as an aspect.

In the field of High Performance Computing (HPC) and Grid Computing, Forkert et
al. (17) present the TENT framework for wrapping applications as components. However,
this wrapping is only used to better organize applications, and not to provide an integrated
framework in which offer services to component implementations.

The Common Component Architecture (CCA)18 is a component model framework also
based on the idea of reusable, independent components. However, it does not offer any ba-
sic run-time support for distribution, load balancing or fault tolerance. Thus, implementing
those services require of ad-hoc programming, which goes against reusability.

6 Conclusions

As we showed in this paper, component technology in general, and CORBA–LC in par-
ticular, offer a new and interesting way of approaching distributed applications. Services

7



otherwise complicated can be offered by the framework just by specifying them in the
characteristics and needs of components and applications.

We showed how convenient the Aspect-Oriented approach is to seamlessly and trans-
parently offer services such as fault tolerance, replication and load balancing to compo-
nents, and the importance of being able to specify those non-functional aspects in a declar-
ative manner, so that the required code for those aspects can be generated automatically.

References

1. C. Szyperski. Component Software: Beyond Object-Oriented Programming. ACM Press,
1998.

2. D. Sevilla, J. M. Garcı́a, and A. Gómez. CORBA Lightweight Components: A Model for
Distributed Component-Based Heterogeneous Computation. In EUROPAR’2001, pages 845–
854, Manchester, UK, August 2001. LNCS 2150.

3. M. Henning and S. Vinoski. Advanced CORBA Programming with C++. Addison-Wesley
Longman, 1999.

4. F. Duclos, J. Estublier, and P. Morat. Describing and Using Non Functional Aspects in Com-
ponent Based Applications. In International Conference on Aspect-Oriented Software Devel-
opment, Enschede, The Netherlands, April 2002.

5. D. Sevilla, J. M. Garcı́a, and A. Gómez. Design and Implementation Requirements for CORBA
Lightweight Components. In Metacomputing Systems and Applications Workshop (MSA’01),
pages 213–218, Valencia, Spain, September 2001.

6. Object Management Group. CORBA: Common Object Request Broker Architecture Specifica-
tion, revision 3.0.2, 2002. OMG Document formal/02-12-06.

7. SUN Microsystems. Java Beans specification, 1.0.1 edition, July 1997.
http://java.sun.com/beans.

8. Microsoft. Component Object Model (COM), 1995. http://www.microsoft.com/com.
9. Microsoft Corporation. Microsoft .NET. http://www.microsoft.com/net/.

10. SUN Microsystems. Enterprise Java Beans specification, 3.0 edition, May 2006.
http://java.sun.com/products/ejb.

11. Object Management Group. CORBA Component Model, 1999. OMG Document ptc/99-10-04.
12. Roman Pichler, Klaus Ostermann, and Mira Mezini. On aspectualizing component models.

Software, Practice and Experience, 33(10):957–974, 2003.
13. Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G. Gris-

wold. An overview of AspectJ. Lecture Notes in Computer Science, 2072:327–355, 2001.
14. O. Papapetrou and G. Papadopoulos. Aspect oriented programming for a component based real

life application: A case study. In Symposium on Applied Computing — Software Engineering
track, 2004.

15. Tom Ritter, Ulrich Lang, and Rudolf Schreiner. Integrating security policies via container
portable interceptors. Distributed Systems Online, July 2006.

16. Nanbor Wang, Chris Gill, Douglas C. Schmidt, and Venkita Subramonian. Configuring real-
time aspects in component middleware. In International Symposium on Distributed Objects
and Applications (DOA’04), Agia Napa, Cyprus, October 2004.

17. Tomas Forkert, Guy K. Kloss, Christian Krause, and Andreas Schreiber. Techniques for wrap-
ping scientific applications to corba components. In High-Level Parallel Programming Models
and Supportive Environments (HIPS’04), pages 100–108, 2004.

18. Dennis Gannon, Sriram Krishnan, Liang Fang, Gopi Kandaswamy, Yogesh Simmhan, and
Aleksander Slominski. On building parallel & grid applications: Component technology and
distributed services. Cluster Computing, 8(4):271–277, 2005.

8


